Midterm exams: Tuesday, Feb 18.

Thursday, March 20.

§1.3 Introduction to proof techniques.

Definition: The converse of a statement "if A then B" is: "if B then A".

I.e. \(A \implies B \) has the converse: \(B \implies A \).

"A implies B"

("if A then B"

Notation: \(\neg A = "\text{not } A" \) (tilde A).

Definition: The inverse of a conditional statement is: \(A \implies B \) has the inverse: \(\neg A \implies \neg B \).

Definition: The contrapositive of \(A \implies B \) is: \(\neg B \implies \neg A \).
Example: \(\text{If it freezes, then campus shuts down.} \)

Converse: \(\text{If campus shuts down, then it freezes.} \) (false!)

Inverse: \(\text{If it doesn't freeze, then campus doesn't shut down.} \)

Contrapositive: \(\text{If campus doesn't shut down, then it doesn't freeze.} \)

We observe: Converse \(\iff \) Inverse (there are equivalent)

AND Contrapositive \(\iff \) Original Statement.

Note: contrapositive of contrapositive is original statement.

Why: contrapos. is: \(\neg B \Rightarrow \neg A \)

Contrapos. of \(A \Rightarrow B \) = Original Statement.

Converse of converse = Original, inverse of inverse = original.
Example of application to prob.

Take a statement, prove the contrapositive.

\(\iff \) original statement

Ex: If \(\| x \| = 0 \), then \(x = 0 \).

Proof: \(x \neq 0 \implies \| x \| \neq 0 \) **Contrapositive.**

Proof: Assume \(x \neq 0 \). Since \(x \in \mathbb{R}^n \) we can write:

\[x = [x_1, \ldots, x_n] \]. \(x \neq 0 \) says: \(x_k \neq 0 \) for some \(1 \leq k \leq n \).

Remark: \([0, \ldots, 0, 1, 0, \ldots, 0] \neq 0 \),

"standard basis vector"

\(\|x\| = \text{defn of length} \sqrt{x_1^2 + x_2^2 + \cdots + x_n^2} \).

\(\|x\|^2 = \text{summing} x_1^2 + x_2^2 + \cdots + x_n^2 \).

Use: \(x_1^2, \ldots, x_n^2 \geq 0 \).

\(x_k \neq 0 \implies x_k^2 > 0 \)

Thus \(x_1^2 + \cdots + x_n^2 \geq x_k^2 \)

\[\begin{bmatrix} x_1^2 & \cdots & x_{k-1}^2 & x_{k+1}^2 & \cdots & x_n^2 \end{bmatrix} \geq 0 \]

\(\implies x_1^2 + \cdots + x_{k-1}^2 + x_{k+1}^2 + \cdots + x_n^2 \geq 0 \)

\(x_k > 0 \)

Conclude: \(\|x\|^2 > 0 \). Thus \(\|x\| \neq 0 \).
Mathematical Induction:

This is (essentially the only) method of proving a statement is true for all (positive, or \(n \geq i \) for some fixed \(i \in \mathbb{Z} \)) integers.

Note: \(A(n) \) is true for all positive integers \(n \)
is the same as:

\(A(n) \) is true, \(n \geq i \), with \(i = 1 \).
[Usually in practice \(i = 0 \) or \(1 \).]

How it goes:

Show:

\(A(i) \) true

And: \(A(n) \Rightarrow A(n+1) \).

Conclude:

\(A(i) \Rightarrow A(i+1) \Rightarrow \ldots \).

Thus \(A(n) \) true if \(n \geq i \).