The Unique Prime Factorization Theorem

Theorem 4.3.5, The Unique Prime Factorization Theorem (UFT) (Also called The Fundamental Theorem of Arithmetic)

Given any integer \(n > 1 \), there exist:

1) a positive integer \(k \) (= the \# of prime factors \(n \) has.) and \(k \) distinct prime numbers, \(p_1, p_2, p_3, \ldots, p_k \) and

2) positive integers \(e_1, e_2, \ldots, e_k \) (exponents), that is \(e_i \geq 1, \forall i \),

such that \(n = p_1^{e_1} p_2^{e_2} p_3^{e_3} \ldots p_k^{e_k} \)

and any other factorization of \(n \) into a product of prime factors is the same as this one except that the prime factors may be rearranged in a different order.