1. Let X be a normed linear space and X^* its dual space. Let $\{f_n\}_{n=1}^{\infty} \subset X^*$ and $f \in X^*$.
 (a) Define what it means for f_n to converge weak-* to f.
 (b) Prove that if f_n converges weak-* to f, then f is unique.
 (c) State the Uniform Boundedness Principle.
 (d) Suppose that X is a Banach space. Prove that $\{\|f_n\|_{X^*}\}_{n=1}^{\infty}$ is bounded.

2. Let X be a normed linear space and Y a finite dimensional subspace of X. For $x \in X$ and $S \subset X$, let
 \[d(x, S) = \inf_{z \in S} \|x - z\| \]
 denote the distance from x to S. Fix $x_0 \in X$ and let $B = \{y \in Y : \|y\| \leq 3\|x_0\|\}$.
 (a) Show that $d(x_0, Y) = d(x_0, B)$.
 [Hint: first show that $\|x_0\| \geq d(x_0, B) \geq d(x_0, Y)$.]
 (b) Show that there is some $y_0 \in B \subset Y$ such that
 \[d(x_0, y_0) = d(x_0, Y). \]
 We say that y_0 is a best approximation to x_0. [Hint: why is B compact?]
 (c) Show by example that a best approximation may not be unique. [Hint: try $X = (\mathbb{R}^2, \| \cdot \|_1)$ and $Y = \text{span}(1, 1)$.]

3. Let X be a Banach space, $S, T \in B(X, X)$, and I be the identity map on X. Suppose further that T is compact.
 (a) Prove that TS and ST are compact.
 (b) Describe the spectrum of a compact operator.
 (c) If S is invertible and $S + T$ is injective, show that $S + T$ is invertible on all of X.