Worksheet: The Mean Value Theorem

1. State the mean value theorem and illustrate the theorem in a sketch.

2. Suppose that \(g \) is differentiable for all \(x \) and that \(-5 \leq g'(x) \leq 2\) for all \(x \). Assume also that \(g(0) = 2 \). Based on this information, is it possible that \(g(2) = 8 \)?

3. Section 4.2 in the text contains the following important corollary which you should commit to memory:

 \[
 \text{Corollary 7, p. 284: If } f'(x) = g'(x) \text{ for all } x \text{ in an interval } (a, b) \text{ then } f(x) = g(x) + c \text{ for some constant } c.
 \]

 Use this result to answer the following questions:

 (a) If \(f'(x) = \sin(x) \) and \(f(0) = 15 \) what is \(f(x) \)?
 (b) If \(f'(x) = \sqrt{x} \) and \(f(4) = 5 \) what is \(f(x) \)?
 (c) If \(f'(x) = k \) where \(k \) is a constant, show that \(f(x) = kx + d \) for some other constant \(d \).

4. Verify that the function satisfies the hypotheses of the Mean Value Theorem on the given interval. Then find all numbers \(c \) that satisfy the conclusion of the Mean Value Theorem.

 (a) \(f(x) = e^{-2x}, [0,3] \)
 (b) \(f(x) = \frac{x}{x+2}, [1,4] \)

5. A trucker handed in a ticket at a toll booth showing that in 2 hours she had covered 159 miles on a toll road with speed limit 65 mph. The trucker was cited for speeding. Why?

6. If \(f(1) = 10 \) and \(f'(x) \geq 2 \) for \(1 \leq x \leq 4 \), how small can \(f(4) \) possibly be?

7. For what values of \(a, m, \) and \(b \) does the function

 \[
 f(x) = \begin{cases}
 3 & \text{if } x = 0 \\
 -x^2 + 3x + a & \text{if } 0 < x < 1 \\
 mx + b & \text{if } 1 \leq x \leq 2
 \end{cases}
 \]

 satisfy the hypotheses of the Mean Value Theorem on the interval \([0,2]\)?

8. Determine whether the following statements are true or false. If the statement is false, provide a counterexample.

 (a) If \(f \) is differentiable on the open interval \((a, b)\), \(f(a) = 1 \), and \(f(b) = 1 \), then \(f'(c) = 0 \) for some \(c \) in \((a, b)\).
 (b) If \(f \) is differentiable on the open interval \((a, b)\), continuous on the closed interval \([a, b]\), and \(f'(x) \neq 0 \) for all \(x \) in \((a, b)\), then we have \(f(a) \neq f(b) \).
 (c) Suppose \(f \) is a continuous function on the closed interval \([a, b]\) and differentiable on the open interval \((a, b)\). If \(f(a) = f(b) \), then \(f'\left(\frac{a+b}{2}\right) = 0 \).
 (d) If \(f \) is differentiable everywhere and \(f(-1) = f(1) \), then there is a number \(c \) such that \(|c| < 1\) and \(f'(c) = 0 \).