
Non-deterministic Quantum Mechanics and Particle Spin1

Damon Wai Kwan So2

Oxford Centre for Mission Studies, Woodstock Road, Oxford OX2 6HR. 

The preceding paper [1] proposed an alternative interpretation of quantum mechanics which is distinct 
from the Copenhagen Interpretation and the pilot wave theory. This alternative interpretation and its 
associated non-deterministic velocity component are tested here with reference to particle spins. A 
mechanism for generating particle spins is rigorously identified for the case of a free particle and the case 
of the hydrogen electron. The mechanism can be generalised for electrons in other atoms and other 
particles. The incomplete nature of the Schrödinger equation with regard to its inability to incorporate 
particle spin is demonstrated. The adoption of Born’s rule by the physicist community for interpreting the 
probability density is seen as implicitly acknowledging the mechanism for generating particle spin but 
this mechanism was far from being made explicit by that rule. The crucial question of the need for 
sensitive non-deterministic information input to maintain particle spin and to satisfy Born’s rule is raised. 
This question probes the limit of our human ability to penetrate into non-deterministic processes and 
events.  The paper concludes with an assessment of the proposed alternative interpretation of quantum 
mechanics with respect to the criteria of conceptual coherence and correspondence to experiments.

1.0    Introduction

The previous paper [1] takes the position that a particle has an unambiguous position and an  

unambiguous momentum at any instant in time even though the total velocity  of the particle is non-
determinate. It identifies a deterministic component and a non-deterministic component of the 
velocity  of a particle which renders the total velocity non-determinate. The non-deterministic 
velocity  component is tangential to the S (phase) surface and the particle can be visualised as 
‘surfing’ on the S surface as it is carried forward by the deterministic velocity  component. This 

paper explores further the possible non-deterministic motion of the particle on the S surface which 
can be seen as a mechanism for generating the spin of a particle.

As hinted in the previous paper [1], in a disorderly and violent  universe, the non-deterministic 
free motion of the particle on the S surface has little constraint. However, in a reasonable and 
orderly  universe like ours, even though the free velocity  on the S surface is not determinate, it may 

still be subject to some kind of constraint. We now investigate the constraint on its energy, its 
possible direction and its relation to particle spin.

2.0  The Energy of a Particle

The Schrödinger equation 
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can be written as the following two equations:

where the wave function has been written as

m is the mass of the particle,  is the reduced Planck constant, U is the potential ‘experienced’ by 

the particle. Equation (2) is called the pseudo continuity  equation in [1] and is the focus of that 
paper. In this paper, the focus is on equation (1) which is called the energy equation. As in the 
previous paper, the total velocity of a particle is written as

where  and  are constant over space but can be functions of time, and with  the 

velocity components can be written as

where at  the particle’s position is a unit vector perpendicular to and lies on the plane formed 

by and , is the unit  vector in the direction of  at the point where the particle is.3 is 

the deterministic velocity component and the non-deterministic velocity  on a S surface is given by 

 and the particle is said to surf on the S surface with this velocity. Also, at the 

position where the particle is,  form a set of orthogonal velocities. The energy 

equation can be written as 

2
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where is called the Quantum Kinetic Energy (QKE) of the particle.  is 

the total kinetic energy of the particle. The fourth term (enclosed by  the brackets) with its minus 
sign is called the Quantum Potential Energy (QPE) of the particle such that

which in this paper is called the Total Quantum Energy (TQE). Usually, it is called the quantum 

potential but this term is not used in this paper in order not to confuse it  with QPE. U is the classical 
potential and we can treat the sum of the classical potential energy and the Quantum Potential 
Energy (QPE) as the total potential energy of the particle. Hence, the sum of the second and third 
terms represents the total kinetic energy of the particle and the sum of the fourth and fifth terms 
represents the total potential energy of the particle. The reason for having these different terms in 

the energy  equation will become clear later. At this point, it is sufficient to note that the sum of the  
second, third, fourth and fifth terms on the left hand side represents the total energy of the particle, 
E, and 

3.0  A Particle in Steady Motion State

Taking the gradient of the energy equation (1), we have

If  is constant with respect to time but varies with space, i.e., if  is constant in time (but can 

vary in space), then the total energy 

is constant over space. We called this Steady Motion State (SMS). The only steady part of the 

motion is the deterministic velocity component, , while the non-deterministic component  can 

vary in time and hence can be unsteady. A Steady Motion State is not to be confused with the usual 

steady  state motion where all components of the motion are constant in time. The total energy, E, of 
the particle, consists of (i) the classical terms for kinetic energy and potential energy (first and third 
term) and (ii) the Total Quantum Energy  (second term, which can be divided into Quantum Kinetic 
Energy and Quantum Potential Energy as explained above). E is uniform over space for SMS, i.e., 
whichever position the particle happens to have at a certain instant, its total energy  is the same. It is 

natural and highly reasonable to suggest that the total energy, E, of a particle is conserved in time 
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for SMS. If this were not the case, since E is constant over space for SMS, varying E in time would 

mean varying E over the whole space in time and this demands some enormous source or sink of 
energy over the whole space, the cause of which we have no idea. This paper chooses the simplest 
option, i.e., for SMS the total energy, E, of a particle is conserved in time and is uniform over space, 
i.e., whatever time and wherever the particle happens to be at, it  has the same total energy. Since E 
is constant, equation (4) can be integrated in time to yield

 where  is a position vector and b is a scalar function independent of time.

4.0   A Particle in Steady Motion State With Uniform Translational Velocity and Uniform U

Let  be named as the translational component of the velocity. We now consider the case where 

this translational component of the velocity (and hence ) is uniform over space and the classical 

potential, U, is uniform over space and time. These give rise to the following energy equation:

where each term on the right hand side is a constant so that the right  hand side can be treated as a 

single constant. Let this constant be written as for a suitable a. The above equation becomes

This is in the form of the Helmholtz Equation. Note that a is chosen to be real so that the right hand 

side of equation 6 is negative; this can be accommodated or ensured by  taking a sufficiently 
negative value of the classical potential energy, U, if necessary, without disturbing the dynamics of 
the system. If a is imaginary, we will show rigorously (in Appendix A) that it  will lead to 
unphysical scenarios. Also, the solution for R is a function of space only (since a does not vary with 

time), so that the first term of equation (2),  , is zero. Hence, is constant in time but varying in 

space while  , and U are constant in time and in space. Furthermore, from equation (2) we 

have

Now, the above Helmholtz Equation for constant and constant U can be solved in cylindrical co-

ordinates, r, θ, z. But first  we have to choose the orientation of the cylindrical co-ordinates 
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appropriately. Let z be in the direction of  , and hence in the direction of  . This means that the 

particle is travelling with constant translational velocity ( ) in the z direction and cutting through 

the S surface perpendicularly. A S surface is then identical to the (r, θ) plane (the z plane). The 
scenario constructed so far corresponds to a particle travelling in free space (with uniform U) with 
uniform translational velocity ( ) in the z direction. In this case, using (7) above, is 

perpendicular to the z axis which implies that 

Also, we can appeal to isotropy  with respect to and take  so that  the Helmholtz Equation 

becomes

which is the radial equation with one independent variable, r. This equation is in a form of the 

Bessel equation and has the solution

where  are Bessel functions of the first and second kind respectively. Since , if R 

is to have the usual meaning, i.e., is the probability density, then it seems that B = 0; 

however, the situation is somewhat more complicated than that but we will later show rigorously 

that indeed  indeed is not a suitable solution when we consider the ‘spin energy’ of the particle. 

First, we consider a mechanism for generating the spin of the particle. 

5.0   Particle Spin in Steady Motion State With Uniform Translational Velocity in Free Space 
– Stage 1 of Exploration

5.1 Bessel Function of the First Kind

Here we consider this solution:

This means that the contours of constant ρ on the (r, θ) plane, i.e., on the S surface, are concentric 

circles. 
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Figure 1: Contours of constant ρ on the (r, θ) plane (or S surface); the z direction and hence the 
direction of  is perpendicular to the page

To look at the structure of the ρ contours, a plot of ρ with respect to r is necessary. At this point, it is 
sufficient to plot the square of the Bessel function of the first kind, i.e., without the constant A.

Figure 2: 

Now, ρ has a maximum at r = 0 and it is zero at ra = 2.4, i.e., at  r = 2.4/a. If ρ is to have the usual 

meaning in quantum mechanics, we expect to find the particle between r = 0 and r = 2.4/a. What 
happens beyond this latter point, i.e., r > 2.4/a? To answer this question, we need to explore the 
possible nature of the spin of the particle.

In the previous paper, it was suggested that the motion of the particle on the S surface is non-
determinate. This implies that, for the case being considered, the particle’s motion on the (r, θ) 

plane is non-determinate. How then is it possible to explore the motion of the particle on this plane/
surface and possibly relate it to its spin? Remember that in the previous paper, it was concluded that 
there are two degrees of freedom for the particle’s motion on the S surface, corresponding to the 

two unspecified magnitudes of and . Here, it is suggested that one can specify the 

magnitude of one component of the particle’s velocity on the S surface while leaving the other 
component, which is perpendicular to it, non-determinate in magnitude so that the overall motion 
on the S surface is still non-determinate.  Now, we specify  to be a specific constant over time in 
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addition to its constancy in space, thus specifying one component of the velocity, , on the S 

surface and leaving to be non-determinate in its magnitude even though its direction, being 

perpendicular to on the S surface, is determined. This non-determinate nature of its magnitude 

will be crucially utilised later. At the position where the particle is, lies on the (r, θ) plane 

(which is a S surface) and it is tangential to the circular ρ contour there, while the direction of 

goes through the origin or the centre. 
There is the critical point at r = 2.4/a where ρ = 0 and it needs to be considered carefully. For 

convenience, we define L to be 2.4/a. In general,

 At the critical point, 

This means that the velocity  , now called the spin velocity, is tangential to the ρ contour and 

tends to infinity at the critical point of r = L. In order to avoid such a non-physical scenario, we can 
limit the motion of the particle to be within the boundary of the critical point by insisting that  r < L, 
which is reasonable since ρ vanishes at  the critical point (reasonable if ρ retains the usual meaning 
in quantum mechanics). 

 will be very  large as r approaches the critical value but this is alleviated by the fact that 

ρ is very  small in the neighbourhood of the critical point which will therefore be infrequently 
visited. Note also that is zero at r = 0 and the magnitude of steadily  increases 

(exponentially like) as r increases towards the critical point. 
Now, we come to the point of postulating a possible mechanism for the spin of a particle. 

Hestenes [2] [3] suggested that ‘the zitterbewegung [ZBW] is a local circulatory  motion of the 
electron presumed to be the basis of the electron spin and magnetic moment’. Others have followed 
his idea, e.g., [4-6], and some used the term ‘helical’ to describe the motion. However, Hestenes 
concentrated on the case where the trajectory of the particle has constant curvature. This is so 
because he concentrated on the time-averaged angular momentum of the particle (with respect to a 

reference frame) which thus became a determinate case. However, this paper explicitly considers 
the non-determinate nature of the motion of the particle whose trajectory does not have a constant 
curvature. Nevertheless, this paper does suggest, as Hestenes did, that the spin of the particle is 
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related to the circulatory motion of the particle. In the case being considered here, the circulatory 

motion is given by tangential to the ρ contours on the S surface. We now explore the spin of 

the particle in two stages. 
The first stage, for the sake of instructive illustration, will consider the particle to be 

simultaneously  present  at the whole region of r < L. This has the flavour of the Copenhagen 

interpretation but the particle is simultaneously  present only on a particular S surface and within 
radius L. That particular S surface is determined by the z co-ordinate of the particle which is in turn 
determined by  the constant deterministic velocity in the z direction, . This can be seen in the 

following derivation of the possible positions of the particle. The rate of change of S following a 
particle is

since , , and is a constant. Hence, the rate of change of S following a 

particle is constant no matter where the particle is. A particle beginning with a certain initial 
position with an initial at an initial time of  has the freedom to surf on the S surface while 

moving forward with constant . It can therefore have different trajectories. However, at  any 

instant after the initial time, , no matter what trajectory it has taken, it will have the same S 

value. Beginning from a single position, the area covering the possible positions of the particle at  a 
future time of  expands (since  is non-zero) with every  position in the area having the 

same S value. Given enough time (i.e., when  is large enough), the area covering the possible 

positions of the particle expands to fill the whole area of r < L on the S surface. Equivalently, at 

, the particle can be located at any neighbourhood within r < L on the S surface (which has 

the value of  ); and one can add that each neighbourhood has its corresponding 

probability  of finding the particle there. This interpretation of the particle’s position in this case is 

slightly different from the Copenhagen Interpretation where the particle can be located anywhere in 
the physical space. Here, the position of the particle is still non-determinate, and in that sense it  is 
similar to the Copenhagen Interpretation, but its range of non-determinacy is confined to the S 
surface with r < L. This will facilitate the calculation of the spin of the particle in this first stage of 
exploration, as will be seen later.

