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Abstract We consider the scattering problem for a class of strongly singular
Schrödinger operators in L2(R3) which can be formally written as Hα,Γ = −∆ +
δα(x−Γ ) where α ∈ R is the coupling parameter and Γ is an infinite curve which
is a local smooth deformation of a straight line Σ ⊂R3. Using Kato-Birman method
we prove that the wave operators Ω±(Hα,Γ ,Hα,Σ ) exist and are complete.

1 Introduction

It is often said that when a great scientist says that something can be done, it can
be done, while if the claim is that it cannot be done, he or she is usually wrong;
sooner or later a younger one will come and do the impossible work earning a de-
served fame. A nice illustration of this effect can be found in the biography of Tosio
Kato to the centenary of whom the present volume is dedicated. There are various
testimonies [23] that John von Neumann who otherwise did so much for the math-
ematical foundations of quantum mechanics discouraged people from attempts to
prove the self-adjointness of atomic Hamiltonians because he considered the task
hopelessly beyond reach. Kato’s elegant and in the matter of fact simple proof [13]
was a starting point of the rigorous theory of Schrödinger operators which in the
subsequent decades brought a plethora of results and managed to address funda-
mental questions such as those concerning the stability of matter [17].

While this may be arguable the most important result of Tosio Kato, from the
other point of view it is just one item in the broad spectrum of his achievements
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2 Scattering on leaky wires in dimension three

which extended also to some less well know directions [19]. We believe that other
contributions to this volume, in combination with recent reviews [23, 24] will pro-
vide a full picture showing how much mathematical physics owes to him. Different
people may have different preferences but his opus magnum, the monograph [12],
will probably come to everybody’s mind first. As anybody in the field, the present
authors use it regularly and employed also other Kato’s results, for instance his con-
tribution to the theory of product formulæ [16] that inspired us in the discussion of
quantum Zeno dynamics [6, 7, 8].

The result we are going to present in this note is based on a method at the origin of
which Kato left his footprint and which bears his name together with that of Mikhail
Birman. The starting point here were two of his 1957 papers [14, 15] which, together
with the paper by Rosenblum [22] were the origin of the trace-class perturbation
theory. Later substantial contributions were made by the others, the said Birman,
Kuroda, Putnam, and Pearson, to name just the main ones — for a description of
the history we refer to the review [24] or the note to Sect. XI.3 in [21] — but the
starting point was here.

In this note we are interested in Schrödinger operators with singular ‘potentials’
supported by zero measure sets. In recent years they were studied as models of
‘leaky’ quantum wires and networks made of them, cf. [11, Chap. 10] for an intro-
duction to the subject and a bibliography. From the mathematical point of view the
parameter which matters is the codimension of the interaction support. If the latter
is one the operators can be treated naturally using the associated quadratic forms
in the spirit of [3], for codimension two the problem is more subtle. The scattering
problem in the codimension one case was discussed in [10] where we considered the
situation where the singular interaction support is a curve Γ in the plane, or more
generally a family of curves, which can regarded as a local deformation of a single
straight line Σ . Under suitable regularity assumptions we proved there the existence
and completeness of the wave operators.

In the present note we address a similar question in the codimension two case,
for simplicity we restrict ourselves to the situation when Γ is a single curve in
R3 being a smooth local deformation of a straight line. Note that the scattering
problem with singular interactions supported by curves in R3 has been considered
recently1 in [2], however, our task here is different. The curves in the said paper
were supposed to be finite and the Hamiltonian was compared to the one describing
the free motion in the three-dimensional space, −∆ with the usual mathematical-
physics license concerning the units. In our case the comparison operator can be
formally written as Hα,Σ = −∆ +δα(x−Σ). Using separation of variables and the
well known result about two-dimensional point interactions [1], we find easily that
the spectrum is [ξα ,∞) where ξα < 0 is given by (3) below; in addition to motion at
positive energies the system has now a guided mode in which the particle can move
remaining localized in the vicinity of Σ . The scattering will now mean a comparison
between Hα,Σ and the ‘full’ Hamiltonian formally written as

