The Definition of "(mod n) Congruence"

Definition: Let \(n \) be a positive integer.

Suppose \(a \) and \(b \) are any integers.

We say "\(a \) is congruent to \(b \) modulo \(n \)" (and we write "\(a \equiv b \pmod{n} \)"") if and only if \(a - b \) is an integer multiple of \(n \).

That is, \(a \equiv b \pmod{n} \iff a - b = nk \) for some integer \(k \).

Note: If \(a - b = nk \), then \(b - a = n(-k) \), so \(a \equiv b \pmod{n} \iff b \equiv a \pmod{n} \).

For example, \(19 \equiv 7 \pmod{3} \), since \(19 - 7 = 12 \) and \(12 = 3 \times 4 \).

Also, \(19 \not\equiv 8 \pmod{3} \), since \(19 - 8 = 11 \) and \(11 \neq 3k \) for every integer \(k \).

Theorem: For any positive integer \(n \) and any positive integer \(a \), if \(r \) is the remainder when \(a \) is divided by \(n \), then \(a \equiv r \pmod{n} \).

Proof: Let \(n \) be any positive integer and let \(a \) be any positive integer. When \(a \) is divided by \(n \), the division results in a quotient \(q \) and a remainder \(r \) \(\left[a = nq + r, 0 \leq r < n \right] \). Then \(a - r = nq \) and \(r \) is an integer.

\[a - r = nq \pmod{n} \text{. QED, by Direct Proof.} \]