The second stage will consider the motion of the particle, which occupies an unambiguous 
position at any one instant, over a short period which will then essentially  lead to the same result as 
from the first stage. This will be considered in section 6.

For this first  stage, the particle is assumed to be simultaneously present at  every point in the 
region r < L with probability ρ (cf. the Copenhagen interpretation), but for
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To account for this fact, we use the normalisation procedure, i.e., 

The magnitude of the integrated angular momentum of the particle with respect to the z axis at the 

centre (r = 0) on the S surface, or the (r, θ) plane, at an instant is: 

where can be in one of the two directions which are opposite to one another, and the 

contribution from to the angular momentum is zero since it goes through the centre (r = 0). 

Now, the last integral can be evaluated by integration by parts so that it becomes

With the carefully chosen L such that ρ = 0 at r = L (see figure 2), the first term is zero and the 

integrated angular momentum of the particle is

where the integral on the LHS after  is the normalisation integral (see above) and is therefore 1. 

One can readily  see the physical significance of , i.e., it corresponds to the kind of particle 

being considered and is the spin number of the particle, e.g., for electron, protons and neutron, its 
value is 1/2, for photon it is 1 and so on.4 Note that the explicit form of ρ is not needed in the last 
few lines of integration; what is required is its value at the boundary points. This crucial feature will 
be utilised further later to produce the same spin for a particle under different situations.

We can also calculate the integrated spin energy of the particle by looking at the energy in the 

velocity component, , while leaving out the component:

9

4 Since the integrated angular momentum does not depend on the mass of the particle, the case of zero mass photon can 
be seen as the limiting case as mass tends to zero.
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 Using  and , the integrated spin energy of the particle becomes

Note that even though the radial limit of the spinning motion, r = L = 2.4/a, depends on a, the 

integrated angular momentum (spin) and the integrated spin energy of the particle are both 
independent of a. According to the definition of a above, this means that the spin and the integrated 
spin energy do not depend on the magnitude of the translational velocity, the magnitude of the 
potential U (as long as it does not make a imaginary), or the total energy E. The controlling variable 

in both of these quantities is which characterises the particular kind of particle in question. This 

may give us some important insight into why the spin of a particle is invariably constant. 

5.2 Bessel Function of the Second Kind

We now return to the possible solution of , where  is the Bessel function of the 

second kind. 

Figure 3: 

Similar to ,  has a root; . Similarly, we can confine the motion of the particle 

within the radius of L = 0.8936/a. Furthermore, by choosing the right  constant B, the normalisation 
condition can also be satisfied:
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despite the fact that . This is so because the large value of  near r = 0 is multiplied by 

the small r there; in fact . We can repeat the above procedure for evaluating the 

integrated momentum of the particle and come to the same expression,

Similarly  as before, with , the first term is zero and the integrated angular 

momentum of the particle is

which is identical to the case for the solution with the Bessel function of the first  kind, . Does 

that mean that given the same a, it is possible to have two distinct dynamical regimes for the 

particle with identical integrated angular momentum (spin)? It  turns out that the second regime 
corresponding to the Bessel function of the second kind, , is non-physical when we consider its 

integrated spin energy. The crucial factor for this energy is (see equation 10 above)

whose integrand approaches infinity as r approaches zero. This integral is therefore undefined so 

that there is no meaningful integrated spin energy in this case which consequently is unphysical. 

Appendix A considers the Helmholtz Equation of the other form:

There, using a similar argument, it  is also shown that the solutions, given by the modified Bessel 

functions of the first and second kind, , , are also unphysical. We are therefore left with Bessel 

function of the first kind, , as the solution to the Helmholtz Equation with real a.  

6.0   Particle Spin in Steady Motion State With Uniform Translational Velocity in Free Space 
– Stage 2 of Exploration

The above wave-like interpretation of the particle requires the particle to be present simultaneously 
over all points within the circular region of motion on the S surface with some probability density 

distribution given by ρ. This wave-like model gives the correct calculation for the spin of the 
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particle. However, we may have a conceptual difficulty in accepting that the particle is 

simultaneously  present in the circular region on the S surface. Hence, in this section we consider a 
particle interpretation where the particle occupies an unambiguous position at any one instant 
within the circular region of motion, and we endeavour to show that the time-averaged angular 
momentum of the particle over a suitably  short period is no different  in form and in substance to the 
one derived from the wave-like interpretation given above. 

Let us now consider the radial component of the particle’s velocity on the S surface, . 

This velocity component  is perpendicular to   which is tangential to the ρ contour. As we have 

seen, this radial component does not generate any  angular momentum with respect to the z-axis 

going through the origin or centre. As  carries the particle along a ρ contour,  carries the 

particle  radially across the circular ρ contour towards the centre or away from the centre. Let us 
consider the time spent by the particle in the area between two circular ρ contours which have a 
radial distance of small △r between them; let  this time be △t. It  is possible that the particle visits 

this area between these two ρ contours, i.e., the circular strip, a number of times within a period of 
T and △t is the total time spent in the circular strip  over the given number of visits. Thus, the 

particle spends a fraction of the period T in the strip, and the fraction is △t / T which is the non-

dimensional time. is usually interpreted as the density  of the probability of finding a 

particle within the small neighbourhood of a certain point at an instant, or equivalently  as the 
probability  per unit volume at an instant. Now, so far in this paper ρ has been interpreted, according 

to this sense with a slight variation, as the probability  per unit area on the S surface at an instant 
(see 5.1 above). However, the Schrödinger equation in itself does not  force such an interpretation; 
the usual meaning of ρ is only an interpretation fashioned by Born [7]. We now re-interpret the 

meaning of ρ in the following way. The ‘non-dimensional time’ is a fraction of the period T , e.g., 
△t / T ; it  is a non-dimensional measure of the time duration with respect to the period T. The ‘non-

dimensional time’ density, defined for the circular strip with area 2πr△r (where r is the radius of the 

inner or outer circle of the circular strip), is the expected non-dimensional time △t / T to be spent by 

the particle over the period of T within that strip divided by the area of that strip. We interpret ρ to 

be this ‘non-dimensional time’ density for the circular strip: 

Note that ρ is defined with respect to expected events over the period T and is thus not defined with 

respect to an instant in time as in the usual interpretation of ρ. For a given r, ρ tends to a limit as △r  

and △t tend to zero so that  ρ is a function of r. And since ρ is derived from R, it has to be consistent 

with the reduced form of the Helmholtz Equation in R, i.e., the radial equation (8) where the only 
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independent variable is r. Thus, ρ as a function of r (expressed via the Bessel function of the first 

kind as ) determines the non-dimensional time to be spent by the particle in a circular 

strip, which is given by 2πr△rρ. This puts a clear constraint on the time to be spent in the strip. 

Now, the angular momentum of the particle for the duration of △t spent within a circular strip  of 

radius r is  . If we multiply this with the time duration △t, we have  △t, which 

can be called the ‘time angular momentum’ of the particle for the duration of △t. 

By using the above expression (11) for ρ, this ‘time angular momentum’ can be written as 

T △r, which is a function of r since  and ρ are functions of r. We then sum up 

all such contributions of ‘time angular momentum’ from every circular strip with r ranging from 0 

to L = 2.4/a over the period of T. Before taking the step of this summing up, we need to consider the 

period T. We propose that over a suitable period of T, the particle does spend the expected amount 

of time at the positions between r = 0 and r = L such that the radial equation (in the Bessel form) is 

satisfied, i.e., the trajectory of the particle during the period T is such that it does satisfy the clear 

constraint on the time to be spent in each strip whose r ranges between 0 and L. We shall later see 

how this constraint can indeed be satisfied. Now with the above considerations duly  given, it is time 

to sum up the contributions of ‘time angular momentum’ from every  circular strip with radius 

between 0 and L for the period T, and do it in such a way  as to take the limit of the summation as 

△r tends to zero: 

where the disc of motion, r < L, is divided into N circular strips of △r, in the discrete sum (on 

the LHS) is a function of  , and N tends to infinity  as △r tends to 0. We can follow the same 

mathematical procedure as given in section 5.1 above (by using integration by parts) and express 

this integrated sum of ‘time angular momentum’ for the period T as

where the first term is 0 and the second term can be expressed as:
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where  is the time spent by the particle in the ith circular strip and the expression in (11) has 

been used. If we take the time average of this integrated sum of ‘time angular momentum’ for the 
period T by dividing it by T, this is the average angular momentum of the particle over the period T 

and has the value of which is the same as the angular momentum derived in section 5.1 for the 

case where the particle is present simultaneously at one instant at all points of the disc of motion on 
the S surface. Likewise, the time averaged spin kinetic energy of the particle is , as 

given in section 5.1.
Now, with the given interpretation of ρ as the ‘non-dimensional time’ density, one can connect 

this interpretation with the concept of probability  density. Suppose a particle visits the same circular 
strip with area 2πr△r at  three different intervals (or over three stints) within the period T and the 

intervals add up to △t. The probability of finding the particle within this strip is 

either 1 at any instant of the three intervals or 0 at any instant outside the three intervals. 

The time integrated probability of finding the particle within the strip, over the period T, is 

. Hence, the time averaged probability of finding the particle within 

the strip  is △t / T. This averaged probability  of finding the particle there is highly  reasonable since 

it spends a fraction, △t / T, of the period T in the strip. If one checks if the particle is in the strip  at 

an instant  randomly picked within T, the probability  of finding the particle there will be △t / T. 

Also, if one does a high frequency sampling at a small regular time interval within T, the probability 

of finding the particle there will also be △t / T. Now this △t / T, interpreted as the time averaged 

probability  (over the period T) of finding the particle in the strip can also be written as follows 
(using expression (11) above):
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For a given r, ρ tends to a limit as △r and △t tend to zero. From this expression and by interpreting 

△t / T as the time averaged probability over the period T, we can see that ρ can also be interpreted 

as the time averaged probability  density over the period T for the circular strip. Therefore, we have 
two equivalent interpretations of ρ:

1. the ‘non-dimensional time’ density for the period T and 
2. the time averaged probability density for the period T. 

