1. Let \(p, q \) be distinct primes and \(G \) a group of order \(p^2q \). Prove that \(G \) has either a normal \(p \)-Sylow subgroup or a normal \(q \)-Sylow subgroup.

Let \(n_p \) be the number of \(p \)-Sylow subgroups of \(G \). Then we know, by Sylow’s theorems that \(n_p \equiv 1 \pmod{p} \) and \(n_p \mid q \). If \(n_p = 1 \), we are done, since the unique \(p \)-Sylow subgroup is normal, by Sylow’s theorems. Otherwise, \(n_p = q \equiv 1 \pmod{p} \), which implies \(q > p \). We also know, by Sylow’s theorems that \(n_q \equiv 1 \pmod{q} \) and \(n_q \mid p^2 \). Again we are done if \(n_q = 1 \). We cannot have \(n_q = p \equiv 1 \pmod{q} \), since \(q > p \). The only other possibility is then \(n_q = p^2 \). The \(q \)-Sylow subgroups have order \(q \) prime so they intersect only at the identity (since the intersection is a subgroup) and every non-identity element of such a subgroup has order \(q \), therefore \(G \) has \(p^2(q-1) \) elements of order \(q \). The other elements of \(G \) number \(p^2q - p^2(q-1) = p^2 \). A \(p \)-Sylow subgroup of \(G \) has \(p^2 \) elements and does not have any element of order \(q \), since \(q \) does not divide \(p^2 \), so it must consist of these remaining \(p^2 \) elements of \(G \) and is thus unique, hence normal, by Sylow’s theorems.
2. Show in detail that a finite abelian group is solvable, that is, has a composition series whose successive quotients are cyclic of prime order.

By the Jordan-Hölder theorem, any finite group has a composition series whose successive quotients are simple. Such a quotient G/N is abelian since G is a subgroup of our group, so abelian and $NaNb = Nab = NbNa$ for any $a, b \in N$, that is G/N is abelian. So we need to show that a simple finite abelian group A is cyclic of prime order. Let $x \in A, x \neq 1$, then $< x >$ is a normal subgroup of A, so $< x >/A$. Let n be the order of x. If n is not prime $n = ab, a > 1, b > 1$ and $< x^a >$ is a non-trivial proper subgroup of A, contradiction, so n is prime and we are done.
3. Let G be a finite group acting on a finite set S and assume that the action is transitive, that is, has only one orbit. Let H be a normal subgroup of G and consider H acting on S by restriction of the action of G. Prove that all orbits of H have the same cardinality. Prove also that, for $s \in S$, the number of orbits for the action of H is equal to $|G|/|HG_s|$, where G_s is the stabilizer of s in G.

If $s, t \in S$ there exists g in G with $t = gs$, by hypothesis. If O_s, O_t are the H-orbits of s and t respectively, I claim that $x \mapsto gx$ is a bijection between O_s and O_t. Indeed if $hs \in O_s$ then $ghg^{-1} = h' \in H$, since H is normal in G, so $ghs = h'gs = h't \in O_t$, so $x \mapsto gx$ maps O_s to O_t. By the same argument, $x \mapsto g^{-1}x$ maps O_t to O_s. Clearly, these two maps are inverses of each other and this establishes the bijection.

S is the unique orbit of G so its cardinality is $|S| = |G|/|G_s|$. By the first part, each H-orbit has cardinality $|H|/|H_s|$, so the number of orbits is $|G||H_s|/|H||G_s|$. Now, $H_s = \{h \in H \mid hs = s\} = H \cap G_s$ and, since H is normal in G we can apply the diamond isomorphism theorem to conclude that HG_s/H is isomorphic to G_s/H_s. In particular, $|HG_s| = |H||G_s|/|H_s|$ and the result now follows from the previous expression for the number of orbits.

For an example that shows that the hypothesis that H is normal in G is necessary, take $G = S_3$ acting on $\{1, 2, 3\}$ as usual, and $H = \{1, (23)\}$, the stabilizer of 1. Then the orbits of H are $\{1\}, \{2, 3\}$ and they don't have the same cardinality.
4. Show that \(\mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z} \) has \(p + 1 \) subgroups of order \(p \), when \(p \) is prime. Show that the group of automorphisms of \(\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \) is isomorphic to \(S_3 \) by considering its action on the subgroups of order 2.

Every element of \(G = \mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z} \), except the identity, has order \(p \), so it generates a subgroup of order \(p \) of \(G \). Two distinct such subgroup meet only in the identity since \(p \) is prime (since the intersection is a subgroup). Thus the non-zero elements of \(G \) are partitioned into the sets of non-zero elements of the subgroups of order \(p \) and each such set has \(p - 1 \) elements. As \(G \) has \(p^2 \) elements we conclude that there are \((p^2 - 1)/(p - 1) = p + 1 \) such subgroups.

By the above \(G = \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \) has three subgroups of order 2. If \(\phi \) is an automorphism of \(G \) and \(H \) is a subgroup of order 2, then so is \(\phi(H) \), since \(\phi \) is injective and is a homomorphism. Thus \(\phi \) induces a permutation of these subgroups of order 2. We thus get a homomorphism \(\lambda: Aut(G) \to S_3 \). If \(\phi \) acts trivially on the subgroups, then \(\phi(\{e,x\}) = \{e,x\}, x \in G, x \neq e \), so \(\phi(x) = x \) for all such \(x \) since \(\phi(e) = e \) always, thus \(\phi \) is the identity. Therefore \(\lambda \) is injective. Now \(Aut(G) \) has 6 elements, as can be seen directly, e.g., by noticing that \(Aut(G) = GL_2(\mathbb{Z}/2\mathbb{Z}) \), and \(S_3 \) also has 6 elements so \(\lambda \) is a bijection and thus is an isomorphism.