ALGEBRA PRELIMINARY EXAM: PART II

PROBLEM 1

Let F_3 be the finite field with 3 elements.

a) Prove that for every positive integer d there exists an irreducible polynomial $f(x) \in F_3(x)$ of degree d.

b) Determine the number of irreducible polynomials of degree 4 over F_3.

PROBLEM 2

Consider $f(x) = x^4 - 14x^2 + 9 \in \mathbb{Q}[x]$ and let α be a root of $f(x)$.

a) Prove that $f(x)$ is irreducible over \mathbb{Q}.

b) Prove that the extension $\mathbb{Q}[\alpha]/\mathbb{Q}$ is Galois.

c) Determine the Galois group of the splitting field of $f(x)$ over \mathbb{Q} as a subgroup of S_4.

PROBLEM 3

a) Let F/\mathbb{Q} be a finite extension. Prove that there exists $\alpha \in F$ such that $F = \mathbb{Q}(\alpha)$ (i.e. F/\mathbb{Q} is a simple extension).

b) Give an example of a finite extension which is not simple (proof required).

Date: January 10, 2020.