Irrational Square Roots:

\[\sqrt{2} \quad \text{and} \quad \sqrt{n} \quad \text{when} \quad n \quad \text{is a Positive Integer and Not a Perfect Square} \]

[It is recommended that you review Theorem (NIB) 3 in the handout "Theorems (NIB) 1, 2, and 3."]

Theorem 4.6.1: \(\sqrt{2} \) is irrational.

Proof: [Proof by Contradiction]

Suppose, by way of contradiction, that \(\sqrt{2} \) is rational.

Since \(\sqrt{2} \) is rational and positive, there exist positive integers \(m \) and \(n \), with \(n \neq 0 \), such that \(\sqrt{2} = \frac{m}{n} \), and we can assume that \(\frac{m}{n} \) is written in lowest terms, so that \(m \) and \(n \) have no common prime factor.

[The author mistakenly says that \(m \) and \(n \) “have no common factor”, but 1 is always a common factor.]

Since \(\sqrt{2} = \frac{m}{n} \), \(2 = (\sqrt{2})^2 = \left(\frac{m}{n} \right)^2 = \frac{m^2}{n^2} \) by substitution .

Since \(2 = \frac{m^2}{n^2} \), \(2n^2 = m^2 \).

[The contradiction that we will establish is that \(2 | m \) and \(2 | n \),

which contradicts the fact that \(m \) and \(n \) have no common prime factor.]

Since \(m^2 = 2n^2 \) and \(n^2 \) is an integer, \(2 | m^2 \), by definition of “divides”.

\(\therefore \) Since \(2 | m^2 \) and 2 is prime, \(2 | m \), by Theorem (NIB) 3 .

\(\therefore \) There exists an integer \(k \) such that \(m = 2k \), by definition of “divides”. Recall that \(2n^2 = m^2 \).

\(\therefore 2n^2 = (2k)^2 = 2(2k^2) \), by substitution and the rules of algebra.

Dividing by 2, we conclude that \(n^2 = 2k^2 \), and \(k^2 \) is an integer .

\(\therefore 2 | n^2 \), by definition of “divides”.

\(\therefore \) Since \(2 | n^2 \) and 2 is prime, \(2 | n \), by Theorem (NIB) 3 .

\(\therefore 2 | m \) and \(2 | n \), which contradicts the fact that \(m \) and \(n \) have no common prime factors.

Therefore, \(\sqrt{2} \) is irrational, by proof-by-contradiction

QED

[You might consider how this proof can be adapted to prove that \(\sqrt{5} \) and \(\sqrt{7} \) are irrational.]
To Prove: For all positive integers \(n \), if \(n \) is not a perfect square, then \(\sqrt{n} \) is irrational.

[This is the statement to be proved in Problem #22 of Section 4.6.]

Proof: [by Contraposition]

Let \(n \) be any positive integer.

Suppose that \(\sqrt{n} \) is rational. [We need to show that \(n \) is a perfect square.]

Since \(\sqrt{n} \) is rational and positive, there exist positive integers \(a \) and \(b \) with \(b \neq 0 \) such that \(\sqrt{n} = \frac{a}{b} \), and we can assume that \(\frac{a}{b} \) is written in lowest terms, so that \(a \) and \(b \) have no common prime factor.

Since \(\sqrt{n} = \frac{a}{b} \), \(n = \left(\sqrt{n} \right)^2 = \left(\frac{a}{b} \right)^2 = \frac{a^2}{b^2} \). Since \(n = \frac{a^2}{b^2} \), \(b^2 n = a^2 \).

[We next prove that \(b = 1 \) using a proof-by-contradiction.]

Suppose, by way of contradiction, that \(b \neq 1 \). (***)

\[\therefore \text{ Since } b > 0 \text{ and } b \neq 1, \quad b > 1. \]

\[\therefore \text{ by Theorem 4.3.4, there exists some prime number } p \text{ such that } p \mid b. \]

Since \(b^2 n = b(bn) \), \(b \mid b^2 n \) by definition of “divides”.

\[\therefore p \mid b^2 n, \text{ by transitivity of divisibility. Recall that } b^2 n = a^2. \]

\[\therefore p \mid a^2, \text{ by substitution.} \]

\[\therefore \text{ Since } p \text{ is prime and } p \mid a^2, \quad p \mid a, \text{ by Theorem (NIB) 3.} \]

\[\therefore p \mid a \text{ and } p \mid b, \text{ which contradicts the fact that } a \text{ and } b \text{ have no common prime factor.} \]

\[\therefore b = 1 \text{ by proof-by-contradiction. [Considering the initial supposition (***) above]} \]

\[\therefore n = \frac{a^2}{b^2} = \frac{a^2}{1} = a^2, \text{ and, therefore, } n \text{ is a perfect square.} \]

\[\therefore \text{ If } n \text{ is not a perfect square, then } \sqrt{n} \text{ is irrational, by contraposition.} \]

\[\therefore \text{ For all positive integers } n, \text{ if } n \text{ is not a perfect square, then } \sqrt{n} \text{ is irrational, by Direct Proof.} \]

QED [When applying this result, use the justification, "by Problem #22 of Section 4.6."]