If we compare the second interpretation, the time averaged probability density over a period, with 
the usual interpretation, i.e., probability  density  at an instant (as in section 5.1), then we can see the 
similarity between the two in their probability  density, and the difference between the two in 
relation to their time duration: the latter relates to an instant while the former relates to a period. We 

can understand the treatment and derivation of the spin of a particle at one single instant in section 
5.1 as the result of compressing the history of the particle over a period of T into a single instant  in 
time. That is, if we suppose that the treatment and derivation in the current section involving the 
history of the particle over a period of T is reality (or something close to reality with the particle 
having unambiguous position at  any  instant), then the treatment in section 5.1 is a convenient 

shorthand summary of this history  into an instant, by  using the time averaged probability  density 
over the period T as the probability  density  for a hypothetical compressed instant. In other words, ρ 
is taken as the probability  density for that ‘compressed moment’ where the particle is present at 
different positions at the same time. Even though this shorthand treatment in section 5.1, as this 
paper suggests, may not be the reality, it nevertheless captures the essence of the dynamics of the 

particle in its history over the period T. And if the period T is very short, the dynamics of the 
‘compressed moment’ is a good representation of the history  of the particle over the short period T. 
In fact, as T tends to the limiting case of zero, the dynamics of the system tends to the the dynamics 
of the ‘compressed moment’ which is thus the limiting case. 

In the treatment in section 5.1, the particle is required to have different radial distances, 

different r’s, at the same time, but this is not necessary in the present treatment as the particle has an 
unambiguous radial distance at any one point in time. Likewise, in section 5.1 as the particle is 
simultaneously  present over the whole disc of motion, in one instant it covers the full range of the 
value for  the  azimuthal co-ordinate, θ. Here, the particle has one value for θ at  any one instant. For 
the motion within a circular strip, the range of θ covered by the particle within the time of 2πrρ△r 

depends on the magnitude of . If the magnitude is large, the full range of 360 degrees (or 

more) can be covered within the radial distance of △r as the particle moves in the radial direction. 

The discussion so far touches on the fundamental ontology of particles: are they waves or 
simply  particles? The question of the duality of wave and particle in Quantum Mechanics is a 
perplexing one. The discussion in this paper suggests that a particle goes through cycles of motion 
(both in the radial and azimuthal directions) according to some periodic time and in that sense it 
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behaves functionally like a wave. On the other hand, the proposition that the particle occupies a 

definite unambiguous position at any one moment in time suggests that as an entity, ontologically it 
is a particle. Hence, this paper suggests that the functional description of the motion of a particle 
can be captured by  some kind of continuous wave while its ontology is given by  the discrete 
property of a particle. 

7.0   How Can the Radial Equation be Satisfied by the Motion of the Discrete Particle?

For our purpose of our analysis here, the most useful interpretation of ρ is the ‘non-dimensional 
time’ density, as a function of r, for the period T. The time spent by  a particle within a circular strip 

of radius r is given by 2πr△rρT, and this time can be the summation of the time intervals for the 

many visits made by the particle to that strip. It has been assumed in section 6 that over a suitable 
period of T, the particle does spend the expected amount of time at the positions between r = 0 and 
r = L such that the radial equation (in the Bessel form) is satisfied. We have established that ρ has to 

be expressed via the Bessel function of the first kind as . Before we demonstrate how this 

expression can be satisfied (or approximately satisfied), it is necessary  to have a more concrete 
grasp of the value of A, and a which is the parameter in the Helmholtz Equation. We recall that the 

time-averaged angular momentum (spin) and the time-averaged spin energy of the particle are both 
independent of a. It seems that  a is a free parameter which has to be determined from experiment. 

Suppose a has some specific value, it then specifies in the expression for ρ and L=2.4/a but 

the constant A in ρ is yet  to be specified. However, the normalisation constraint  will yield the value 

of A:

We can see that as a increases, L becomes smaller, i.e., the area of the spin disc becomes smaller or 

more compact while at  the same time A will have to increase to maintain the normalisation 
constraint. Conversely, as a decreases, the area of the spin disc spreads out and A has to decrease. 
The curve for rρ is plotted as a function of r below in Figure 4 with a=1, L=2.4, A=0.4519. This 
case for a=1 will be used in this section for illustrative purpose. Despite its specificity, this 
illustration can be very  general in nature because  L/2.4=1/a is a measure of length, and if we define 

the unit  length to be the length of L/2.4, then with that length convention a=1. That is, if we adjust 
the definition of the unit length according to what L is in reality, then we can guarantee that 1 is 
correct value for a.
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Figure 4: y(r) = rρ with a=1, L=2.4, A=0.4519

We will now make the first (but not final) attempt to satisfy the radial equation by  using (11) 
to write:

In this first attempt, we suppose that the particle visits each strip only once within the given period 

T. In that  case, we  can interpret △r/△t to be the average speed of the particle in the radial direction, 

and this average radial speed is inversely proportional to rρ. And if we take the limit of △r/△t as 

△r and △t tends to 0, then since ρ is a function of r we have a unique radial speed profile for the 

particle as a function of r; and one cycle involves the particle travelling from r=0 to r=L over the 
period T. That is, given the constants T and a, it seems that we have managed to fix the radial speed 

of the particle from r=0 to r=L. Remember we have already fixed the magnitude and direction of 
the velocity  component, (the spin velocity), on the S surface whose magnitude is a function of 

ρ and thus of r. Now, if we also fix the radial speed as a function of r as suggested above, we have 

effectively fixed (to be called the radial velocity) on the S surface whose direction is 

perpendicular to the spin velocity and whose magnitude is a function of r. This means that the 

velocity  of the particle on the S surface, , is effectively determined over the whole 

disc of spinning motion. Now, we have already fixed so that we have effectively  determined 

. That implies that the total velocity of the particle is deterministic. Have 

we then reduced quantum mechanics to deterministic classical mechanics? But is it the case?
Apart from the prescribed constant T in the system which can conceivably  be made to vary 

over time and become a source of indeterminacy, we have the following grave boundary conditions 
at r=L and r=0, where rρ=0 either due to r=0 or ρ=0 at r=L, which are the two singularity points and 

thus violate the rather simplistic derivation of the deterministic and the deterministic total 
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velocity  in the last paragraph. According to the expression in (12), the radial speed has to be infinite 

at the two boundary  points of r=L and r=0; hence they are also called singularity points. 
Furthermore, if we envisage the motion of the particle over two cycles with the first cycle beginning 
when the particle is at r=0, not only will the particle possess infinite speed at that point, the particle 
will slow down away from r=0 (according to the increasing rρ), then accelerate towards r=L 
(according to the decreasing rρ) reaching infinite speed at  r=L and instantaneously begin the 

second cycle by  reversing the direction of its radial velocity but maintaining its infinite magnitude! 
Surely, this scenario of the particle having infinite radial speed and instantaneously reversing its 
direction but maintaining infinite radial speed at r=L is not a scenario that we wish to accept as 
physical.5 Because of this, we have reasons to believe that non-deterministic quantum mechanics 
cannot be reduced to deterministic classical mechanics by  adopting the above deterministic 

expression of the radial speed of a particle. But how can the radial equation be satisfied or 
approximated? In particular, how can the two singularity points be dealt with?  

By writing

intuitively one can see from this expression and Figure 4 that  the particle needs to spend more time  

(cumulatively) at a strip with higher rρ and less time at a strip with lower rρ, and the time spent at a 
strip can be built up over a number of visits. For example, where rρ is at the maximum (at 
r=0.9364), the particle will spend the largest amount of time at a strip  around that point but this can 
be built up through multiple visits (or possibly built  up through the maximum number of visits 
amongst the strips) within the period T. Conversely, where rρ is small, the particle will spend less 

time there and the time can be built up with fewer number of visits within the period T. Regarding 
the neighbourhoods of the extreme boundary  points, we envisage that the particle only  visits them 
once within the period T of one cycle. One can visualise that, within the period T, the particles 
moves in a series of oscillations around the point of maximum rρ with variable amplitude. In this 
way, it is conceivable that the rρ curve in Figure 4 can be approximated. The following diagram 

illustrates one possible trajectory within one cycle of period T although there can be many 
variations from this trajectory, as we shall see. 
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Figure 5: Possible radial trajectory, from P1 to P10, of a particle within the period T 

The particle begins the motion for period T from position P1(one of the two boundary points) with 
zero radial speed, having just  completed the motion in the previous cycle, at the end of which the 
particle moved radially  outward towards P1 and stopped there. At the beginning of the new cycle, it 
moves radially inward towards P2 (another boundary point) and stops at P2 before moving outward 

to P3, although strictly  speaking it does not have to stop  radially at P2 as it  can continue through P2 
to reach a negative r value which is allowed by the motion (and the radial trajectory in Figure 5 will 
also apply in an equivalent manner). In either case, from P1 the particle with its spin velocity and 
inward radial velocity  spirals towards the centre; then it spirals out from the centre. As the particle 
reaches P3, it stops radially  and begins to move inward towards P4 and stop there radially before 

moving towards P5, and so on, until it reaches P10 at the end of the cycle. From P10, a new cycle 
begins (trajectory not  drawn) but it will eventually  reach P1 at the end of that cycle (or possibly at 
an earlier point of the cycle as long as P1 is covered at some stage). 

Now, we seek to find an alternative trajectory which can equally be as valid as the previous 
one described. For example, it can follow the same radial trajectory  as the previous one until a point 

– as it moves from P4 to P5 it stops at a point between these two points and that point is P7. From 
P7, the alternative trajectory  deviates from the previous one and the particle moves radially  inward 
to P6, stops there, moves radially outward, and instead of stopping at P7 it carries on beyond P7 and 
stops at P5 which was missed in its last radially outward movement from P4. From P5, it  moves to 
P8, P9 and then to P10. This alternative trajectory  covers the same distance and positions as the 

previous one described, albeit in a different  order. One can see that  many other alternative 
trajectories can be constructed in many different ways. But can these trajectories have the 
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appropriate speed profile that will satisfy the requirement in (13) which is necessary for constant 

time-averaged angular momentum over period T? Because the magnitude of the radial velocity, 

, strictly  speaking is non-determinate, the radial speed of the particle within one cycle of 

period T can be adjusted accordingly  to yield the desirable rρ profile except in the neighbourhoods 
of the two boundary singularity  points which pose a greater challenge. We now investigate further 

what happens at the two boundary singularity points. 
Since at r=L the particle has to stop in order to reverse the direction of its radial velocity, the 

time spent in the neighbourhood of  r=L at a strip with △r cannot be represented by (2πT△r)rρ; had 

it been represented by  this expression involving the factor of rρ, we will have the singularity point 
at r=L (since ρ(L)=0 ) with reversing infinite radial velocity there. Let the actual time spent  around 

r=L at  a strip with △r be represented by  (2πT△r)rρ′ where ρ′(r), the actual non-dimensional time 

density, is different from ρ(r), the idealised non-dimensional time density derived from the radial 

equation. We envisage the following variation of ρ′ from ρ near r=L. We call the neighbourhood  
near r=L the outer tail end. (A similar treatment can be given for the case of the neighbourhood near 

r=0, the inner tail end).
In Figure 5, the positions between P1 and P3 are only visited once by  the particle in one cycle. 

This corresponds to the least amount of time to be spent at  the outer tail end. For brevity, P3 is 
called B. B is used to reference both this point and its distance from r=0, and this naming 
convention, already used for L, will be used for other points as well in the following. The outer tail 

end is defined as the neighbourhood, B < r < L. We envisage that B is close to L and that before B,  

ρ′= ρ; and for r > B, ρ′ ≠ ρ. This means that away from the outer tail end (and away from the inner 

tail end at r=0), rρ=  rρ′. Within the outer tail end where r > B, rρ ≠ rρ′ but we maintain that the 

spin velocity is still a function of ρ, not ρ′. We also introduce L′ which is just slightly less than (or 

before) L for the following reason. Remember that at r=L the spin velocity also goes to infinity with 

ρ=0. If ρ′(L) ≠ 0, then we will incur a very  large, possibly infinite, angular momentum contribution 

from the neighbourhood of r=L. To prevent this happening, we have to insist that ρ′(L) = 0, i.e., the 

particle does not actually visit the point L at all as it stops at the point L′ before L. L′ is thus the 

furtherest point from r=0 which the particle does visit so that  ρ′(r>L′)=0. L′ is envisaged to be 
close to L. The points configuration at the outer tail end is given in Figure 6 below.
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Figure 6: The Outer Tail End (r>B) with Positions of B, B′, L′, L

We now configure the new ρ′ for B < r < L′ such that ρ′ at  the outer tail end satisfies the following 

three constraints: 
1. its continuity with ρ at B, 
2. the normalisation constraint, 
3. the angular momentum constraint.

