Example Proofs Involving Divisibility

(NTS = "Need to Show")

To Prove: For all integers \(m \) and \(n \), if \(6 \mid m \) and \(4 \mid n \), then \(2 \mid (5m - 7n) \).

Proof: Let \(m \) and \(n \) be integers.
Suppose that \(6 \mid m \) and \(4 \mid n \).
Then, \(m = 6k \) and \(n = 4p \) for some integers \(k \) and \(p \), by definition of “divides”.
\[5m - 7n = 5 (6k) - 7 (4p), \]
by substitution,
\[= 30k - 28p \]
by R. O. A.

[Need to show: \(5m - 7n = 2t \) for some integer \(t \).]

From above, \(5m - 7n = 30k - 28p \)
\[= 2 (15k - 14p) \]
by R. O. A.

Let \(t = 15k - 14p \), which is an integer.
\[\therefore 5m - 7n = 2t \]
by substitution, and \(t \) is an integer.
\[\therefore 2 \mid (5m - 7n) \]
by definition of “divides”.
\[\therefore \text{For all integers } m \text{ and } n, \text{ if } 6 \mid m \text{ and } 4 \mid n, \text{ then } 2 \mid (5m - 7n), \text{ by Direct Proof.} \]

Q E D

Theorem 4.3.3 (Page 137): “Divisibility is Transitive;” that is, for all integers \(a \), \(b \), and \(c \), if \(a \mid b \) and \(b \mid c \), then \(a \mid c \).

Proof: Let \(a \), \(b \), and \(c \) be any integers.
Suppose \(a \mid b \) and \(b \mid c \). [NTS: \(a \mid c \). NTS \(c = at \) for some integer \(t \).]
By definition of “divides,” there exist integers \(k \) and \(p \) such that \(b = ak \) and \(c = bp \).
\[\therefore c = (ak)p \] by substitution of \(b \) by \((ak) \) in the equation \(c = bp \),
\[= a(kp) \]
by R. O. A.
Let \(t = kp \), which is an integer, because products of integers are integers.
\[\therefore c = at \]
by substitution, and \(t \) is an integer.
\[\therefore a \mid c \), by definition of "divides".
\[\therefore \text{For all integers } a \text{, } b \text{, and } c \text{, if } a \mid b \text{ and } b \mid c \text{, then } a \mid c \text{, by Direct Proof.} \]

Q E D
To Prove: For all integers a, b, and c, if \(a \mid b \) and \(a \mid c \), then \(a \mid (b + c) \).

Proof: Let \(a, b, \) and \(c \) be any integers.
Suppose that \(a \mid b \) and \(a \mid c \).

Then, \(b = ak \) and \(c = ap \) for some integers \(k \) and \(p \) by definition of “divides”.

\[
\therefore (b + c) = ak + ap \quad \text{by substitution,}
\]
\[
= a(k + p) \quad \text{by R. O. A.}
\]
\[
= at, \quad \text{where} \ t \text{ is the integer such that} \ t = (k + p).
\]

\[
\therefore (b + c) = at, \quad \text{and} \ t \text{ is an integer.}
\]

\[
\therefore a \mid (b + c) \quad \text{by definition of “divides.”}
\]

\[
\therefore \text{For all integers} \ a, b, \text{and} \ c, \text{if} \ a \mid b \text{ and} \ a \mid c, \text{then} \ a \mid (b + c), \text{by Direct Proof.}
\]

\(QED\)