Button to scroll to the top of the page.

Events

Monthly View
By Month
Weekly View
By Week
Daily View
Today
Search
Search
Geometry
Download as iCal file
Michail Savvas, Zoom: Almost perfect obstruction theory and K-theoretic Donaldson-Thomas invariants
Thursday, March 11, 2021, 03:30pm - 04:30pm
Perfect obstruction theories are a fundamental ingredient used to define invariants associated to moduli problems, such as virtual cycles in the Chow group and virtual structure sheaves in K-theory. However, several moduli spaces, such as the moduli space of simple perfect complexes and desingularizations of moduli stacks of semistable sheaves on Calabi-Yau threefolds, do not admit a perfect obstruction theory. In this talk, we introduce the relaxed notion of an almost perfect obstruction theory on a Deligne-Mumford stack and show that it gives rise to a virtual structure sheaf in its K-theory. This applies to many examples of interest, including the above, and enables us to define K-theoretic virtual invariants and, in particular, K-theoretic Donaldson-Thomas invariants of sheaves and complexes on Calabi-Yau threefolds. Based on joint work with Young-Hoon Kiem.
Location: Zoom

Math Calendar Login