Assignment #1:

To Prove: For every integer \(n > 1 \), \(n < n^2 - 1 \).

Proof: Suppose, by way of contradiction, that there exists an integer \(n > 1 \) such that
\[
 n \geq n^2 - 1 . \quad \ldots
\]

Assignment #2:

To Prove: There exists an integer \(n \) such that \(5n = 45 \).

Proof: Suppose, by way of contradiction, that for every integer \(n \), \(5n \neq 45 \). \(\ldots \)

Assignment #3:

To Prove: For all integers \(n \neq 0 \), \(|n| > n\) or \(n > (1/2)n\).

Proof: Suppose, by way of contradiction, that there exists an integer \(n \neq 0 \)
such that \(|n| \leq n\) and \(n \leq (1/2)n \). \(\ldots \)

Assignment #4:

To Prove: For all real numbers \(r \) and \(s \), if \(0 < r < s \), then \(r^4 < s^4 \).

Proof: Suppose, by way of contradiction, that there exist real numbers \(r \) and \(s \) such that
\[
 0 < r < s \quad \text{and} \quad r^4 \geq s^4 . \quad \ldots
\]

Assignment #5:

To Prove: For all real numbers \(r \) and \(s \), if \(r \) is a rational number and \(s \) is not a rational number, then the sum \(r + s \) is not a rational number.

Proof: Suppose, by way of contradiction, that there exist real numbers \(r \) and \(s \) such that
\[
r \text{ is a rational number and } s \text{ is not a rational number and the sum } r + s \text{ is a rational number.} \quad \ldots
\]