Proposition 6.2.6: For all sets \(A, B, C \),
if \(A \subseteq B \) and \(B \subseteq C^c \), then \(A \cap C = \emptyset \).

Proof: Let \(A, B, C \) be any sets.

Suppose \(A \subseteq B \) and \(B \subseteq C^c \),
[\text{WTS: } A \cap C = \emptyset]

Suppose, by way of contradiction, that \(A \cap C \neq \emptyset \).

\(\therefore \) There exists an element \(x \in A \) such that \(x \in (A \cap C) \).

\(\therefore \) \(x \in A \) and \(x \in C \) by definition of "Intersection".

\(\therefore \) \(x \in C \) by specialization.

\(\therefore \) \(x \in A \) by specialization.

\(\therefore \) Since \(A \subseteq B \), \(x \in B \) by Universal Modus Ponens.

\(\therefore \) Since \(B \subseteq C^c \), \(x \in C^c \) by Universal Modus Ponens.

\(\therefore \) \(x \in C \) by definition of "Complement".

\(\therefore \) \(x \notin C \) and \(x \notin C \) by Conjunction, and this
is a contradiction.

\(\therefore \) \(A \cap C = \emptyset \) by proof-by-contradiction.

QED, By Direct Proof.

The "QED, By Direct Proof" is an abbreviation of the following:

\(\therefore \) For all sets \(A, B, C \), if \(A \subseteq B \) and \(B \subseteq C^c \),
then \(A \cap C = \emptyset \), by Direct Proof.