Hα,Γ = ∆ +δα(x−Γ ) ; (1)

1 See also recent related results in [5, 18].



Scattering on leaky wires in dimension three 3

a rigorous definition of these operators will be given in the next section. Our aim
is to show that the scattering is well defined in this setting, in other words, that the
wave operators for the given pair exist and are complete. In fact, the wave operators
are also asymptotically complete as one has σsc(Hα,Γ ) = /0 under our assumptions,
but we leave the proof of this property together with extensions of the result to a
wider class of the interaction supports Γ to a subsequent paper.

2 Preliminaries: the operator

First we have to introduce the main notions. Let Γ ⊂ R3 be an infinite curve of
class C1 and piecewise C2 which coincides asymptotically with a straight line Σ in a
sense to be made precise below. With the usual abuse of notation we regard Γ both
as a map R→R3 and its image. Furthermore, without loss of generality we may fix
Σ := {(x1,0,0) : x1 ∈ R} and to parametrize Γ by its arc length s so that we have
|Γ̇ |= 1 and |Γ (s)−Γ (s′)| ≤ |s− s′|. We will also suppose that

∃c ∈ (0,1) such that |Γ (s)−Γ (s′)| ≥ c|s− s′| for ∀s,s′ ∈ R , (1)

which means, in particular, that the curve Γ has no self-intersections and that it
cannot be of a U-shape form.

Our next task is to introduce the Hamiltonian, which will be a singular Schrödinger
operator with an interaction supported by the curve Γ , in other words a singular per-
turbation of the ‘free’ operator H0 which is the Laplacian in L2(R3) with the natural
domain. There are various ways to do that using, for instance, quadratic forms or a
Krein-type formula [2, 4, 20, 25]. For the purpose of the present paper we recall the
method employed in [9] inspired by the classical definition of the two-dimensional
δ interaction [1]; its advantage is that it has a local character. The curve regular-
ity allows us to associate with Γ , apart from a discrete set, the Frenet’s frame, i.e.
the triple (t(s),b(s),n(s)) of the tangent, binormal and normal vectors, which are
by assumption piecewise continuous functions of s. Moreover, at the discontinuity
points of Γ̈ the Frenet frame limits from the two sides differ by a rotation around the
tangent vector, hence one can construct a globally smooth coordinate system and,
with an abuse of notation, employ the symbols b(s),n(s) for the rotated binormal
and normal, respectively.

Using this system, we may further introduce a family of ‘shifted’ curve: given
ξ ,η ∈ R we denote r = (ξ 2+η2)1/2 and set

Γ ξ η
r := {Γ ξ η

r (s) := Γ (s)+ξ b(s)+ηn(s) , s ∈ R} ,

in view of (1) and the smoothness of Γ there is an r0 > 0 such that Γ ξ η
r ∩Γ = /0

holds for all r < r0. This allows us to define generalized boundary values of a func-
tion f ∈ H2

loc(R3 \Γ ) using its restriction f �
Γ ξ η

r
(s) to Γ ξ η

r which is by assumption

well defined for 0 < r < r0. We shall say that a function f ∈ H2
loc(R3 \Γ )∩L2(R3)
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belongs to ϒ if the limits

Ξ( f )(s) :=− lim
r→0

1
lnr

f �
Γ ξ η

r
(s),

Ω( f )(s) := lim
r→0

[
f �

Γ ξ η
r

(s)+Ξ( f )(s) lnr
]

exist a.e. in R independently of the direction 1
r (ξ ,η) in which they are taken and

belong to L2(R) as functions of s. This makes it possible to define the sought sin-
gular Schrödinger operator as the restriction of the Laplacian acting on R3 \Γ to a
suitable subset of ϒ .

