Lecture 1

Website: math.utexas.edu/~schollcr/341
Syllabus posted there (/users/schollcr ?)
(bring copies next time)
HW due Thursdays in class
(starting next week)

Office hours: Tuesdays 3:30-5. RLM 12.154
(if you can't make it then email me).

TA: Maxwell Wenzel TW 1-2
RLM 13.152

Pick up course textbook!
Follow along: read section in advance before class.

Studying: §1.1 today + Thursday
then start on §1.2.

Usual grading policies: see syllabus.

Autotune: force you to sing in tune:
it corrects your pitch by modifying the soundtrack.
It picks closest note and corrects your pitch to that.
I.e. the closest piano key note to what you are singing.

What happens: you sing and this produces sound waves (i.e. change in air pressure)

Can graph it: get raw wave file (~.wav)

$y = \text{pressure}$

\[\text{time} = t \]

The higher the note the more rapid the oscillation.

Idealized note: pure sinusoidal

\[y = A \cdot \sin(k t + \phi) \]

- A = amplitude
- k = frequency

E.g. 440 Hz = 440 oscillations/see

- A above middle C = double frequency
- 880 Hz: next higher A.

Autotune: essentially finds the strongest frequencies.
This course: Linear algebra and matrix theory.

The job of finding the strongest frequency is done by Linear Algebra.

Fourier Transform: It replaces time with frequency.

Given a sound wave \(f(t) \) \(t = \text{time} \)

Get: \(\hat{f}(f) \) \(\text{Fourier transform} \)

Given more complicated signal: \(\hat{f}(f) \) will have peaks at frequencies such that \(f \) is sum of pure harmonic of these frequencies.
\[f(t) = \text{sum} \, A \sin(440t + c_1) + B \sin(880t + c_2) \]

Linear algebra provides \(F \).

Key idea: \(F \) expresses \(f \) in the basis of pure frequencies. \(F(f) \) tells you the frequencies.

\(F(f) \) is telling you how to express \(f \) in the basis of pure tones.

Why "Linear." Why is Fourier transform linear?

Linear function: \(y = mx + b \).

For us, \(b = 0 \): \(y = mx \). Linear \(\mathbb{R} \to \mathbb{R} \)

\(x \mapsto y = mx \).

Linear function of two variables:
\(g(u,v) = a.u + b.v \), \(a,b \in \mathbb{R} \).

No quadratic.
MVC is about approximating all functions by linear ones. You do it by taking derivative. I.e. calculus (via first deriv.) reduces everything to lin alg.

Example: One variable: \(f: \mathbb{R} \to \mathbb{R} \)

\[
f(x) \approx f(x_0) + f'(x_0)(x-x_0)
\]

Near \(x_0 \) slope \(f'(x_0) \)
RHS = tangent line to \(f \) at \(x_0 \)

Two variables: \(f(x, y) \approx f(x_0, y_0) + \frac{\partial f}{\partial x}(x_0, y_0)(x-x_0) + \frac{\partial f}{\partial y}(x_0, y_0)(y-y_0) \)

RHS = linear approximation to \(f \) near \((x_0, y_0, f(x_0, y_0)) \)

Linear because of form \(ax + by + c \).

Linear algebra: we generalize this to vectors.

Definition A linear function \(f \) is one satisfying

\[
\begin{align*}
 f(u+v) &= f(u) + f(v), \\
 f(au) &= a f(u), \\
 f(0) &= 0
\end{align*}
\]
Linear functions in one variable:
\[f(x) = mx \quad m \in \mathbb{R} \]

Linear in two variables:
\[f(x,y) = ax + by \quad a, b \in \mathbb{R} \]

In terms of what you are used to, this definition is: linear with no constant term.

(If \(f(x,y) = ax + by + c \), then \(f(0,0) = c \), but we need \(f(0,0) = 0 \) by definition.)

Note: \((x,y) = (ax, ay) \) so part 2 of definition of linear says in particular \(f(0,0) = F(0, (0,y)) = 0 \cdot f(0,y) = 0 \).

Observation: Fourier transform is linear:

a) \(F(f + g) = F(f) + F(g) \).

b) \(F(af) = a \cdot F(f) \).

a): If you take \(f = \text{side of freq } 440 \)
\(g = \text{side of freq } 880 \)
\[F(f + g) = \begin{bmatrix} f(e) & f(g) \\ 440 & 880 \end{bmatrix} = F(f) + F(g) \]

Note: \(f, g \) are functions: the space of functions has infinitely many variables.
\[\text{(infinite many times).} \]

Not on exam: this is motivation.

End of intro.

Plan for course: slowly introduce linear algebra, via careful definitions especially: (large \(n \)): Fourier transform eventually.

In particular: \(n = \text{number of samples} = \text{sampling rate (per second)} = \text{time (in seconds)} \)

§1.1. Fundamental operations with vectors.

[see later: vectors are the domain of linear functions].