Since the particle only visits the outer tail end once in a cycle, the △t in is 

accumulated through only  one visit. Taking the limit of △r/△t as △r and △t tends to 0, we have a 

radial speed profile for the particle at the outer tail end:

which is a function of r since ρ′ is a function of r. We now need to find a suitable radial speed 

profile at the outer tail end to yield ρ′ such that ρ′ satisfies the three constraints given above. Since 

the Schrödinger equation puts no constraint on the radial speed, in principle we have great freedom  
(in fact unlimited degrees of freedom) in choosing a suitable radial speed profile at the outer tail end 
and our attempt to find such a profile satisfying all the three constraints should be successful. Here, 
we illustrate this possibility and success by using one example which is one amongst many 
possibilities. Hence, this example should not be taken as definitive. 

In this example, the particle begins with zero radial speed at L, as in other acceptable 
possibilities. We model the radial speed profile within the outer tail end by using two parameters 
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while in other more elaborate possibilities many more parameters can be used. The radial speed is 
given by the equation of a simple harmonic motion where the acceleration is given by 

The two parameters are therefore ω and B′ where B′ is between B and L′. Remember that this 

equation applies only in the outer tail end; after the particle reaches B from L′, it will moves 
towards the centre with speed not determined by this equation (hence there is no complete cycle of 
the simple harmonic motion in the usual sense). After we apply the two boundary conditions at t = 
0, i.e., r=L′ and dr/dt = 0, we have

(The radial speed begins with zero at r=L′ and gains its maximum at r=B′.) Using these two 

relations and the expression for dr/dt in (14) above, ρ′ can be expressed as a function of r, with 

parameters B′, L′ and ω:

Or, one can write ρ′= ρ′(r, B′, L′, ω). We now consider the three constraints.

Firstly, given a value of B, since ρ(B) is known (as we have set a=1), the constraint  of the 

continuity between with ρ and ρ′ at B gives 

ρ(B) = ρ′(B, B′, L′, ω). 

This gives a relationship  between B, B′, L′ and ω. Strictly speaking, this constraint is not 

indispensable as an actual trajectory is possible with ρ(B) ≠ ρ′(B, B′, L′, ω) as long as the 
normalisation constraint and the angular momentum constraint are maintained.

Secondly, regarding the normalisation constraint, this requires 

Since ρ is known, the integral on the LHS is known and is a function of B.  Let its value be 

where (subscript t for tail) is the time to be spent  by the particle between B and L in the idealised 

case. is a function of B. The RHS corresponds to the same length of time but that time is spent 

between L′ and B in an actual case. This can be expressed, evaluating (15) at r=B, as 
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Since is a function of B , this is the second relationship between B, B′, L′ and ω.

Thirdly, regarding the angular momentum constraint, we recall that the ‘time angular 
momentum’ for the period T is

for the idealised case. Since away from the two tail ends ρ′= ρ, for the outer tail end in the present 

consideration, the same angular momentum will be contributed in the actual case as in the idealised 
case if 

where (2πrρ′)dr represents the infinitesimal non-dimensional time actually spent  in the infinitesimal 

strip represented by dr. Since the LHS and the RHS depend on B, and on the RHS ρ′= ρ′(r, B′, L′, 
ω), this angular momentum constraint yields the third relationship between B, B′, L′and ω.

Collecting the three constraints together, we have three relationships between the four 

parameters, B, B′, L′and ω. We are therefore free to choose one parameter, e.g., B, such that all the 

three constraints can be satisfied simultaneously. If we do away with the first constraint  which is not 

strictly necessary, then we have two free parameters and we may choose, for example, B and L′,  
such that they are very close to L, thus making the actual rρ′ almost identical to the idealised rρ.6 In 
this case, the probability of finding the actual particle at  a certain strip is virtually given by the 

idealised 2πrρ△r. If we use more parameters for the radial speed at the outer tail end than the 

present two parameters of  B′ and ω, more elaborate radial speed profiles can be constructed while 

satisfying the constraints for normalisation and angular momentum. 
The procedure for the outer tail end as described above can be similarly carried out for the 

inner tail end, with the difference that the radial speed at r=0 does not need to be zero. 

8.0   Determinism or Non-determinism?

If one insists on determinism, one could argue that parameters for the outer tail end such as B, B′, L′ 
and ω can be fixed (and similarly those parameters for the inner tail end), and that the trajectory 
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such as given in Figure 5 can also be fixed for each cycle (including fixed P1 to P10) so that the 
motion of the particle in each cycle is fixed and therefore deterministic. In fact, for the region away 
from the two tail ends, one can simplify the trajectory by having the particle travelling from one tail 
end directly to the other tail end without any interim stop and reversal of the direction of radial 
motion so that the cycle is covered by one sweep of radial motion, as opposed to multiple sweeps as 
given in Figure 5. In that case, the radial speed away from the tail ends are simply, explicitly and 
deterministically given by

It seems that if one is prepared to sacrifice everything for determinism, it is possible conceptually. 

Suarez [8], when considering nonlocal ‘realistic’ Leggett models wrote: 
The before-before experiment demonstrates that Nature works out the quantum correlations in a nonlocal 
and non-deterministic way. This means that the measurement outcomes (for instance A = +1 and B = −1, 
in the experiment ...) imply a true choice on the part of Nature, and are not determined by pre-existing 
properties the particles carry independent of the act of measurement. It is important to stress that to draw 
[...] these consequences one tacitly assumes the freedom of the experimenter. If one rejects this freedom 
one can explain the nonlocal correlations in a fully deterministic and local relativistic way by pictures like 
“Super-determinism” or “Many Worlds” ...  .  One can speak with Anton Zeilinger’s about “two freedoms”: 
The freedom of the experimenter implies the freedom on the part of Nature.

Super-determinism is always an option if one wishes to insist on determinism but that will involve 
the denial of one’s free will. This is echoed by John Bell [9] but also in a disapproving manner.

If there is no other option than the kind of determinism suggested above, then one has to 
accept it, however grudgingly. But, as we have seen above, there are unlimited number of options 

for the trajectory so that non-determinism is possible. The points, P3 to P10, can be chosen in an 
unlimited number of ways to create an infinite number of possible trajectories. These infinite 
number of possible trajectories can be accommodated because of the non-determinate nature of the 
radial speed. Also, it is not strictly necessary to assume that parameters for the tail ends such as  B, 

B′, L′ and ω (or even T) are fixed for every cycle; hence, these parameters can also be a source of 

non-determinacy. Since there is great capacity for non-determinacy of the particle’s motion even if 
one insists that the time-averaged angular momentum over period T has to be determinate with a 
certain value ( ), one is able to state that non-determinism is genuinely possible and one can 

believe that non-determinism is the most sensible option compared to super-determinism.
If one believes in non-determinism, then one wonders whether it is possible to use some kind 

of stochastic process to simulate the particle’s trajectory  such that the radial equation is satisfied for 
a certain period, T. However, if there is one stochastic process which can produce the correct 
simulation, one wonders if there may be other stochastic processes which can also produce the 

desirable simulation. If there are, then we do not know which particular stochastic process is closest 
to reality. And even if we can identify the process with the best simulation performance, one does 
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not really  know if the process represents what actually  happens with the particle in reality. Here, we 

may be very close to the limit of what we can know, if we are not already at the limit.  
 

9.0   Quantum Kinetic Energy, Quantum Potential Energy and Dark Energy

In section 2, the energy equation is written as

and the Total Quantum Energy (TQE) is defined as

where Quantum Kinetic Energy (QKE) is , with  which is the velocity 

on the S surface consisting of the spin velocity and the radial velocity. Quantum Potential Energy 
(QPE) is defined by the above relation. In the case being studied here, i.e., particle travelling in free 
space with constant translational velocity, the RHS of the last equation is equal to a positive 

constant (see eqn. (8)) so that TQE is positive and constant  over space and time. Since QKE can 

vary over a great  range, e.g., with very large near r=L, it is conceivable that in some positions 

QPE could be very small and even negative in order to maintain the above budget for the quantum 
kinetic and quantum potential energies. 

Some justification is necessary for splitting the Total Quantum Energy  into Quantum Kinetic 

Energy and Quantum Potential Energy in the above manner. We recall that if the particle is in 
Steady  Motion State (SMS), i.e., if (and therefore ) is constant respect to time (but is allowed 
to vary over space if that is the case), then the total energy of the particle,

is invariant over space and time, i.e., whatever time and wherever the particle happens to be at, it 

has the same total energy. Since at any point does not change in time and is therefore 

determinate at any time, if U at any point is also determinate at any time, then  at  any 

point is also determinate at any time.7 But since the motion on the S surface is non-determinate, the 
kinetic energy contribution from that motion on the S surface is also non-determinate. How can this 
non-determinate kinetic energy be represented in the above expression for the total energy of the 
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particle, given the fact that each of the three three terms is determinate? The non-determinate 

kinetic energy can be linked to one determinate term such that the determinate term is seen as a sum 
of the non-determinate kinetic energy and a corresponding (and complementary) non-determinate 
term. But which of the three terms should be linked to the non-determinate kinetic energy? Since 

is associated with non-determinate quantum mechanics, i.e., setting it to zero reduces the non-

determinate kinetic energy on the S surface to zero (see (16)) and reduces the system to the classical 
one (with the total energy involving and U only), it is highly reasonable to link the non-

determinate quantum kinetic energy  to the second term (with the factor ) which also becomes 

zero when is set to zero. Hence, the second term, the Total Quantum Energy which is 

determinate, is expressed as a sum of the the non-determinate Quantum Kinetic Energy 
(contribution from the motion on the S surface) and non-determinate Quantum Potential Energy.

The question of dark energy and the associated cosmological constant is perplexing; however, 
it has been connected with the ‘quantum potential’ which is called the Total Quantum Energy (TQE) 
in this paper [10-12]. From the perspective of this paper, one can see that the motion of the particle 
on the S surface gives rise to its spin which involves much Quantum Kinetic Energy (QKE). The 
sum of QKE and QPE, understood as the Total Quantum Energy (TQE) as explained above, gives 

us a better physical grasp of the total energy of the particle and could lead to some useful insight 
into the nature of dark energy. Without considering the TQE of a particle, this contribution to the 
total energy  of the particle is overlooked or becomes hidden. If we can take into consideration the 
spin related QKE and the QPE of all particles in the universe, it  may help to account for the 
mysterious dark energy. Further studies involving relativistic extension of the present study could 

be useful for understanding more about this possibility. However, it is highly probable that the main 
features of the spin motion and the energy  therein for the relativistic case have already been 
captured by the non-relativistic case studied in this paper.

10.0 The Electron in a Hydrogen Atom

The case studied above is for a free particle travelling with constant translational velocity while its 
velocity  on the S surface, being perpendicular to the translational velocity, is non-determinate and 

hence unpredictable. By prescribing the spin velocity ( ) on the S surface, the radial velocity, 

though non-determinate, is subject to an overall constraint – i.e., over a period T it has to satisfy  the 
radial equation – if ρ is to have the meaning of time averaged probability density  over the period 
and if the time averaged angular momentum is to be maintained constant over each cycle. Based on 
the understanding of the dynamics of this relatively uncomplicated case, we now consider the 

possible trajectories of the electron in a hydrogen atom where the translational velocity is no longer 
constant but varies in space. Using spherical co-ordinates and setting the potential U to be inversely 
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proportional to the distance to the centre, the solutions for the wave function of a hydrogen electron 

can be found in text books and a few of these solutions will be considered here to illustrate the 
possible trajectories. Before we examine these solutions and their possible trajectories, we briefly 
consider how one can use the energy equation (1) to arrive at the same solutions as those produced 
by the usual approach (as found in text books) which uses the time-independent Schrödinger 
equation as the energy equation.

