Lecture 25

Plan: Two more lectures, state two fundamental theorems from lin alg:
(Gram-Schmidt: today)

- Spectral theorem for normal operators
- Polar decomposition (gen. of polar coords)

\[z = r e^{i\theta} \]

\[r (\cos \theta + i \sin \theta) \]

Polar coords on \(\mathbb{C} = \mathbb{R}^2 \)

Last time: observed (informally):

Defn A vector space \(V \) is the direct sum of \(u_1, u_2 \in V \) if \(u_1 + u_2 \rightarrow \exists! u_1, u_2 \in V \), s.t. \(v = u_1 + u_2 \). Write: \(V = u_1 \oplus u_2 \)

Thm \(F^n = V \oplus V^\perp \forall V \subseteq F^n \).

Proved Thm if \(V \) admits an orthonormal basis.

Today: Prove Thm on basis of \(V \), construct it!
(Gram-Schmidt)
Examples of direct sum:

First, define \(V = V_1 \oplus \ldots \oplus V_k \) if \(\forall v \in V \)

\[\exists! \ v_i \in V_1, \ldots, v_k \in V_k \text{ s.t.} \]

\[V = v_1 + \ldots + v_k. \]

Example: If \(V_1, \ldots, V_n \) is a basis of \(V \),

\[V = V_1 \oplus \ldots \oplus V_n, \quad V_j = \text{span}(V_j) \]

Claim (i.e. \(\dim V_j = 1 \))

Why? \(\forall v \in V, \exists! \ a_1, \ldots, a_n \) s.t.

\[v = a_1 v_1 + \ldots + a_n v_n. \] That means

\(a_1 v_1, \ldots, a_n v_n \) are the unique vectors in \(V_1, \ldots, V_n \) which sum to \(v \).

Conversely, if \(V = V_1 \oplus \ldots \oplus V_n \) \(\dim V_j = 1 \)

\(\implies \) we can get a basis of \(V \) from any

nonzero vectors \(v_i \in V_1, \ldots, v_n \in V_n \).

Example: If \(T : V \rightarrow V \) is an operator which

admits an eigenbasis, then:

\[V = \bigoplus_{k=1}^{n} E_k. \]

\(\exists! \ \lambda \) distinct eigenvalues

\(E_{\lambda_1}, \ldots, E_{\lambda_n} \) eigenspaces.

AND conversely
Why true? If we have an eigenbasis, \((3, 13) \)
then we can group them to bases of
\[E_{\lambda_1}, \ldots, E_{\lambda_k}. \]
Uniqueness of
\[V = a_1 v_1 + \ldots + a_n v_n \quad (v_1, \ldots, v_n) \text{ eigenbasis} \]
\[= \] uniqueness of
\[V = u_1 + \ldots + u_k, \quad u_j \in E_{\lambda_j}. \]
Had observed before: If \(V = u_1 + \ldots + u_k, \quad u_j \in E_{\lambda_j} \)
then \(u_j \) are uniquely det. by \(V \)
I.e. linear independence of eigenvectors with different eigenvalues.
Therefore given any \(V, T: V \to V, \)
\(E_{\lambda_1}, \ldots, E_{\lambda_k} \) are eigenspaces (distinct)
If \(U = E_{\lambda_1} + \ldots + E_{\lambda_k} = \sum u_1 + \ldots + u_k, \quad u_j \in E_{\lambda_j} \)
\[= \text{Span} \left(E_{\lambda_1}, u_1, \ldots, u_k \right) \]
\[\therefore \quad U = E_{\lambda_1} \oplus \ldots \oplus E_{\lambda_k} \]
\[\therefore \quad \text{I admit an eigenbasis} \quad \Rightarrow \quad V = U \quad \Rightarrow \quad \text{all vectors are sums of eigenvectors.} \]
Think of direct sums \(V_1 \oplus \ldots \oplus V_k \) as Sketch:
"\(V_1, \ldots, V_k \) are linearly ind.,
\(T \) they span \(V_1 \oplus \ldots \oplus V_k. \)"
Exercise (or HW?) $V_1 + \ldots + V_k$ is direct $(4/13)$

$v_1, \ldots, v_k \subseteq V = \text{vs.}$

(i.e. $\forall v \in V_1 + \ldots + V_k \exists ! v_j \in V_j, v_1 + \ldots + v_k = v$)

$
\iff \dim (V_1 + \ldots + V_k) = \dim V_1 + \ldots + \dim V_k
$

Go back to thm: $F^n = V \oplus V^\perp \forall V$.

Saying:

- $F^n = V + V^\perp$ (more statement)
- $\dim V + \dim V^\perp = n$
- $V \cap V^\perp = \{0\}$ (easy part),
 no vector is perpendicular to itself (except 0).