To be specific, we fix a nonzero α ∈ R and define the operator Hα,Γ as follows,

D(Hα,Γ ) =ϒα := {g ∈ϒ : 2παΞ(g)(s) = Ω(g)(s)}, (2a)

Hα,Γ f =−∆ f for x ∈ R3 \Γ . (2b)

It was shown in [9] that such an operator is self-adjoint. Note that the absence of
a singular interaction means that the singular boundary value Ξ( f ) vanishes iden-
tically, in other words, the free operator H0 corresponds to α = ∞. This fact leads
some authors to write the operator in question as −∆ − 1

α δ (·−Γ ), see e.g. [2]. This,
however, does not fit well with the fact that the two-dimensional δ interaction is ‘al-
ways attractive’, hence we avoid such formal expressions showing the interaction
‘strength’ and restrict ourselves to the definition (2) in the spirit of [1, Sec. I.5].

Before proceeding further, let us say a few words about the spectrum of Hα,Γ . If
the interaction support is a straight line, Γ = Σ , one finds it easily by separation of
variables: it is absolutely continuous and equal to

σ(Hα,Γ ) = [ξα ,∞),

where
ξα =−4e2(−2πα+ψ(1)) (3)

is the eigenvalue of the corresponding one-center two-dimensional δ interaction,
with −ψ(1) ≈ 0.57721 being the Euler-Mascheroni constant. For a non-straight Γ
the spectrum of Hα,Γ may be different and depends in general on the geometry of
Γ . One of the interesting situations concerns curves that are asymptotically straight.
In [9], for instance, we assumed that there are ω ∈ (0,1), µ ≥ 0 and ε,d > 0 such
that for all (s,s′) ∈ Sω,ε we have

1− |Γ (s)−Γ (s′)|
|s− s′|

≤ d|s− s′|
(|s− s′|+1)(1+(s2+s′2)µ)1/2 , (4)

where Sω,ε is the subset of R2 consisting of points (s,s′) satisfying ω < s
s′ < ω−1

if |s+ s′| > ε 1+ω
1−ω and |s− s′| < ε if |s+ s′| < ε 1+ω

1−ω . If this assumption is satisfied
with some µ > 1

2 , together with (1), then the essential spectrum is preserved,
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σess(Hα,Γ ) = [ξα ,∞),

and in addition, the operator Hα,Γ has a non-void discrete spectrum whenever the
deformation is nontrivial, Γ ̸= Σ .

3 Preliminaries: the resolvent

In what follows we adopt a more restrictive assumption about the curve, namely
we suppose that there exists a compact set M ⊂ R3 such that

Γ \Σ ⊂ M . (1)

To analyze the scattering problem for the pair (Hα,Γ ,Hα,Σ ) we need to know more
about the resolvent of singular Schrödinger operator (2). In analogy with the consid-
erations of [9] we begin from the embedding of the free resolvent Rz :=(−∆ −z)−1 :
L2(R3)→ W 2,2(R3) to L2(Γ ). It is sufficient to restrict the spectral parameter z to
negative real values, hence we consider z =−κ2 with κ > 0 and denote Rκ = R−κ2

.
It is well known that Rκ is integral operator with the kernel determined by the func-
tion

Gκ(x) :=
e−κ|x|

4π|x|
.

Specifically, R̆κ
Γ : L2(Γ ) → L2(R3) acts as R̆κ

Γ f :=
∫
R3 Gκ(· − x) f (x)δ (x−Γ )dx,

and furthermore, we define Rκ
Γ : L2(R3)→ L2(Γ ) as the adjoint of R̆κ

Γ . To find out
the resolvent of Hα,Γ , we define the operator Ťκ : L2(Γ )→ L2(Γ ) by

(Ťκ f )(s) =− 1
(2π)2

∫
R

ln(p2 +κ2)1/2 eips f̂ (p)dp, (2)

where f̂ stands for the Fourier transform of f and the maximal domain of this oper-
ator is D(Ťκ) = { f : Ťκ f ∈ L2(Γ )}. Furthermore, we set