10.1 The Energy of the Hydrogen Electron

In the above analysis of a particle travelling in free space, we have already used the energy equation 
to solve for R; the case of the electron in the hydrogen atom is more complicated because of the 
presence of varying potential in space. 

Again, taking the gradient of the energy equation (1), treating (and hence ) to be 

constant with respect to time only (hence Steady Motion State), the following equation in spherical 

coordinates, , expresses the constant total energy of the electron in space and time:

where the second term is the Total Quantum Energy and the third term is the potential, E is the total 

energy of the electron, and  is the mass of the electron. 

As before (see (5)), , where  is a position vector. If we set  where 

m is an integer, then  which means that the orbital angular momentum of the 

electron with respect to the θ=0 axis (normally  vertical) is constant and is (see more about this 

later in section 10.2).8 With

we express and substitute R into the energy equation (17). Using the above 

expression for and rearranging the reduced Planck constant and mass, the energy equation 

becomes
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Note that there is the explicit inclusion of the Total Quantum Energy which is hidden in the usual 
approach. Furthermore, the second term involves the modulus square of which is interpreted in 

this paper as , i.e., in this energy equation we have explicitly included the kinetic energy of the 

translational component of the velocity of the electron, but this translational component is also 
hidden in the usual text book approach where the time-independent Schrödinger equation is used as 
the energy equation. The other two terms are the potential ‘experienced’ by the electron and the 
total energy of the particle which are also found in the usual text book approach. Substituting

 into the above energy equation (where F and f are yet to be solved) separates the 

variables and yields two equations, one in θ and one in r (the radial equation).   is the 

spherical harmonics with integer parameters of m and l, and writing G = rF(r) the radial equation 
can be expressed as

Let us briefly compare the present approach with the usual text book approach.
In the usual text book approach, one begins with the Schrödinger equation, separates the 

spatial and time dependence by writing , where depends on the spatial 

position and  is the constant given by the time-independent Schrödinger equation:

 in this equation is the total energy of the electron. Whether this is identical to E in (18) 

remains to be seen. One separates the variables in this equation by writing 

and substitutes this expression into the time-independent Schrödinger equation. We know that 

 is the spherical harmonics with integer parameters of m and l, and writing  

the radial equation can be expressed as 

The spherical harmonics of the two approaches,  and , can easily be shown to 

be identical. Also, the two radial equations of the two approaches, (19) and (21), are exactly  of the 

same form so that  the allowable quantised energies for the usual approach, , are identical to those 

for the approach in this paper, E. Hence, the wave function solutions for these two approaches are 
identical, and the expression for E in (18) expresses faithfully the total energy of the electron and 
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gives a more detailed breakdown of the constituents of the total energy. For example, the 
translational component of the velocity of the electron, , which is determinate and unchanging in 
time while varying in space, appears explicitly in this energy equation while the usual text book 
approach (often following the Copenhagen interpretation of quantum mechanics) does not produce 
such a certainty for any velocity. Also, the Total Quantum Energy is given explicitly in (18) while it 
is implicit in the usual approach (see (20)). For these reasons, the present approach gives us a closer 
and more detailed feel to the dynamics of the electron.

Just in case the reader thinks the approach taken here is no different from the pilot wave 
approach, we must point out the fundamental difference between the two. While both approaches 

have the same time-independent determinate translational velocity, (which is proportional to 

and therefore in a direction perpendicular to the S surface which is also a surface in this case), in 

the present approach the particle has the additional non-determinate surfing motion on the 

surface while the pilot wave approach leaves out this vital non-determinate component of the total 

velocity. The pilot wave approach moves one step beyond classical mechanics by allowing the Total 
Quantum Energy (usually called quantum potential) to influence the velocity component, ; 

however, it does not include the non-determinate surfing motion on the  (or S) surface represented 

by the Quantum Kinetic Energy which is accommodated in the Total Quantum Energy. In the 

interpretation of quantum mechanics presented in this paper (and the previous paper), it is the 
availability of the Total Quantum Energy for 

1. influencing the determinate (since it is sensitive to TQE) and 

2. accommodating the non-determinate surfing motion on the S surface (by providing the 
QKE) 

that make quantum mechanics truly distinct from classical mechanics. The pilot wave theory has 
element (1) but not element (2). In sum, we have distinguished the present approach for the 
interpretation of quantum mechanics from the pilot wave approach and the text book approach 
which often follows the trend of the orthodox or Copenhagen interpretation. 

10.2 Trajectories and Momenta of the Hydrogen Electron

We now consider the possible trajectories and momenta of the electron for the second excited state 

corresponding to n=3. For , its modulus can be expressed as

where C is a normalisation constant and  is the Bohr radius. If we use as the length unit and r 

is measured with reference to this unit, the contour of constant  is given by
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 Figure 7: Contours of  on a (r, θ) plane (or a surface) given by /C = 0.7 to 2.3 (interval 
0.2) and 2.4 (innermost contour shown), and their negative counterparts (The upper vertical axis 

corresponds to θ = 0)

A ρ contour coincides with the corresponding R contour but with a different constant. The right half 

of the above diagram corresponds to = 0 and the left  half corresponds to = π. We have already 

stated that a surface is also a S surface, is perpendicular to the S or surface,  is  

the translational velocity; hence, the electron’s translational velocity is in a direction perpendicular 
to the surface (into or out of the page). Crucially, in addition there is the additional non-

determinate surfing velocity on the surface which accounts for the spin of the electron (as 

indicated in the free particle case, also see below). Before the non-determinate surfing motion is 
considered, the angular momentum of the translational velocity deserves close attention. 

Considering this angular momentum for the general case of m (m=1 for ), 

where is the unit vector in the direction of increasing θ perpendicular to , and the choice of ‘+’ 

or ‘-’ depends on the sign of m. Note that the magnitude and direction of this angular momentum 
varies with the position vector . And its projection on to the vertical axis is  which is constant  

for a given m. In quantum mechanics text books, is the component of the orbital angular 
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momentum in the z-direction, , while the the orbital angular momentum vector has the fixed 

magnitude, (where l is the orbital angular momentum quantum number), but whose 

direction cannot be ascertained uniquely and therefore is said to lie on a cone. There are some 
significant distinctions between the present approach and the text book approach to angular 
momentum even though both affirm that  the projection of the angular momentum on to the vertical 
axis is . While the direction of the angular momentum cannot be uniquely  determined in the text 

book approach, in the present approach the direction of the angular momentum for the translational 
velocity  can be uniquely determined and varies with the motion of the particle. While the 
magnitude of the angular momentum is fixed in the text book approach, in the present approach the 
magnitude of the angular momentum also varies with the motion of the particle. It  is remarkable 

that in terms of the component of the angular momentum in the vertical direction, both approaches 
produce the same value, . However, it  has to be said that the angular momentum considered in 

the present approach uses the normal definition of angular momentum which involves a definite 
velocity  and a definite position of the particle in relation to a reference point; hence it deserves 

serious consideration. This approach produces the horizontal component of the angular momentum 

vector: . And it can be shown that, for a given θ, the probability density of  is 

which is a function of θ.9  For small θ,  is very large, and  is very large in magnitude but the 

probability  density  for  with small θ is very small. This sense of the horizontal component of the 

angular momentum vector and its probability density are not dealt with in the usual text book 
approach.

Another distinction between the text book approach and the present approach is that in the 
latter, apart from the contribution of the translational velocity  to the angular momentum of the 
particle, the additional non-determinate surfing motion on the surface is included explicitly  to 

account for the spin angular momentum of the particle (as indicated by  the free particle case, see 
also below). Since the Schrödinger equation has nothing to say about the direction of the particle’s 

motion on the surface (see [1]) and it has very little to say regarding the kinetic energy of the 

surfing motion on the surface, on its own it has nothing to say about the spin of the particle. This 
important fact and the analysis above regarding orbital angular momentum strongly suggests that 

the Schrödinger equation can only account for the (orbital) angular momentum contribution from 
the translational velocity which is a velocity  identified in the pilot wave theory and in this paper. 
That is why in the text book approach, a spin term which is alien to the Schrödinger equation has to 
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be added to the orbital angular momentum as derived from the Schrödinger equation to express the 

total angular momentum but  the mechanism for the generation of the spin represented by this added 
term is not explained. The present approach overcomes the limitation of the Schrödinger equation 
by considering the spin-producing surfing motion on the surface as part of the total motion, and 

its contribution to the total angular momentum will be included explicitly with dynamical details 
(see below). This alerts us to the need to look at other cases where, in the usual approach, the 
contributions from the spin-producing surfing motion on the  surface towards other calculations 

of some important  quantities also are not captured by the Schrödinger equation. In these cases, it is 
very probable that additional terms need to be added to account for the contribution from the spin-
producing surfing motion, if this has not already been done. 

A brief comparison with the pilot wave theory is also in order. In that theory, the non-

determinate surfing motion on the surface is also omitted so that the electron in that theory moves 

according to a fixed determined trajectory  which has a constant r and a constant θ. This means that 

the electron returns to the same position in a determined fashion after completing one orbit in . 

For the electron to cover a different trajectory, it must have a different initial position. However, in 
the present approach, the electron beginning with a certain initial position can vary  its r and θ with a 

significant degree of freedom through its surfing motion on the surface while orbiting around the 

vertical axis. This degree of freedom is synonymous with its non-determinacy.  

Regarding the non-determinate surfing motion on the surface, based on the analysis so far 

in this paper, we may also suggest that on that surface the electron has (i) a velocity component 

parallel to the ρ contour with the speed (where = 1/2 is the spin number associated with 

the electron) and at the same time (ii) a velocity component on the same surface perpendicular to 
the ρ contour with an indeterminate speed. One may also suggest that this indeterminate speed 
satisfies some overall constraint within a time period of T, and the constraint is that the ‘non-

dimensional time’ density distribution for the period T – evaluated at  suitably small neighbourhoods 
for the plotting of this distribution10 – which is equivalent to the time averaged probability density 
for the period T,  conforms to the ρ pattern. That is, within the period T, in the neighbourhood of 
highest ρ (at r = 6 and θ = π/4, 3π/4, 5π/4, 7π/4) we expect to see the electron for the longest 
accumulated time (e.g., through a slower speed or/and many visits), and in the neighbourhood of 

lowest ρ, we expect to see the electron for the shortest  accumulated time (e.g., through a fast  speed 
or/and minimum number of visit). But what happens in a neighbourhood around ρ = 0, which is 
called a nodal neighbourhood. For example, what happens near the vertical and horizontal axes 
where ρ = 0? This question is of a similar nature to the one considered in section 7.0 where the 
challenge of singularities at  the two tail ends of the free particle case is discussed and a rigorous 
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attempt has been made to deal with it. A similar answer, but  with philosophical underpinning, will 

be given later. In the meantime, we deal with the question of the electron passing from one quadrant 
to another. For the electron to move from the right upper (or lower) quadrant to the corresponding 
left upper (or lower) quadrant is not a problem as the electron circulates around the vertical axis 
with constant orbital angular momentum to reach the left quadrant. However, does the electron 
move from the upper two quadrants to the lower two quadrants (or vice versa) by crossing the 

horizontal axis of ρ = 0? 
This paper suggests that the electron does not cross the horizontal axis of ρ = 0. That is, if the 

electron is in the upper quadrants, it will remain in the upper quadrants unless it receives energy or 
loses energy  to move to another orbital. There are two reasons for this suggestion. Firstly, the speed 
of the electron along the ρ = 0 contour will reach infinity  (as in the case of the free particle in 

section 7). This can be seen in the expression of the magnitude of that speed which is proportional 

to  where 

where , the Bohr radius, is used as the unit length and is the unit vector in the direction of the 

position vector and is the unit vector in the direction of increasing θ. At the horizontal axis where 

θ=π/2, and θ=3π/2, the component will go to infinity and so will the speed of the electron along 

the axis. This can be avoided if the electron does not  cross the horizontal axis. Secondly, the 
electron while moving in the top right quadrant, for example, will have a certain sense of rotation  

(i.e., spin) with respect to the axis which goes through the maximum ρ at r = 6 and θ = π/4 (the axis 
is perpendicular to the surface). Say, it has an anti-clockwise sense of rotation. If the electron is 

to move to the lower right quadrant, it should maintain that sense of rotation. But this means that 
the electron does not only  incur infinite speed at the horizontal axis, but it incurs infinite speed with 
opposite directions at the same time! Hence, this cannot be a physical scenario and should be 
rejected. But in this case how can the ρ contours in the lower quadrants be accounted for? 