When V admits an n basis, we proved it by:

$\text{proj}_V : F^n \rightarrow V \text{ defined by}

\text{proj}_V (u) = (\langle u, v_1 \rangle v_1 + \ldots + \langle u, v_k \rangle v_k)

\text{ (} \langle u, v \rangle := u \cdot \overline{v} \text{).}

\text{if } F = \mathbb{R} : u \cdot v.$

Observe: $\text{proj}_V (v) = v \forall v \in V$.
Also observed: \(\ker (\text{proj}_V) = V^\perp. \)

Because \(\ker = \{ w \mid \langle w, v_i \rangle = 0 \ \forall i \} = \{ w \mid \langle w, a_1 v_1 + \ldots + a_n v_n \rangle = 0 \ \forall a_1, \ldots, a_n \in \mathbb{R} \} = \{ w \mid \langle w, V \rangle = 0 \ \forall V = V^\perp \}. \)

Cor

If \(u \in \mathbb{R}^n \), we have

\[
 u = \text{proj}_V(u) + (u - \text{proj}_V(u))
 \]

\(V \cap \ker (\text{proj}_V) = \{ 0 \} \)

\[
 \langle u, v \rangle = \langle \text{proj}_V(u), v \rangle \quad \forall v \in V.
 \]

How to prove \(\exists \) orthonormal basis \(\{ v_i \} \) of \(V \)?

We will use these projections.

Theorem (Gram-Schmidt) Given any \(v_1 \in \mathbb{R}^n \)

\(\exists \) orthonormal basis. Moreover, if \((v_1, \ldots, v_k) \) basis of \(V \), then there exists \((v_1', \ldots, v_k') \) orthonormal basis s.t. \(v_i' \in \text{Span}(v_1, \ldots, v_i) \).

(e.g. \(v_1' \) is a multiple of \(v_i \) : \(v_i' = \frac{v_i}{\|v_i\|} \)).
Formula: \[V_j' = V_j - \text{proj}_{\text{span}(v_1, \ldots, v_{j-1})} V_j \]

This formula makes sense if \(v_1', \ldots, v_{j-1}' \) already
constructed, s.t. \((v_1', \ldots, v_{j-1}') \) orthonormal,
Since \(\text{span}(v_1, \ldots, v_{j-1}) = \text{span}(v_1', \ldots, v_{j-1}') \) is orthonormal,
\[\Rightarrow \text{proj}_{\text{span}(v_1, \ldots, v_{j-1})} = \text{proj}_{\text{span}(v_1', \ldots, v_{j-1}')} \exists \text{ by previous thm.} \]
\[(\text{if } \mathbb{F}^n = W \oplus W^\perp \text{ has orthonormal basis.}) \]

What do we have to prove? \((v_1, \ldots, v_k) \) basis of \(V \).
Inductively if \((v_1, \ldots, v_{j-1}) \) constructed and
Orthornormal assume: \(\text{span}(v_1', \ldots, v_k') = \text{span}(v_1, \ldots, v_k) \) \(\forall k \in \mathbb{R} \)
In particular: \(v_k' \in \text{span}(v_1, \ldots, v_k) \) \(\forall k \in \mathbb{R} \)
Need: \((v_1', \ldots, v_k') \) orthonormal, spans
\(\text{span}(v_1, \ldots, v_k) \)
\[V_j' = V_j - \text{proj}_{\text{span}(v_1, \ldots, v_{j-1})} V_j = \frac{V_j''}{\|V_j''\|}, V_j'' = \text{num} \]
If nonzero v_i, automatically unit v_i.

$$\forall \ell < j,$$

But $\langle v_i', v_\ell' \rangle = \frac{\langle v_i'', v_\ell' \rangle}{\|v_i''\|}$.

$$\langle v_i'', v_\ell' \rangle = \langle v_i - \text{Proj}_{\text{span}(v_i, \ldots, v_{j-1})} v_i, v_\ell' \rangle$$

$$= \langle v_i, v_\ell' \rangle - \langle \text{Proj}_{\text{span}(v_i, \ldots, v_{j-1})} v_i, v_\ell' \rangle$$

$$= \langle v_i, v_\ell' \rangle - \langle \text{Proj}_{\text{span}(v_i', \ldots, v_{j-1})} v_i, v_\ell' \rangle$$

$$= 0 \text{ since } \langle u, v \rangle = \langle \text{Proj}_v u, v \rangle \forall v \in V$$

Set $u = v_i$, $V' = \text{span}(v_i', \ldots, v_{j-1}')$, $V'' = \text{span}(v_i, \ldots, v_{j-1})$.