Tκ = Ťκ +
1

2π
(ln2+ψ(1)), (3)

where ψ(1) is, up to the sign, the Euler-Mascheroni constant mentioned above.
Finally, we define the integral operator Bκ : L2(Γ )→ L2(Γ ) with the kernel of the
form

Bκ(s,s′) := Gκ(Γ (s)−Γ (s′))−Gκ(s− s′),

and the operator

Qκ := Tκ +Bκ : D := D(Ťκ)→ L2(Γ ) . (4)

Note that the operator Bκ is positive because the function Gκ is monotonous and by
assumption we have |Γ (s)−Γ (s′)| ≤ |s− s′|; this fact was crucial in [9] to prove
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that a curve deformation gives rise to the existence of a discrete spectrum of Hα,Γ .
By [9, Thm. 2.1] the operator α −Qκ : L2(Γ )→ L2(Γ ) is invertible for all κ large
enough and

Rκ
α,Γ = Rκ + R̆κ

Γ (α −Qκ)−1Rκ
Γ (5)

is the resolvent of Hα,Γ . It is not by a chance that this expression has a Krein-
like form because Hα,Γ is a self-adjoint extension of the symmetric operator −∆ :
C∞

0 (R3 \Γ )→ L2(R3). Note also that the geometric perturbation is encoded in the
part Bκ of (4): we have Bκ = 0 if Γ = Σ , and consequently, Qκ = Tκ holds in this
case. The resolvent expression (5) is a tool to prove the spectral properties of Hα,Γ
mentioned at the end of the preceding section.

Lemma 1. The operator (α −Qκ)−1 is bounded for all κ large enough.

Proof. It follows from (2) that

∥Ťκ f∥2 =
1

4(2π)3

∫
R

(
ln(p2 +κ2)

)2 | f̂ (p)|2 dp

and therefore for all κ large enough we have

∥Tκ f∥2 ≥C(lnκ)2∥ f∥2

with a suitable constant C. For the sake of simplicity we use the symbol C as
a generic positive constant which may vary case from case. Furthermore, by [9,
Lemma 5.3] the operator Bκ belongs to the Hilbert–Schmidt class under assump-
tion (4), and therefore, a fortiori, if we assume (1). This allows to conclude that

∥(α −Qκ) f∥2
= ((α −Tκ −Bκ) f ,(α −Tκ −Bκ) f ) ≥C(lnκ)2∥ f∥2

with another constant C. On the other hand, we know that operator (α −Qκ)−1

exists and from the above inequality we can conclude that it is bounded. �

4 Existence and Completeness of Wave Operators

Now we are able to pass to our main task in this note, namely the existence and
completeness of the wave operators given by

Ω±(Hα,Γ ,Hα,Σ ) := s - lim
t→±∞

eiHα,Γ t e−iHα,Σ t ,

where we can skip the projection Eac(Hα,Σ ) usually appearing in the definition be-
cause the spectrum of Hα,Σ is purely absolutely continuous as we have recalled
above. For notational convenience, we decompose the line Σ into three parts,

Σ = ΣM ∪Σ+∪Σ− ,
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where ΣM := M∩Σ and Σ± are the straight components of Σ \M which correspond,
respectively, to x1 →±∞ in the chosen coordinate system. Without loss of generality
we may assume that (0,0,0) ∈ M and

Σ± = {x : x = (x1,0,0), x1 ∈ (−∞,x−)∪ (x+,∞) and x± ≷ 0} .

In a similar way one can dissect the curve Γ into three parts, ΓM and Γ± = Σ±.
The inverses of the ‘full’ and ‘free’ Birman–Schwinger operators, (α −Qκ)−1 and
(α−Tκ)−1, act respectively in L2(Γ ) and L2(Σ). To compare the resolvents of Hα,Γ
and Hα,Σ we introduce the following embeddings,

(α −Qκ)−1
ΓiΓj

:= χΓi(α −Qκ)−1χΓj : L2(Γj)→ L2(Γi) ,

where i, j =±,M, χΓi is the characteristic functions of Γi, and in the analogous way
we define (α −Tκ)−1

ΣiΣ j
. Let us now consider the resolvent difference

Rκ
α,Γ −Rκ

α,Σ = R̆κ
Γ (α −Qκ)−1Rκ

Γ − R̆κ
Σ (α −Tκ)−1Rκ

Σ .

