ALGEBRA PRELIMINARY EXAM: PART II

Problem 1
Let p and q be distinct primes. Set $\mathbb{F}_p := \mathbb{Z}/p\mathbb{Z}$.

a) Describe extensions of \mathbb{F}_p of degree q (state the main results; no proofs required).
b) Compute the number of irreducible polynomials in $\mathbb{F}_p[x]$ of degree q.

Problem 2
Let F be the splitting field of $(x^2 - 2)(x^2 - 3)$ over \mathbb{Q}.

a) Determine the degree of F/\mathbb{Q}.
b) Determine the Galois group $\text{Gal}(F/\mathbb{Q})$ as an abstract group.
c) Prove that F/\mathbb{Q} is a simple extension.
d) Find an element $\alpha \in F$ such that $F = \mathbb{Q}(\alpha)$.

Problem 3
Let E be the splitting field of $x^3 - 5$ over \mathbb{Q}.

a) Determine the Galois group $\text{Gal}(E/\mathbb{Q})$ as an abstract group.
b) Prove that $x^2 - 3$ is irreducible in $E[x]$.
 Hint: Use the Fundamental Theorem of Galois theory.

Date: January 15, 2021.