Problem 1.
(a) Let G be a finite group of order n. Let m be an integer coprime to n. Suppose g and h are elements of G with $g^m = h^m$. Show that $g = h$.
(b) Suppose that G is a finite simple group. Let p be the largest prime dividing $|G|$. Show that G has no proper subgroup H with $[G : H] < p$.

Problem 2. Let $T \in M_n(\mathbb{C})$ be an $n \times n$-matrix such that T^r equals the identity matrix for some integer $r \geq 1$.
Prove that T is conjugate to a diagonal matrix.

Problem 3. Let A be a PID and let $I_1 \supseteq I_2 \supseteq \ldots$ be a strictly decreasing sequence of ideals. Prove that $\bigcap_n I_n = (0)$. (You should prove any non-trivial statements about PIDs that you use in this problem.)