1. Is there an entire function \(f \) that satisfies \(|f(z)| \geq e^{|z|} \) for all values \(z \) large enough? Either provide an example, or prove that none exists.

2. Assume that \(f \) is analytic outside the disk \(\{ z \in \mathbb{C} : |z| \leq 1 \} \) and takes its values inside this disk. Prove that \(|f'(2)| \leq 1/3 \).

3. Suppose \(f \) is analytic on \(\mathbb{D} = \{ z \in \mathbb{C} : |z| < 1 \} \) and satisfies \(|f(z)| \leq M \) for all \(z \in \mathbb{D} \). Assume further that \(f(z) \) vanishes at the points \(\{ z_j \}_{j=1}^{N} \) where \(1 \leq N \leq \infty \).
 (a) Prove that
 \[
 |f(z)| \leq M \left| \prod_{j=1}^{m} \frac{z - z_j}{1 - \bar{z_j} z} \right| \quad \forall z \in \mathbb{D},
 \]
 for any \(1 \leq m \leq N \) (or if \(N = \infty \), then \(1 \leq m < N \)).
 (b) If \(N = \infty \) and \(f \neq 0 \), then show that
 \[
 \sum_{j=1}^{\infty} (1 - |z_j|) < \infty.
 \]

4. Prove that
 \[
 \frac{\pi^2}{\sin^2(\pi z)} = \sum_{n=-\infty}^{\infty} \frac{1}{(z - n)^2}.
 \]