M 380 C 54580 Second Midterm

Name:

Do three out of the four questions below and please indicate here which questions you chose:

1. Consider the ring $R = \mathbb{Z}/2\mathbb{Z}[x]/(x^2)$. Describe all isomorphism classes of R-modules with 16 elements.

 Let M be an R-module. Then, since R is a quotient of $\mathbb{Z}/2\mathbb{Z}[x]$, M is also a $\mathbb{Z}/2\mathbb{Z}[x]$-module where x^2 acts as 0. If M has 16 elements, then M is finitely generated as a $\mathbb{Z}/2\mathbb{Z}[x]$-module and we can apply the classification theorem for modules over PID’s, since we know that $\mathbb{Z}/2\mathbb{Z}[x]$ is a PID. (Note that R is not even a domain so we can’t apply the theorem directly to R-modules!) It tells us that M is isomorphic to

 $$\mathbb{Z}/2\mathbb{Z}[x]/(x^r) \oplus \mathbb{Z}/2\mathbb{Z}[x]/(a_1) \oplus \cdots \oplus \mathbb{Z}/2\mathbb{Z}[x]/(a_m)$$

 where a_1,a_2,\ldots,a_m are monic polynomials. Since x^2 acts as 0 on M we must have $r = 0$ and $a_i|x^2, i = 1, \ldots, m$, so $a_i = x$ or $a_i = x^2, i = 1, \ldots, m$. Now, R has 4 elements and $R/(x) = \mathbb{Z}/2\mathbb{Z}[x]/(x)$ has 2 elements, therefore the only possibilities when M has 16 elements are $m = 2, a_1 = a_2 = x^2$, $m = 3, a_1 = a_2 = x, a_3 = x^2$ or $m = 4, a_i = x, i = 1,2,3,4$.

2. Let R be a PID. Prove that the intersection of two nonzero maximal ideals of R cannot be zero. Assume that R contains an infinite number of maximal ideals. Show that the intersection of all the nonzero maximal ideals of R equals zero.

If I, J are nonzero ideals of R, then there exists $a, b \in R$, $I = (a), J = (b)$, because R is a PID and $a, b \neq 0$ since I, J are non-zero. Since I consists of the multiples of a, we have $ab \in I$ and likewise $ab \in J$ so $ab \in I \cap J$. As R is a domain, $ab \neq 0$ so $I \cap J \neq (0)$.

Now, in a PID, maximal ideals are the same as prime ideals which are the ideals generated by irreducible elements. If $x \in R, x \neq 0$, then x is a product of irreducible elements of R in an essentially unique way, since PID’s are UFD’s, therefore x is divisible by only finitely many irreducible elements, or equivalently, x is contained in only finitely many maximal ideals. So x cannot be contained in the intersection of all the nonzero maximal ideals of R if there are infinitely many of them. Since $x \neq 0$ was arbitrary this completes the proof.
3. Let G be a finite group and R be the set of all functions $f : G \to \mathbb{Z}$. Define operations on R as follows: Given $f, g \in R$, $(f+g)(x) = f(x)+g(x)$, $(fg)(x) = \sum_{y \in G} f(y)g(y^{-1}x), x \in G$. Prove the distributivity law on R. (R is a ring with these operations, the integral group ring of G, you don’t need to prove this but we will assume it in the next part). Prove that f is in the center of R (that is, commutes with every element of R) if and only if f is constant (as a function) on every conjugacy class of G.

$$(f+g)h(x) = \sum_{y \in G} (f+g)(y)h(y^{-1}x) = \sum_{y \in G} (f(y)+g(y))h(y^{-1}x) = \sum_{y \in G} f(y)h(y^{-1}x) + \sum_{y \in G} g(y)h(y^{-1}x) = fh + gh.$$

The other equality $h(f + g) = hf + hg$ is similar.

Let $f \in R$ be arbitrary and, for $z \in G$ define $g_z \in R, g_z(z) = 1, g_z(x) = 0, x \neq z$. Then, $fg_z(x) = \sum_{y \in G} f(y)g_z(y^{-1}x) = f(xz^{-1})$ and $g_zf(x) = \sum_{y \in G} g_z(y)f(y^{-1}x) = f(z^{-1}x)$. If f is constant on every conjugacy class of G, then $f(z^{-1}x) = f(x(z^{-1}x)x^{-1}) = f(xz^{-1})$, so f commutes with g_z. Now, given $g \in R, g = \sum_{z \in G} g(z)g_z$, so f commutes with g. Conversely, if f is in the center of R, then f commutes with g_z, for all z, so $f(z^{-1}x) = f(xz^{-1})$ for all x, z and, replacing x by xz we get $f(z^{-1}xz) = f(x)$ for all x, z, that is, f is constant on every conjugacy class of G.
4. Let G be a finite abelian group. Prove that either G has proper subgroups H and K such that G is isomorphic to $H \times K$ or G is cyclic of prime power order.

By the classification of finite abelian groups, G is isomorphic to $\mathbb{Z}/(a_1) \oplus \cdots \oplus \mathbb{Z}/(a_m)$, for integers a_1, \ldots, a_m. If $m > 1$ we can take $H = \mathbb{Z}/(a_1) \oplus \cdots \oplus \mathbb{Z}/0$, $K = 0 \oplus \cdots \oplus \mathbb{Z}/(a_m)$ and G is isomorphic to $H \times K$. If $m = 1$ and a_1 is not a prime power, then we can write $a_1 = bc$ where $b, c > 1$ and b, c are relatively prime integers. So, by the Chinese remainder theorem, $\mathbb{Z}/(a_1)$ is isomorphic to $\mathbb{Z}/(b) \times \mathbb{Z}/(c)$ and the two factors correspond to subgroups H, K of G. The only remaining possibility is $m = 1$ and a_1 a prime power, in which case G is cyclic of prime power order.