Button to scroll to the top of the page.

Updates

Campus health and safety are our top priorities. Get the latest from UT on COVID-19.

Get help with Zoom and more.

Novack, Michael
No

Michael R Novack

Instructor
Department of Mathematics



Academic Positions

2020 - present: RTG Postdoctoral Fellow at the University of Texas at Austin

2019 - 2020: Assistant Research Professor at the University of Connecticut

 

Education

2013-2019: Ph.D. in Mathematics, Indiana University Bloomington

2009-2013: B.S. in Mathematics, University of Illinois Urbana-Champaign

Broadly speaking, I work in the areas of partial differential equations and the calculus of variations. I am particularly interested in variational models from materials science and physics.

6. D. Golovaty, M. Novack, P. Sternberg. A One-Dimensional Variational Problem for Cholesteric Liquid Crystals with Disparate Elastic Constants. Preprint: arXiv:2008.04492

5. M. Novack, X. Yan. Compactness and sharp lower bound for a 2D smectics model. Preprint: arXiv:2007.07962

4. D. Golovaty, M. Novack, P. Sternberg. A novel Landau-de Gennes model with quartic elastic terms, European Journal of Applied Mathematics, 1-22. doi:10.1017/S095679252000008X. Preprint: arXiv:1906.09232

3. D. Golovaty, Y.-K. Kim, O. Lavrentovich, M. Novack, P. Sternberg. Phase transitions in nematics: textures with tactoids and disclinations, Mathematical Modelling of Natural Phenomena 15 (2020) no. 8. Preprint: arXiv:1902.06342

2. D. Golovaty, M. Novack, P. Sternberg, R. Venkatraman. A model problem for nematic-isotropic phase transitions with highly disparate elastic constants, Archive for Rational Mechanics and Analysis 236 (2020), no. 3, 1739–1805. Preprint: arXiv:1811.12586

1. M. Novack. Dimension reduction for the Landau-de Gennes model: the vanishing nematic correlation length limit, SIAM Journal on Mathematical Analysis 50 (2018), no. 6, 6007-6048. Preprint: arXiv:1801.04477

Fall 2020: M408L