Using the obvious fact

(α −Qκ)−1
Γ±Γ± = (α −Tκ)−1

Σ±Γ± ,

we are coming to the conclusion that

Rκ
α,Γ −Rκ

α,Σ = ∑
i, j∈X

R̆κ
Γi
(α −Qκ)−1

ΓiΓj
Rκ

Γj
− ∑

i, j∈X

R̆κ
Σi
(α −Tκ)−1

ΣiΣ j
Rκ

Σ j
, (1)

where X := {(i, j) : i, j =+,−,M ∧ (i, j) ̸= (+,+),(−,−)}. This will be used to
prove the following result:

Theorem 1. The operator Rκ
α,Γ −Rκ

α,Σ belongs to the trace class for all κ large
enough.

Let us start from an auxiliary claim:

Lemma 2. We have∫
R3

Gκ(y− x)Gκ(x− z)dx =
1

8πκ
e−κ|y−z| . (2)

Proof. We use the Fourier representation of the Green function∫
R3

Gκ(y− x) f (x)dx =
1

(2π)3/2

∫
R3

eipy

p2 +κ2 f̂ (p)dp

and apply it to the Green function itself,∫
R3

Gκ(y− x)Gκ(x− z)dx =
1

(2π)3

∫
R3

eip(y−z)

(p2 +κ2)2 dp .
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Performing the integration over angles in the integral on the right-hand side we get

I =
∫
R3

eipy

(p2 +κ2)2 dp =
4π
|y|

∫ ∞

0

p sin p|y|
(p2 +κ2)2 dp =

2π
i|y|

∫
R

peip|y|

(p2 +κ2)2 dp .

Next we extend in a standard way the integration forming the contour by adding
upper semicircle and using the Jordan’s lemma which implies that the integral over
the semicircle vanishes in the limit of infinite radius. This gives

I =
2π
i|y|

∮ zeiz|y|

(z2 +κ2)2 dz =
4π2

|y| ∑
upper hal f plane

Res
zeiz|y|

(z2 +κ2)2 .

Using now the generalized Cauchy integral formulae one gets

I =
4π2

|y|

(
d
dz

zeiz|y|

(z+ iκ)2

)∣∣∣
z=iκ

=
π2

κ
e−κ|y| .

Putting these results together we arrive at the formula (2). �

Proof of Theorem 1. Let us pick one of the components of Rκ
α,Γ − Rκ

α,Σ , for
instance, R̆κ

Γ+(α −Qκ)−1
Γ+Γ−Rκ

Γ− . The symbol Bδ will conventionally denote the ball
of radius δ centered at the origin and χBδ stands for the characteristic function of
the ball Bδ . We define the ‘cut-off’ operator family

S+−
δ ≡ Sδ := χBδ

(
R̆κ

Γ+(α −Qκ)−1
Γ+Γ−Rκ

Γ−

)
χBδ

and ask for its weak limit as δ → ∞. We have, in particular,∫
R3

Sδ (x,x)dx =
∫
R3

(
Gκ(·− x)χBδ (x),(α −Qκ)−1

Γ+Γ−Gκ(·− x)χBδ (x)
)

L2(Γ+)
dx .