These contours in the lower quadrants can be accounted for if they are interpreted as 

corresponding to another occasion where the electron happens to be there, and while the electron is 
in the upper quadrants, ρ=0 in the lower quadrants. Whether the electron will land in the upper or 
lower quadrants will depend on the specific situation in which it enters this orbit  after a change in 
its energy. But this remaining in the upper or lower quadrants raises the question of the meaning of 
ρ, the integration of which over all space should be equal to one according to the normalisation 

constraint. It seems that  setting ρ=0 in the lower quadrants will only yield a half as the integrated 
value of ρ. However, this question can be dissolved if we retain the meaning of ρ as adopted in the 
present paper, which is the time averaged probability density over a period T. If the electron spends 
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the whole period T in the upper quadrants, then the time averaged probability  density over the 

period T integrated throughout the upper quadrants (which are understood in terms of three 
dimensional space) will be one. Or equivalently and evidently, the non-dimensional time density 
over the period T integrated over the whole upper three dimensional space will be one. Practically, 
this amounts scaling up the original ρ by a factor of two in the quadrants where the electron is 
found.

If the electron does not cross the horizontal axis and remains in the upper quadrants (or 
equivalently the lower quadrants), it still incurs very  high speed along the contours close to the 

vertical and horizontal axes as the term tends to infinity as the electron approaches 

the axes. As in section 7, we may suggest that the electron does not in fact  reach the axes and its  

velocity  component, which is perpendicular to the ρ contour but whose magnitude is non-

determinate,11 reaches zero at  some point as the electron approaches any of the axes and pulls away 
from the axis with non-zero . The treatment is therefore analogous to the one given in section 7 

for the case of a particle in free space which also deals with the question of the satisfaction of the  
normalisation constraint and the maintenance of angular momentum in the critical neighbourhoods 
of the tail ends. Such similar questions in the present case of the electron in the hydrogen atom can 
be dealt with in a similar manner and it is not necessary to go through the details here since at the 

end of the day we do not know what parameters are actually active in those critical neighbourhoods, 
as discussed in section 7. In addition to these critical neighbourhoods near the axes, there is the 
region of small or vanishing ρ when r is large. Surely, the electrons cannot visit all the 
neighbourhoods with large r within a finite period of T so that  the only alternative is that there has 
to be a critical cut-off point at a certain low value of ρ where  will reach zero and the electron 

will pull back towards the point of maximum ρ near to the centre of the atom, rendering  

beyond the critical cut-off ρ contour. The above suggested motion of the electron in all these critical 

neighbourhoods with small ρ implies that the actual time averaged probability density in these 

neighbourhoods, ρ′ (or equivalently the non-dimensional time density), is different from the 
idealised ρ calculated from the Schrödinger equation. This implication requires some philosophical 

discussion and explanation.

10.2.1 Knowability of the Electron’s Trajectories

It has been pointed out in the previous paper that the Schrödinger equation does not actually put any 
constraint on the motion of the particle (electron in this case) on the S surface (the surface in this 

case). The traditional meaning of ρ as the density of the probability of finding the particle in an 

infinitesimal neighbourhood is an interpretation which is not  strictly  required by the Schrödinger 
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equation. In an alternative and possible universe where the Schrödinger equation is still valid, the 
surfing motion of a particle on the S surface may pay no respect to that interpretation of ρ so that the 
actual time averaged probability density for the motion over any period T bears no resemblance to 
the ρ pattern at all even though that ρ pattern is derived from the Schrödinger equation. In that 

universe, the spin value of a particle will not be constant; indeed it could be wildly unpredictable 
giving rise to a chaotic universe where the chemical elements will lose their spin-dependent 
properties as we know them in this universe. However, we are not suggesting that this present 
universe is that kind of chaotic universe which is not  life sustaining and therefore uninhabitable. 

Nevertheless, the point is that the idealised ρ does not strictly  govern the motion of the electron on 
the surface. And if in a certain very brief period of time in period T the electron ventures into a 

neighbourhood of ρ = 0 (a nodal neighbourhood) and produces a ρ′ (the actual time averaged 
probability  density) that deviates from the ρ pattern, while for the rest  of the time in period T the 

electron’s motion away from those nodal neighbourhoods produces a ρ′ that closely follows the ρ 

pattern, the Schrödinger equation would have voiced no complaint about such motion producing 

such ρ′ in the nodal neighbourhoods. Here, we are running into the philosophical distinction 

between idealism and realism. In our mind with our mathematical ideas of perfect mathematical 
objects in perfect form, we may like the motion of the electron to follow strictly a pattern which 
will reproduce the idealised ρ pattern in our mind, in which case the electron will incur infinite 
speed at ρ = 0 along the two axes. If we think that our mathematical ideas of perfect mathematical 
objects in perfect form represent reality  in the real world, then we are taking the philosophical 

position of ‘realism’ (absolute objectivity). However, if we say  our mathematical ideas of perfect 
mathematical objects in perfect form are merely objects in our mental world which do not 
correspond to the reality in the world, then we are adopting the position of ‘epistemological 
idealism’ (strong subjectivity [13]). The extreme form of idealism (absolute subjectivity) will be 
very pessimistic about the capacity of our perfect mathematical objects to correspond to reality. 

However, the philosophical position of critical realism, taking the middle way, allows the 
correspondence between our perfect mathematical objects and the reality to a good but not perfect 
extent. With ‘critical realism’, one can say  this: using our mathematical ideas and objects, to a good 
extent and for most of the time we can have a reasonable knowledge of the real behaviour of the 
electron, but we cannot describe or deduce the total real behaviour of the electron with certainty all 

of the time, i.e., we cannot attain absolute knowledge of reality. When the term ‘a reasonable 
knowledge of the real behaviour of the electron’ is used in the last sentence, it  refers to the 
knowledge of the behaviour of the electron away from the nodal areas and even this knowledge has 
to be qualified as reasonable, as opposed to total knowledge, because we do not actually know the 
non-determinate motion on the surface at  any particular instant (even away from the nodal 

neighbourhoods) since we only  know the electron’s time averaged motion on that surface (which is 
the motion along the ρ contours since averages to zero in the period T or over multiple T’s). 
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With this modest position of critical realism, we can make sense of the unknowability  of different 

aspects of the electron’s motion while affirming what we can know about its average behaviour in 
regions of our interest. 

10.3 Spin of the Hydrogen Electron

In the case of , it is tempting to calculate the time averaged angular momentum (spin) 

produced by the electron’s circulating motion over the period T around the axis perpendicular to the 
surface and going through the point of maximum ρ. Apart from the mathematical complexity 

involved in the calculation since the ρ contours are not concentric circles, there is another reason for 

not doing this calculation – as the electron orbits around the vertical axis in period T, whatever time 
averaged spin angular momentum is generated within a narrow range of a certain , the time 

averaged spin angular momentum over the whole period T integrated over the range of 2π of is 

zero. This is so because whatever time averaged spin is generated over T in the neighourhood of a 

certain , it is cancelled by the time averaged spin generated at the neighourhood of π + . Hence, 

an orbital with non-zero m, i.e., non-zero orbital angular momentum around the vertical axis, will 
not generate any net spin over the period T. But how about the case when m = 0?

Of particular interest is the case of  (the ground state):

where the Bohr radius is used as the unit length. The ρ contours are circular and centred at the 

origin. Since , the translational velocity  of the electron is zero, the electron is not 

orbiting around any axis but its circulating motion along the ρ contours creates a time averaged spin 
angular momentum over a period T around an axis which runs through the origin and has no 
preferred direction while the non-determinate velocity component perpendicular to the ρ contours  
(and hence going through the origin) moves the electron to visit different  ρ contours but contributes 
nothing to the angular momentum. The direction of the spin axis, around which the circulating 

motion along the ρ contours happens, depends on the situation in which the electron entered the 
orbit and any of its interaction with a magnetic field while in that orbit (see the Stern-Gerlach 
experiment later).
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Figure 8: , ,  ρ = 0.25 to 0.1 (interval: -0.05), and ρ = 0.01.

To calculate the time averaged spin angular momentum over a period T, we use the idealised ρ 

pattern, acknowledging that the electron will not  visit  the outer ρ contours with very small ρ so that 
the idealised angular momentum based on the idealised ρ pattern is a very good approximation to 
the actual time averaged spin angular momentum. 

The last integral can be integrated by parts to yield

The last two lines of integration are quite general in that they do not require explicit details of ρ. 

However, to evaluate the integral, we need the explicit values of ρ at infinite r and at  r=0. In this 
case, ρ=0 at infinite r and ρ is finite at r=0 yield the integral value to be

where the normalisation constraint has been used. Since the value for the electron is 1/2 (or 

-1/2),  the spin angular momentum has the expected value for an electron. 

Since has no dependence on or θ, = , one can substitute for   

in the time independent Schrödinger equation (20) and divide by the common factor of  , 
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The first term is the Total Quantum Energy and the second term is the potential energy. There is no 

kinetic energy in the translational velocity  since this velocity component in this case is zero (as 
m=0). Here, we see that the TQE is a real entity  whose magnitude increases as r tends to zero to 
balance the very large negative potential energy of the electron. Similar statements can be made for 
other orbits. For orbits with non-zero l and m, the more general energy equation (18) also 

involving the TQE term will be satisfied.
It is worth pointing out that the spin velocity in the case has constant magnitude: 

For , again using the Bohr radius as the unit length,

where A is the normalisation constant. At r=1.9 and 7.1, there are two nodal contours (ρ=0). At 

these nodal contours, the magnitude of the spin velocity 

will reach infinity. It is therefore suggested that there are three possible circular sections of motion 

for the electron which are divided by  the two nodal contours such that the electron cannot cross a 
nodal contour to reach a neighbouring section. 

Figure 9:  as a function of r
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Which section the electron is in depends on the specific situation in which it  enters this orbit as a 

result of energy  change; different scenarios will lead to the electron entering different sections of 
the orbit. If there is an equal chance for the electron to land in any of the three sections, then the 
higher values of ρ in the inner section do not necessarily  means that the electron will land in that 
section more frequently  than the other two. If we take ρ as the time averaged probability  density 
over the period T during which the electron stays within the same section of the orbit (see 

analogously the case of  above where the electron is confined to the upper or lower quadrants 

only), then the ρ value in each section has to be scaled up by a factor to  to satisfy the 

normalisation constraint which is applied independently on each section. Since  is not affected 

by this scaling, the magnitude of the spin velocity in each section is not affected. 
Even if the electron’s motion is confined to only one particular section, in each case its spin 

angular momentum will be the same (  which is for an electron) as the integral for this 

momentum

will yield the same value when evaluated with these three pairs of limits, (0, 1.9), (1.9 to 7.1), (7.1 

to ), since the first term on the RHS will vanish and the second term is due to the 

normalisation constraint. This result for can be generalised to the  cases where there will 

be n circular sections of motion and the electron’s spin for each section will have the same correct 

value. Again, as seen in the expression for the wave function, there is no preferred direction for the 
spin axis which may depend on the situation in which the electron entered the orbit and any 
interaction with a magnetic field.

