Theorems (NIB) 1, 2, and 3 (to be inserted in Section 4.3 of the textbook)

Theorem (NIB) 1: For all integers \(n > 1 \) and all prime numbers \(p \), \(p \) is a divisor of \(n \) if, and only if, \(p \) appears as a prime factor in the Unique Prime Factorization of \(n \) (from the Unique Factorization Theorem, Theorem 4.3.5).

Proof: Let \(n \) be any integer such that \(n > 1 \) and suppose \(p \) is any prime number.

[We first prove that if \(p \) is a divisor of \(n \), then \(p \) appears as a prime factor in the Unique Prime Factorization of \(n \).]

Suppose that \(p \) is a divisor of \(n \).

Then, by definition of "divisor", there exists an integer \(l \) such that \(n = pl \).

If \(l = 1 \), then \(n = p \), and so, "\(n = p^1 \)" is the Unique Prime Factorization of \(n \), so \(p \) is a factor in the Unique Prime Factorization of \(n \).

Assume, then, that \(l \neq 1 \) and since \(n \) and \(p \) are both positive, \(l > 1 \).

By the UFT, (i.e., by Theorem 4.3.5), \(l \) has a Unique Prime Factorization, i.e., there is some positive integer \(k \) and prime numbers \(p_1, p_2, p_3, \ldots, p_k \) and positive exponents \(e_1, e_2, e_3, \ldots, e_k \) such that

\[l = p_1^{e_1} p_2^{e_2} p_3^{e_3} \cdots p_k^{e_k} \]

and any other factorization of \(l \) into prime factors simply rearranges these factors in some other order.

Now, since \(n = pl \), \(n = p (p_1^{e_1} p_2^{e_2} p_3^{e_3} \cdots p_k^{e_k}) \), which is a factorization of \(n \) into prime factors and, as such, is a simple rearrangement of the prime factors which appear in the Unique Prime Factorization of \(n \). Since \(p \) is one of these factors, we conclude that \(p \) appears in the Unique Prime Factorization of \(n \).

:. If \(p \) is a divisor of \(n \), then \(p \) appears as a factor in the Unique Prime Factorization of \(n \).

[We next prove that if \(p \) appears as a prime factor in the Unique Prime Factorization of \(n \), then \(p \) is a divisor of \(n \).]

Suppose \(p \) appears as a factor in the Unique Prime Factorization of \(n \).

By the UFT, (i.e., by Theorem 4.3.5), \(n \) has a Unique Prime Factorization, i.e., there is some positive integer \(k \) and prime numbers \(p_1, p_2, p_3, \ldots, p_k \) and positive exponents \(e_1, e_2, e_3, \ldots, e_k \) such that

\[n = p_1^{e_1} p_2^{e_2} p_3^{e_3} \cdots p_k^{e_k} \]

Since \(p \) appears as a prime factor in this factorization of \(n \), \(p = p_i \) for some integer \(i \) and we may renumber these prime factors so that \(i = 1 \) and \(p = p_1 \).

Let \(l = p_1^{(e_i - 1)} p_2^{e_2} p_3^{e_3} \cdots p_k^{e_k} \)

Since the exponent \(e_1 > 0 \), \((e_i - 1) \geq 0 \), \(l \) is an integer. Also, \(n = pl \).

:. \(p \) is a divisor of \(n \).

:. If \(p \) appears as a factor in the Unique Prime Factorization of \(n \), then \(p \) is a divisor of \(n \).

Q E D

Lemma (NIB) 1: For all integers \(a \) and \(b \), \(a \mid b \) if and only if \(a \mid (-1) b \) if and only if \(a \) divides \(b \).

Proof: The proof is left as an exercise.
Theorem (NIB) 2:

For all integers \(a \) and \(b \), and for all prime numbers \(p \),
if \(p \) divides \(ab \), then \(p \) divides \(a \) or \(p \) divides \(b \).

Proof: Let \(a \) and \(b \) be any integers and suppose \(p \) is any prime number such that \(p \) divides \(ab \).

[We need to show that \(p \mid a \) or \(p \mid b \).]

[We first prove that we can assume that \(a > 1 \) and \(b > 1 \).]

Suppose \(ab = 0 \). Then, by the Zero Product Property, \(a = 0 \) or \(b = 0 \).

Therefore, since \(p \mid 0 \), \(p \mid a \) or \(p \mid b \).

Therefore, we can assume that \(ab \neq 0 \). Thus, by the Zero Product Property, \(a \neq 0 \) and \(b \neq 0 \).

Without loss of generality, we can assume that \(a > 0 \) and \(b > 0 \) because, if the theorem is true for \(|a| \) and \(|b| \), then the theorem is true for \(a \) and \(b \), by Lemma (NIB) 1.

Now, suppose \(a = 1 \) or \(b = 1 \). Therefore, \(ab = b \) or \(ab = a \).

Since \(p \) divides \(ab \), \(p \mid b \) or \(p \mid a \), which is to say that \(p \mid a \) or \(p \mid b \).

Therefore, we can assume that \(a \neq 1 \) and \(b \neq 1 \).

Therefore, \(a > 1 \) and \(b > 1 \)

By the UFT (Theorem 4.3.5), there is some positive integer \(k \) and prime numbers \(p_1, p_2, p_3, \ldots, p_k \) and positive exponents \(e_1, e_2, e_3, \ldots, e_k \) such that
\[
a = p_1^{e_1} p_2^{e_2} p_3^{e_3} \ldots p_k^{e_k}
\]

and there is some positive integer \(s \) and prime numbers \(q_1, q_2, q_3, \ldots, q_s \) and positive exponents \(f_1, f_2, f_3, \ldots, f_s \) such that
\[
b = q_1^{f_1} q_2^{f_2} q_3^{f_3} \ldots q_s^{f_s}
\]

By the uniqueness of prime factorizations, the Unique Prime Factorization of \(ab \) is a rearrangement of the prime factors in the following prime factorization:
\[
ab = (p_1^{e_1} p_2^{e_2} p_3^{e_3} \ldots p_k^{e_k}) (q_1^{f_1} q_2^{f_2} q_3^{f_3} \ldots q_s^{f_s})
\]

Since \(p \) divides \(ab \) and by Theorem (NIB) 1, \(p \) appears as one of the prime factors in this prime factorization of \(ab \), that is, \(p = p_i \) for one of the prime factors of \(a \) or \(p = q_j \) for one of the prime factors of \(b \). If \(p = p_i \) for one of the prime factors of \(a \), then \(p \) divides \(a \). If \(p = q_j \) for one of the prime factors of \(b \), then \(p \) divides \(b \). Therefore, \(p \) divides \(a \) or \(p \) divides \(b \). QED

Theorem (NIB) 3: For any integer \(n \), and for any prime number \(p \),
if \(p \mid n^2 \), then \(p \mid n \).

Proof: Suppose \(n \) is any integer and suppose that \(p \) is a prime number such that \(p \) divides \(n^2 \).

Let \(a = n \) and let \(b = n \). Then, \(ab = n^2 \), so \(p \) divides \(ab \), by substitution. By Theorem (NIB) 2, \(p \mid a \) or \(p \mid b \). Thus, \(p \mid n \) or \(p \mid n \). In either case, \(p \mid n \). QED