$$v = v_\ell' \text{ above.}$$

\[\vdash (v_i', \ldots, v_j') \text{ orthogonal} \]

Since v_i, \ldots, v_j linear independent implies v_i', \ldots, v_j' linear independent v_i' nonzero, span of $v_i, \ldots, v_j = \text{span}(v_i', \ldots, v_j')$.

\[\square \]
What happened? \(k = 2 \)
\[\dim V = 2. \]

\(V \) has basis \((v_1, v_2) \)
\[v_1' = \frac{v_1}{\|v_1\|} \text{ unit} \]
\[v_2' = v_2 - \frac{\text{proj}_{\text{Span}(v_1)} v_2}{\|v_2 - \text{proj}_{\text{Span}(v_1)} v_2\|} = \frac{v_2 - \text{proj}_{v_1} v_2}{\|v_2 - \text{proj}_{v_1} v_2\|} \]

General case: project to \(\text{Span}(v_1, \ldots, v_n) \)
\[= \text{Span}(v_1', \ldots, v_n') \text{ instead} \]
\[(n-1) = \dim \text{space} \]
Proof works because key observation: \((9/13)\)

\[
\langle u, v \rangle = \left\langle \text{proj}_v u, v \right\rangle \quad \forall v \in V \subseteq \mathbb{F}^n.
\]

\[\text{Line case: Saying: } u \cdot v = \text{proj}_v u \cdot v, \quad \text{proj}_v u = \frac{u \cdot v}{v \cdot v} v.\]

Examples: Gram-Schmidt in practice:

D2: basis of \(V \) from \([a, 0, 3], [b, c, 0] \) (9/13).

\(a \neq 0, c \neq 0.\)

G-S:

\[V_1' = \frac{V_1}{\|V_1\|} = \frac{[a, 0, 3]}{|a|} = \left[\pm \frac{1}{0}, 0 \right] \text{ same sign as } a.\]

\[V_2'' = V_2 - \text{proj}_{V_1'} V_2 = [b, c] - \frac{[b, c] \cdot [a, 0, 3]}{[a, 0, 3] \cdot [a, 0, 3]} [a, 0, 3] = [b, c] - (\pm b) [0, 1, 0] = [b, c] - b [0, 1, 0].\]

\[V_2^* = \frac{V_2''}{\|V_2''\|} = \left[0, \frac{\pm 1}{b} \right] \text{ same sign as } c.\]
\[V_2 = [b, c] \text{ arbitrary.} \quad (0/13) \]

Concluded: in \(\mathbb{R}^2 \), fixing \(V_1 \), there are only two possibilities for \(V_2 \).

Always true in \(\mathbb{R}^2 \): if \(V_1 = [a, b] \) \(\perp \) \(V_2 = [c, d] \) arb. basis.

\[V_1' = \frac{[a, b]}{\|V_1\|} = \frac{[a, b]}{\sqrt{a^2 + b^2}} \Rightarrow V_2' \perp V_1' \]

\(\perp \) line \(\perp \) to \([a, b] \)

\(\perp \) line \(\perp \) to \([a, b] \)

\(\mathbb{R} [b, -a] \)

Only two unit vectors in here:

\[\frac{[b, -a]}{\sqrt{a^2 + b^2}} \quad \frac{[-b, a]}{\sqrt{a^2 + b^2}} \]

Generally \(V \subseteq \mathbb{R}^n \) vector space, \(\dim V = k \)

\(V_1', \ldots, V_{k-1}' \) orthonormal set

\(\Rightarrow \exists \) only two vectors \(\perp \) to \(V_1', \ldots, V_{k-1}' \), h.c. \(\text{Span} (V_1', \ldots, V_{k-1}')^\perp \) \(\perp V \) is a line.
\[\text{Ex: } \mathbb{R}^3 \cong V, \quad \dim V = 2. \]

\[V = \text{Span}(C_{1,2,0}^1, C_{0,1,-1}^2) \]

\[V_1 = \frac{C_{1,2,0}^1}{\sqrt{1^2 + 2^2}} = \frac{1}{\sqrt{5}} C_{1,2,0}^1 \]

\[V_2 = C_{0,1,-1}^2 \]

\[\text{proj}_{V_1} V_2 = \frac{\langle V_2, V_1 \rangle}{\langle V_1, V_1 \rangle} V_1 = \frac{1}{\sqrt{5}} \left[1, 2, 0 \right] \]

\[\langle V_2, V_1 \rangle = \frac{1}{\sqrt{5}} (1 - 0 + 2 - 1 + 0 - 1) = \frac{2}{\sqrt{5}} \]

\[V_2'' = V_2 - \frac{2}{\sqrt{5}} V_1 = \left[0, 1, -1 \right] - \left(\frac{2}{\sqrt{5}} \right) \left(\frac{1}{\sqrt{5}} C_{1,2,0}^1 \right) = \frac{2}{\sqrt{5}} C_{1,2,0} \]

\[V_2' = \frac{V_2''}{\| V_2'' \|} = \frac{\left[-\frac{2}{\sqrt{5}}, \frac{1}{\sqrt{5}}, -1 \right]}{\sqrt{\frac{4}{25} + \frac{1}{25} + 1}}. \]