11.0 The Electron’s Spin in the Stern-Gerlach Experiment

The above result is not only significant for hydrogen but it is also illuminating in understanding the 
Stern-Gerlach experiment where the silver atom was used. Silver has 47 electrons and they are 
spread over different orbitals of different energies. We need to analyse its orbital angular 

momentum and its spin angular momentum both of which can have effect in the Stern-Gerlach 
experiment. Firstly, we analyse their orbital angular momentum. The electrons in the orbitals 1s, 2s, 
3s, 4s and 5s have zero orbital angular momentum since m=0. The electrons in the orbits belonging 
to 2p, 3p and 4p have m = -1, 0, 1 where m=0 again produces zero orbital angular momentum, and 
m = -1 and 1 with their opposite orbital angular momenta cancel out one another so that these orbits 

also produce zero net orbital angular momentum. Similarly, the electrons in the orbits belonging to 
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3d and 4d with m = -2, -1, 0, 1, 2 also produce zero net orbital angular momentum. Hence, all 47 

electrons produces zero orbital angular momentum so that the only angular momentum active in the 
Stern Gerlach experiment is the spin angular momentum of the electrons which warrants the 
following analysis. 46 of the 47 electrons (i.e., not counting the one in 5s) are in orbitals each of 
which has a pair of electrons of opposite spin signs so that even for those orbitals with m=0, the 
electrons there cannot yield any  net spin. However, for the 5s electron, m=0 and the electron is 

unpaired so that it  can generate spin angular momentum of  in a manner similar to the electron 

in the orbit of the hydrogen atom as indicated above, with five sections of possible motion. 

Even though for the electron in the silver atom has a somewhat different form to the one for 

hydrogen, the calculation of the spin angular momentum does not depend on the explicit  form of  

, as it  only  depends on the values of at the limits in evaluating the angular momentum 

integral, and those values are the same at the nodal limits and the centre in both cases of hydrogen 
and silver – zero. This result also applies to other cases and explains the ubiquitous nature of the 
constancy of spin of electrons (and indeed other particles), giving some support to the credibility of 
the interpretation of quantum mechanics proposed in this paper and the previous paper.

Hence, we can conclude that the magnitude of the net angular momentum of the 47 electrons 
of the silver atom is still the same as that of the single electron of  the hydrogen case, which is 

 (Incidentally, an electron travelling in free space also has the same spin value, as given in 

section 4.) Again, there is no preferred direction for the spin axis which may depend on the situation 
in which the electron entered the orbit. As the silver atom enters the magnetic field area, the spin 
axis is open to adjustment and is therefore aligned to the direction of the magnetic field so that the 
up or down deflection can take place with greater efficiency. To sum up, it is the unpaired 5s 

electron in the silver atom which effectively  generates the spin angular momentum which is 
captured in the Stern-Gerlach experiment. 

Incidentally, another atom with an unpaired electron in an orbit where m=0 will also serve 
well in the Stern-Gerlach experiment, e.g., copper has 29 electrons and 28 of them together 
produces zero orbital angular momentum and zero spin angular momentum while the other electron, 

in the 4s orbital, has m=0 and is unpaired so that it  can yield spin angular momentum and can be 
active in the Stern-Gerlach experiment. Similarly, the unpaired electron in the 4s orbit of potassium 
can also be active in that experiment. 

In this paper the interpretation of the mechanism for the generation of non-zero electron spin 
requires that the electron is unpaired in an orbit with m=0. It  may be useful to experiment with an 

unpaired electron and then a pair of electrons in the same non-zero m orbit in the following manner 
to verify  that such electrons cannot produce non-zero net spin over a period of T. For the unpaired 
electron in a non-zero m orbit, the average total angular momentum vector over the period T can be 
written as  where the first term is the time averaged orbital angular momentum vector 
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and the second term is the time averaged spin angular momentum vector. Suppose the net or time 

averaged spin angular momentum vector is non-zero over a period of T. When the second electron 
is added to fill the orbit, the average total angular momentum of the two electrons over the period T 
is

If the time averaged spin angular momentum vector is indeed non-zero, then . However, if 

experiments show that , then the supposition is wrong and the time averaged spin angular 

momentum vector is indeed zero, as suggested in this paper. 
It will also be interesting to see if any of the electrons responsible for interacting with the 

magnetic field in the Stern-Gerlach experiments performed so far lies in an orbit  with m not equal to 
zero. The paper suggests that T is so short that a typical experimental timescale is greater than T so 
that electrons in orbit with non-zero m will not produce net spin. 

The cases of and for the hydrogen electron will be briefly presented in Appendix B.

12.0 Conclusion

Philosophically, a theory  cannot be proved to be correct in an absolute sense. However, a theory’s 
truthfulness can be assessed by its internal conceptual coherence and its correspondence to 

experimental reality. This paper and the previous paper suggest a distinctive theoretical 
interpretation of quantum mechanics. It is also true that this theoretical interpretation cannot be 
proved to be correct in an absolute sense. However, we ought to assess it  by  the two criteria given 
above: internal coherence and correspondence to experimental reality. Firstly, we assess its internal 
conceptual coherence. 

Compared to the Copenhagen Interpretation, it does not assume that a particle does not  have 
an unambiguous position and momentum; rather, the whole interpretation is based on the assertion 
that a particle has a definite position and a definite momentum at any instant even when such 
properties are not measured. It does not require a particle to be in a superposition of states at a given 
instant. Rather, it  sees such a hypothetical superposition of states (e.g., positions) with their 

corresponding probability  densities as a compression of the history of the particle’s states over 
period T into a single hypothetical instant by means of averaging the time varying probability 
densities of the states over the period T. This paper suggests that the particle possesses all the states 
it traverses in time within the period T, not in a single instant. Its introduction of time-averaged 
probability  density, and the equivalent ‘non-dimensional time’ density, thus makes sense of the 

meaning of ρ in a slightly  different manner to the one given by Born’s rule. It is true that  given any 
random instant within T,  the probability of finding the particle in a certain neighbourhood is ρ, and 
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in this sense ρ in the present interpretation still has an almost identical meaning to the one in Born’s 

rule. However, we insist  that it is precisely because ρ has the meaning as given in the present 
interpretation – i.e., in relation to a period T – that it can have the usual meaning as found in Born’s 
rule, i.e., for a single instant. That is, the meaning of ρ as given in the present interpretation is more 
fundamental than the one given in Born’s rule. And this meaning of ρ has served well the purpose of 
understanding spin in the free particle case and the cases of the hydrogen electron and silver 

electron (see later in relation to verification by experiment). In terms of comprehending the physical 
reality  that we have in this universe, the assertion of unambiguous position and momentum makes 
more conceptual sense (or common sense) than the Copenhagen Interpretation. It avoids such 
paradox as the Schrödinger’s cat and does not introduce any new paradox, as far as one can see. 

Compared to the pilot wave theory, the present theoretical interpretation does not require the 
universe to be deterministic. The pilot wave theory only has one velocity component for the particle 
(called the translational velocity in this paper), the improved versions of this theory by Salesi, 
Recami and Esposito [4-6] have two velocity components. However, the present theoretical 
interpretation employs the full three dimensions of the particle’s velocity and the three velocity 
components form a tidy orthogonal set. While the translational velocity is deterministic, the motion 
produced by the other two components lying on a S surface is non-deterministic. These two velocity 
components can be structured in vastly different ways in different universes where the Schrödinger 
equation still holds, with some of these universes being extremely chaotic and uninhabitable, e.g., 
the spin of the particle could be unpredictable. The present theoretical interpretation suggests that in 
our universe, one of the two components of the velocity on the S surface is also deterministic – the 
spin velocity parallel to a ρ contour whose magnitude is proportional to the spin number 
corresponding to the kind of particle in question. Given that the direction (and magnitude) of the 
spin velocity is deterministic, it follows that the direction of the third velocity component is also 
deterministic, i.e., it has to lie on the S surface and is perpendicular to the spin velocity. However, 
because of the magnitude of this third velocity component is indeterminate, it produces the 
fundamental non-deterministic nature of our universe. The magnitude is indeterminate in the sense 
that even if we know all the laws governing particle motions in this universe and even if we know 
all the history of the trajectories and momenta of all particles in the universe from the beginning of 
time until the present moment, there is not sufficient information for us to know any future motion 
of any particle. Conceptually, is this a problem? Einstein would think that it is a problem because he 
liked to see deterministic laws governing the whole of the universe (‘God does not play dice’). 
However, conceptually the non-deterministic nature of our universe, as proposed by the present 
theoretical interpretation, makes sense since it asserts that the universe has a high degree of 
regularity through the two deterministic velocity components but it also has a significant degree of 
freedom through the non-determinate magnitude of the third velocity component. Therefore, 
conceptually it has an elegant balance between regularity on one hand and spontaneous freedom on 
the other hand such that the universe is not like a clock, nor is it so free that it becomes chaotic and 
uninhabitable. 
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In light of the above comparisons with the Copenhagen Interpretation and pilot wave theory, 

it can be argued that the present theoretical interpretation reaps the best of both interpretations: (i) 
the non-determinism of the Copenhagen Interpretation and (ii) the reality of the particles with their 

definite positions and momenta at all times of the pilot wave theory. However, the present 
theoretical interpretation avoids the shortcomings of both  interpretations which can be expressed as 
the converse of the last sentence: (ii) the lack of the reality of the particles with their definite 
positions and momenta in the Copenhagen Interpretation and (ii) the lack of spontaneous freedom 
in the pilot  wave theory. Therefore, according to these comparisons from the conceptual 

perspective, the present theoretical interpretation deserves serious consideration.
Secondly, we assess the present theoretical interpretation with respect to experimental reality. 

Experiments have shown the ubiquitous constancy of a particle’s spin but there is no serious attempt 
to explain the origin of this spin, except Hestenes [2-3] and those who follow his idea (but see the 
differences between his approach and the present approach later). However, this paper has shown 
that 

(i) in the case of free particle, 
(ii) in the case of the hydrogen electron in  orbits, 
(iii) in the case of the 5s silver electron in the Stern-Gerlach experiment and  
(iv) in the cases of other electrons of other elements in  orbits which can be similarly 

tested as the silver electron in the Stern-Gerlach experiment, 
the non-determinate surfing motion on the S surface as described in this paper – i.e., with the 
prescribed spin velocity and with the time spent at different portions of its trajectory mimicking the 
ρ pattern according to Born’s rule (as interpreted in the sense given in this paper) – will produce the 
observed spin angular momentum (the cases of with non-zero l are yet to be studied). The 
form of the spin velocity is crucial in obtaining this remarkable result where the spin number is seen 
as a constant for the particle, and where the explicit expression for ρ is not necessary except for 
evaluating at the centre or the nodal ρ boundary contours which invariably and conveniently 

gives the value of zero such that the normalisation constraint ensures that the correct spin value is 
produced. Hence, the theoretical interpretation gives a rigorous and arguably elegant explanation for 
the ubiquitous constancy of a particle’s spin. However, it cautions that for non-zero m, i.e., with 
non-zero orbital angular momentum about the vertical axis, because the spin vector is in the 
direction of the particle’s translational velocity, the time averaged spin over the period T (involving 
the completion of at least one orbit or many orbits) will be zero while its instantaneous value will be 
non-zero. 

