1. Let \(R \) be a domain and \(I \) and \(J \) ideals of \(R \). Prove that \(I \) and \(J \) are isomorphic as \(R \)-modules if and only if there exists \(a, b \in R \) such that \(aI = bJ \).

First, a correction to the statement. We need to assume \(a, b \) are non-zero.

Now, if \(aI = bJ \), given \(x \in I \) we have \(ax \in aI = bJ \) so there exists \(y \in J, ax = by \). Since \(R \) is a domain, \(y \) is uniquely determined by \(x \) and so we can let \(\phi(x) = y \) and this defines \(\phi : I \to J \). It is easy to show that \(\phi(x) \) is an \(R \)-module homomorphism. E.g.

\[
b\phi(x_1 + x_2) = a(x_1 + x_2) = ax_1 + ax_2 = b\phi(x_1) + b\phi(x_2)
\]

and since \(R \) is a domain, \(\phi(x_1 + x_2) = \phi(x_1) + \phi(x_2) \) and so on. If \(ax = b0 = 0 \) then \(x = 0 \) so \(\phi \) is injective and the same construction with \(a, b \) reversed gives an inverse for \(\phi \) so it is also surjective.

Now suppose there exists a \(R \)-module isomorphism \(\phi : I \to J \). As the result is obvious if \(I = (0) \), we may assume there exists \(b \neq 0, b \in I \) and we let \(a = \phi(b) \in J, a \neq 0 \). Now let’s prove that \(aI = bJ \). Given \(x \in I \) we have \(ax = \phi(b)x = x\phi(b) = \phi(bx) = b\phi(x) \) using that \(\phi(x) \) is an \(R \)-module homomorphism and that \(x, b \in I \subset R \). It follows that \(aI \subset bJ \), since \(\phi(x) \in J \). Using the inverse of \(\phi(x) \) in the same manner, we get \(bJ \subset aI \) and we are done.