\(\mathbb{R} = \text{all real numbers} \), i.e. coordinate values along real line.

Definition A real \(n \)-vector is a sequence of \(n \) real numbers.

aka: an (ordered) \(n \)-tuple of real numbers:

i.e.: \([a_1, a_2, \ldots, a_n] \), \(a_1, a_2, \ldots, a_n \) are in \(\mathbb{R} \).

\(a_1, a_2, \ldots, a_n \in \mathbb{R} \).

Example: \(\mathbb{R}^2 = \text{set of real 2-vectors ("2-dim space") (n=2)} \)

example: \([2, 47], [0, 92] \)
The set of real n-vectors is denoted \(\mathbb{R}^n \).

Definition The zero vector:
\[[0, 0, \ldots, 0] \] is the vector whose coordinates are all zero.

Definition Two vectors are equal if
\[(a_1, a_2, \ldots, a_n) = (b_1, b_2, \ldots, b_n) \] if and only if
\[a_1 = b_1, \quad a_2 = b_2, \ldots, \quad a_n = b_n. \]

Notation: A real \(c \in \mathbb{R} \) is called a "scalar" distinguished from \(n \)-vectors: a scalar is NOT a vector.

\[\text{I.e.} \quad c = \begin{bmatrix} c \end{bmatrix}. \]

Geometric interpretation:

\[(a, b) \quad \text{and} \quad (c+1, b) \]

\[v = \begin{bmatrix} a \end{bmatrix}, \quad w = \begin{bmatrix} c \end{bmatrix}, \quad v + w = \begin{bmatrix} a + c \end{bmatrix}. \]

Example:

\[v = \begin{bmatrix} 2 \end{bmatrix}, \quad w = \begin{bmatrix} 1 \end{bmatrix} \]

\[v \pm w. \]
I.e. a vector is a direction and a length. (\textbf{Vill})

Length of a two-vector: \(\mathbf{v} = [a, b] \)
Length: \(||\mathbf{v}|| = \sqrt{a^2+b^2} \). (Pythagorean theorem)

\[
\begin{bmatrix}
a_b \\
b \\
a_0 \\
\end{bmatrix}
\Rightarrow
|\begin{bmatrix}a_b \\
b \\
a_0 \\
\end{bmatrix}| = \sqrt{a^2+b^2}.\
\]

3-vectors: \(\mathbf{v} = [a, b, c] \)

\[
\begin{aligned}
u & = [a, b, 0] \\
w & = [0, 0, c]
\end{aligned}
\]

\[||u|| = \sqrt{a^2+b^2}
\]
\[||w|| = c \quad \text{(if } c \text{ positive)}
\]

\[||\mathbf{v}|| = \sqrt{(\sqrt{a^2+b^2})^2+c^2} = \sqrt{a^2+b^2+c^2}.
\]

\textbf{Definition} The length, \(||\mathbf{a}|| \), of a vector \(\mathbf{a} = [a_1, a_2, \ldots, a_n] \) is:

\[||\mathbf{a}|| = \sqrt{a_1^2+a_2^2+\ldots+a_n^2}.
\]

(\(||\mathbf{a}||\) is the notation for "length" or "magnitude" of \(\mathbf{a} \).)

\textbf{Ex.}: \(||[3, 4]| | = \sqrt{3^2+4^2} = 5
\)
\(||[5, 12]| | = \sqrt{5^2+12^2} = 13 \Rightarrow ||[3, 9, 12]| | = 13.\)
\[\| (3, 4, 12) \| = \sqrt{3^2 + 4^2 + 12^2} = 13 \]
\[\text{ex} \quad \| (1, 2, 0, 3) \| = \sqrt{1^2 + 2^2 + 3^2} = \sqrt{14} \]

Definition The sum of two vectors is the sum of the coordinates:

\[[a_1, a_2, \ldots, a_n] + [b_1, b_2, \ldots, b_n] \]

\[:= [a_1 + b_1, a_2 + b_2, \ldots, a_n + b_n] \]

defined as.

\[\text{i.e. means "equal because we define it that way." } \]

Definition: Scalar multiplication:

\[c \begin{bmatrix} a_1, a_2, \ldots, a_n \end{bmatrix} \]

\[= \begin{bmatrix} ca_1, ca_2, \ldots, ca_n \end{bmatrix} \quad | \quad c \in \mathbb{R} \]

Scalar \cdot Vector

Geometric interpretation:

\[\text{e.g. } v = (0, 1) \quad u = (0, 0, 3) \quad w = (0, 0, b) \]

\[v = u + w \]
Scalar mult: keeps or reverses direction. Modifies length.

$2 \cdot \mathbf{v} = \text{vector length twice that of } \mathbf{v}.$

Same direction.

$2[\mathbf{v}] = (2a, 2b)$

(\vec{a}, \vec{b}) \rightarrow (2\vec{a}, 2\vec{b})$