Double check: \(\langle V_2'', V_1' \rangle = 0 \)
Finally, let's do an example where basis has length ≥ 3:

$v_1 = [1, 0, 0, 0, 0], \; v_2 = [2, 1, 1, 0], \; v_3 = [2, 1, 1, 1, 1]$

$V_1 = \frac{v_1}{\|v_1\|} = \frac{1}{\sqrt{11}} [1, 0, 0, 0, 0]$

$V_2 = v_2 - \frac{V_1}{\|V_1\|} = \frac{1}{\sqrt{11}} [2, 1, 1, 0] - [0, 0, 0, 0] = [0, 1, 1, 0]$

$V_3 = \frac{v_3}{\|v_3\|} = \frac{1}{\sqrt{2}} [0, 1, 1, 1, 1]$.

$V_3' = V_3 - \frac{V_3}{\|V_3\|} \frac{\text{Span}(V_1, V_2)}{(V_1, V_2) \text{orthonormal}}$.

$\text{Proj}_{\text{Span}(v_1, v_2)} v_3 = \frac{\langle v_3, v_1 \rangle}{\|v_1\|^2} v_1 + \frac{\langle v_3, v_2 \rangle}{\|v_2\|^2} v_2$.

$V_3'' = v_3 - \frac{\langle v_3, v_1 \rangle}{\|v_1\|^2} v_1 - \frac{\langle v_3, v_2 \rangle}{\|v_2\|^2} v_2 = [0, 1, 1, 1, 1] - [0, 1, 1, 0] = [0, 0, 0, 0]$.

$\langle v_3, v_1 \rangle = 2, \quad \|v_1\|^2 = 11, \quad \|v_2\|^2 = 2$.

$\langle v_3', v_1 \rangle = \frac{1}{\sqrt{2}} (0 + 1 + 1 + 0) = \frac{3}{\sqrt{2}}$.

$\langle v_3', v_2 \rangle = \frac{1}{\sqrt{2}} (0 + 2 + 0 + 0) = \frac{3}{\sqrt{2}}$.

$V_3'' = v_3 - (2 \frac{V_1}{\|V_1\|} + \frac{3}{\sqrt{2}} \frac{V_2}{\|V_2\|})$.

$= v_3 - (2 [1, 0, 0, 0] + \frac{3}{\sqrt{2}} \frac{[0, 1, 1, 1, 1]}{\sqrt{2}})$.
\[v_3' = (2, 0, 0, 0) + \frac{3}{2} (0, 1, 1, 0) \] \hspace{1cm} (13/13)

\[\langle v_3', v_3 \rangle = \frac{3}{2} \cdot 1 + \frac{3}{2} \cdot 1 = 3 \]

\[v_3'' = \begin{bmatrix} 2, 1, 2, 17 \\ -2, \frac{3}{2}, \frac{3}{2}, 0 \end{bmatrix} \]

\[v_3'' = \begin{bmatrix} 2, 1, 2, 17 \\ -2, \frac{3}{2}, \frac{3}{2}, 0 \end{bmatrix} = (0, -\frac{1}{2}, \frac{1}{2}, 1) \]

Check: \(\langle v_3'', v_1 \rangle = 0 \), \(\langle v_3'', v_2 \rangle = -\frac{1}{2} + \frac{1}{2} = 0 \)

\[v_3' = \frac{v_3''}{\| v_3'' \|} = \frac{0, -\frac{1}{2}, \frac{1}{2}, 1}{\sqrt{\frac{1}{4} + \frac{1}{4} + 1}} \]

Rest of class (next lecture): Special Operators.

Next operator: Want an eigenbasis.

Define: A normal operator is one that has an orthonormal eigenbasis.

Example: Shift operator \(T(\vec{a}_0, \vec{a}_1, \vec{a}_2) = (\vec{a}_1, \vec{a}_2, \vec{a}_0) \)

Basis: Fourier basis. || Symmetric matrix of operator \(\langle \vec{v}, T \vec{w} \rangle = \langle \vec{v}, \vec{w} \rangle \)