(3)
Using now the Lebesgue’s dominated convergence theorem in combination with
Lemma 2 and the equivalence that e−κ|x−y| = e−κ(|x|+|y|) holds, in view of that fact
that Γ± = Σ± = {x : x = (x1,0,0), x1 ∈ (−∞,x−)∪ (x+,∞) and x± ≷ 0}, we obtain

lim
δ→∞

∫
R3

Sδ (x,x)dx =
π4

κ2

∫
Γ+

e−κ|s|
(
(α −Qκ)−1

Γ+Γ−e−κ|·|
)
(s)ds . (4)

Using further the boundedness of (α −Qκ)−1
Γ+Γ− in combination with Schwarz in-

equality we get from (4) the following estimate

lim
δ→∞

∫
R3

Sδ (x,x)dx ≤C
π4

κ2 ∥e−κ|·|∥L2(Γ+)∥e−κ|·|∥L2(Γ−) ,

where the constant C is the norm of (α −Qκ)−1
Γ+Γ− . We want to conclude that
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Sδ (x,x)dx → Tr R̆κ
Γ+(α −Qκ)−1

Γ+Γ−Rκ
Γ−

as δ → ∞ and to show in this way that the operator R̆κ
Γ+(α −Qκ)−1

Γ+Γ−Rκ
Γ− belongs

to the trace class. According to the lemma following Theorem XI.31 in [21] the
trace can be expressed through the integral of the kernel diagonal provided the latter
is continuous in both arguments and the operator is positive. The continuity was
mentioned already, the positivity follows from the fact that the operator α −Qκ is
positive from all κ large enough, cf. [9, Lemma 5.5].

Let us next consider the component of (1) referring to the operator acting between
the spaces L2(Γ+) and L2(ΓM). We put

SM+
δ ≡ Sδ := χBδ

(
R̆κ

ΓM
(α −Qκ)−1

ΓMΓ+Rκ
Γ+

)
χBδ .

Applying again Lemma 2 in combination with the Lebesgue’s dominated conver-
gence theorem one obtains

lim
δ→∞

∫
R3

Sδ (x,x)dx =
π4

κ2

∫
ΓM

(
(α −Qκ)−1

ΓMΓ+e−κ|Γ (·)−Γ (s)|
)

ds . (5)

Using further the boundedness of (α −Qκ)−1
ΓMΓ+ and the continuous imbedding of

spaces L2(ΓM) ↪→ L1(ΓM) together with the Fubini’s theorem and Schwarz inequality
we infer that∣∣∣ lim

δ→∞

∫
R3

Sδ (x,x)dx
∣∣∣≤ π4

κ2

∫
ΓM

∣∣∣((α −Qκ)−1
ΓMΓ+e−κ|Γ (·)−Γ (s)|

)∣∣∣ds

≤ π4

κ2 |ΓM|
(∫

ΓM

∣∣∣(α −Qκ)−1
ΓMΓ+e−κ|Γ (·)−Γ (s)|

∣∣∣2 ds
)1/2

. (6)

The integral on the right-hand side of (6) is finite because the integrated function
belongs to L2(ΓM). This implies that R̆κ

ΓM
(α − Qκ)−1

ΓMΓ+Rκ
Γ+ belongs to the trace

class in the same way as above.
The remaining components of Rκ

α,Γ −Rκ
α,Σ contributing to formula (1) can be

dealt with in the analogous way. The only terms which do not allow for such a treat-
ment are those containing (α −Qκ)−1

Γ±Γ± , however, they cancel when we subtract
Rκ

α,Γ from Rκ
α,Σ . Concluding the above discussion we thus find that the difference

Rκ
α,Γ −Rκ

α,Σ is a trace class operator for all κ large enough what we have set out to
prove. �

Now we are in position to present the result indicated in the introduction:

Corollary 1. In the stated assumptions, the wave operators Ω±(Hα,Γ ,Hα,Σ ) exist
and are complete.

Proof. In view of Theorem 1 the claim follows immediately from Kuroda-Birman
theorem, cf. [21, Thm. XI.9]. �
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6 (2005), 195–215.

7. P. Exner, T. Ichinose, S. Kondej: On relations between stable and Zeno dynamics in a leaky
graph decay model, Proceedings of the Conference “Operator Theory and Mathematical
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