Both the pilot wave approach and the text book approach cater for spin not by  including the 
surfing motion on the S surface in addition to their use of the Schrödinger equation; rather, they 
cater for spin by making the wave function a complex-valued vector and by adding a spin term to 
the Schrödinger equation. The spin term does not give us any  understanding of the origin or 
generation of the spin; it  merely  represents its effect in interaction with magnetic field. However, 
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the present approach gives details of the origin of particle spin by studying intently the surfing 

motion on the S surface. Hestenes [1-2] and those who followed his idea, e.g., Salesi, Recami and 
Esposito [4-6], had suggested the link between a circulatory motion of a particle and its spin. 
However, in dealing with a free electron in the relativistic case, Hestenes limited his study by 
looking at the mean motion in the following way:

we define the zitter mean as an average over the free particle zitter period that keeps the zitter center 
velocity v and the spin vector ... fixed. ... This approximation ignores variations in zitter radius and mass 
over a zitter period.  ([2], p. 12) 

He ignored the radial motion on the S surface by taking a certain time average which yields a fixed 

radius for the circulatory  motion. This amounts to studying a deterministic system where the 
trajectory of the particle has a constant curvature. This does not do justice to the inherently non-
deterministic nature of the particle’s surfing motion on the S surface so that it  does not give a 
detailed account of the non-deterministic mechanism for the generation of spin. Those who 
followed his suggestion took an explicitly deterministic approach and therefore did not succeed in 

accounting for the generation of particle spin even though they helpfully suggested an expression 
for the spin velocity which is generalised in this paper. 

Lastly, this paper suggests, albeit in a tentative manner, a possible explanation for some of the 
dark energy in the universe still to be accounted for. The surfing motion on the S surface with its 
Quantum Kinetic Energy and its associated Quantum Potential Energy, which together constitute 

the Total Quantum Energy (usually called the quantum potential), could be a possible candidate for 
such an account.

In assessing the present theoretical interpretation, we have looked at its conceptual coherence 
and its correspondence to experimental results. In terms of conceptual coherence, the present 
interpretation incorporates the strength of the Copenhagen Interpretation – non-determinacy – and 

the strength of the pilot wave theory – unambiguous position and momentum of a particle at any 
time. Conversely, it also avoids their weaknesses: ambiguous position and momentum of the 
Copenhagen Interpretation; determinism of the pilot wave theory. In terms of explanatory  value for 
observed results from experiments in relation to spin, the present interpretation provides an explicit 
explanation for the origin and generation of spin of different  particles while the Copenhagen 

Interpretation and the pilot wave theory  manage to represent the effect of spin by adding a spin term 
to the Schrödinger equation but without giving a detailed account of the origin and generation of 
spins of particles. The present interpretation also suggests its potential for accounting for some of 
the dark energy  in the universe. In sum, in view of its conceptual coherence and its robustness in 
explaining the origin of particle spins, it can be argued that the present theoretical interpretation has 

good potential for corresponding to reality (in the sense of critical realism) and deserves further 
attention and study.

We now look at the nature of the Schrödinger equation and the underlying assumptions which 
may have been implicitly operating behind the awareness of quantum physicists. This paper 
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suggests that the Schrödinger equation is a budget equation giving an overall bulk constraint over a 

period of a particle’s motion. Hence, it cannot describe the instantaneous properties of particles, 
e.g., position and momentum; it can only give the probability of a particle having a certain position 
and momentum. However, it can only do so reliably if the surfing motion on the S surface co-
operates to yield those probabilities. If the surfing motion on the S surface is chaotic, ρ will lose its 
usual meaning as the probability  density of finding a particle in a certain neighbourhood, and the 

ability  of the Schrödinger equation to yield probabilities of position and momentum of a particle 
will also be lost. That is, for the Schrödinger equation to serve its normal expected functions 
amongst the physicist community, it has to be assumed that the surfing motion produces a time 
averaged probability  density  over a period of T which matches or closely mimics the ρ distribution 
on the S surface (which itself is derived from the Schrödinger equation). This necessary  assumption 

was not spelled out in the thinking of the physicist community because it was not aware of this 
assumption but this paper argues that this assumption is a necessary and correct one, and it needs to 
be made explicit. For the surfing motion to match or mimic the ρ distribution on the S surface, we 
have suggested that two other conditions, apart from the constraint given by the Schrödinger 
equation, need to be in operation. The first condition is that the spin velocity, , has to have a 

certain form as given in this and the previous paper. This means that the Schrödinger equation, at 
least in the description of this non-chaotic universe, is really  incomplete (as Einstein suggested 
[14]): even though the continuity equation derived from the Schrödinger equation gives a clear 
expression of the translational velocity, it gives us absolutely  no clue as to the form of the spin 
velocity  (see previous paper [1]) while this form is absolutely crucial in matching the ρ distribution 

and the generation of spin. However, adding this form of the spin velocity to the Schrödinger 
equation to form a larger system is not enough to match the ρ distribution – another step is 
necessary, i.e., there has to be a non-determinate velocity, whose direction with the directions of the 
spin velocity and translational velocity  form an elegant orthogonal set, while its magnitude is non-
determinate. This non-determinate velocity  is also crucial in matching the ρ distribution. It can do 

the matching not in a random uncontrolled manner (as the ρ distribution will then not be matched) 
but in a flexible and yet controlled manner (as we have suggested in this paper). The Schrödinger 
equation, apart from having nothing to say  about the spin velocity, also has nothing to say  about this 
non-determinate velocity in regard to its direction and magnitude. It is in these two senses that the 
Schrödinger equation is incomplete and in these senses Einstein’s intuition was right (but only 

partly, see below). And the Schrödinger equation has served the physicist community well because, 
through adopting Born’s rule for the interpretation of ρ, these two additional conditions have been 
assumed unknowingly and made implicit in operating with the Schrödinger equation; yet the details 
of their operation were not made explicit as it has been done here. It  is safe to say that Born’s rule 
effectively governs the surfing motion on the S surface even though this rule does not spell out how 

this rule is satisfied. However, this paper has suggested the details of the explanation why this rule 
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is valid in this universe: the suitable form of the spin velocity and the indeterminate and yet 

appropriate magnitude of the third velocity  component ensure that the rule is valid in the sense as 
given in this paper. Put in another way, the appropriate surfing motion on the S surface creates 
Born’s rule which would have been gravely invalid if the surfing motion was not well organised to 
produce or create the probabilities expected in that rule. In another universe where the Schrödinger 
equation is still valid, the surfing motion there may not realise this rule and a very different  and 

probably chaotic universe will emerge. 
It is noteworthy that as Born’s rule is being matched by the surfing motion, the characteristic 

spins of the particles are also generated. The crucial form of the spin velocity is such that it will 

help  to yield those characteristic spins as long as the boundary conditions are satisfied, i.e.,  

vanishing at the centre or at certain ρ contours, creating discrete regions or sections of space for the 

particle’s motion. This explains the ubiquitous nature of the constancy of particles’ spins. Without 
knowing such details about the mechanism for the generation of spin, the physicist community has 
nevertheless managed to represent the effect of spin by  adding an extra term to the Schrödinger 
equation. This addition of the spin term again witnesses to the fact  that the Schrödinger equation on 
its own is incomplete in describing the full motion of a particle, and in that sense the physicist 

community has agreed with Einstein regarding the incomplete nature of the Schrödinger equation.
Despite Einstein’s insight into the incomplete nature of the Schrödinger equation, the author 

has to disagree with him on the appropriateness of finding all the necessary constraints or equations 
to completely determine the system. Although it  is possible for someone passionate about 
determinism to adopt a deterministic interpretation of quantum mechanics as outlined in section 8 

which will include determining the magnitude of , that is not the only  option possible. If there 

is no other option available, then one has to take the deterministic position, whether unhappily  or 
happily. However, since there are infinite number of possible trajectories for the particle other than 

the deterministic ones, one can freely and justifiably choose to take the non-deterministic option 
and leave the non-determinate magnitude of as it is. Super-determinism will afford us with 

only illusory or apparent human freedom which is not freedom in the real and desirable sense.  
Even though the motion of a particle on the S surface is non-determinate due to the non-

deterministic magnitude of , it  does not mean that  the motion is random. One must be careful 

to make the distinction between randomness and non-determinacy. If the magnitude of is 

random, then the surfing motion on the S surface will not match the ρ distribution on that surface. 
The non-determinate motion on that surface has to be well co-ordinated to match or mimic the 
desirable ρ distribution. One may ask: how does the particle know how to behave in order to match 
or mimic the desirable ρ distribution and in so doing produce the characteristic spin? It requires 

some kind of knowledge or information of the recent history  of the trajectory  of the particle, at least 
within the current period of T. Yet, even with this information available, this information along with 
all other information and laws operating in the universe do not prescribe a deterministic velocity or 
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trajectory at any succeeding moment in time for the particle. All one can say is that over the period 

of T, somehow the particle traces out a trajectory with suitable non-random and non-deterministic 
velocity  to mimic the ρ distribution on the S surface and thus produces the characteristic spin. This 
requires new information on top  of the information of the particle’s recent history (for the current 
cycle covered so far). The baffling question is: what causes such delicately balanced trajectories and 
velocities, including those for the sensitive regions of the tail ends? And what is the source of the 

new information? This information might be simulated by some stochastic process but such 
simulating processes do not inform us any more about the causes of the particle’s highly  organised 
non-determinate motion on the S surface since (i) these stochastic processes are simulations in the 
first place and (ii) they can only simulate the effect but not the cause of such motion. Here, we may 
be reaching the limit of what we can know. Deterministic processes are amenable to our knowledge; 

the causes of non-deterministic but highly organised processes cannot be so easily pinned down.
What is the nature of the period T which has been invoked so many times? Since experiments 

show that the spin values of particles are observed to be constant (within experimental error) each 
according to its own type, it follows that the period T (which may  be a constant for all particles or it 
may  vary with different particles) is short compared to the typical timescale operating in those 

experiments, e.g., the time for the silver atoms to pass through the magnetic field of the Stern-
Gerlach experiment. Had T been much longer than those experimental timescales, since the spin 
angular momentum of the particle varies significantly within the period T, those experiments would 
have captured different sections of the period T and would have reported rather different 
magnitudes of the particle spin in different experimental runs. However, this is not reported even 

though inevitably there is a limited extent  of spread in the extent of deflection in the Stern-Gerlach 
experiment. It is also possible that the fast varying angular momentum of the particle within the 
short period T may  contribute to those spread to a small degree. If the timescale in the Stern-
Gerlach experiment can be reduced sufficiently but it still long enough to deflect the particles up or 
down, this could produce a greater spread in the extent of deflection in the up and down direction. 

It was shown in section 10.1 that the Total Quantum Energy (TQE) is a genuine constituent 
term of the total energy of a particle. This term does not appear in classical mechanics. However, 
this term in quantum mechanics provides the kinetic energy (QKE) for the motion of a particle on a 
S surface which is critical for generating spin. TQE can serve to account for the tunneling 
phenomenon which classical mechanics cannot account for. Physicists in the pilot wave camp have 

already suggested this possibility, e.g., [15], even though they did not see it as a source of kinetic 
energy for the surfing motion on the S surface.

One can raise questions about the treatment of singularities at the tail ends in section 7. 
Singularities are not uncommon in theoretical studies of the physical world. There are two options 
open to us in the present case of quantum mechanics. One option is to stand on the Copenhagen 

position and say that the particle is spread out as a wave over the physical space – which in the case 
of the free electron is the whole disc with r < L, and in the case of the hydrogen electron is the 
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whole orbital space – so that the particle is generating spin simultaneously over the whole physical 

space to yield the characteristic spin of the particle (see section 5.1). The option taken by this paper 
is that the particle has unambiguous position and momentum at  any one instant which means that 
the singularities at the tail ends (for the particle in free space, and similarly for the electron in the 
hydrogen case) need to be contended with. Section 7 makes a serious rigorous attempt to 

demonstrate that the singularity problem is not insurmountable. The ρ′ at the tail ends will be 

somewhat different from the idealised ρ derived from the Schrödinger equation but the 
normalisation constraint and the constraint of the characteristic spin of the particle can still be 
satisfied due to the flexible nature of the magnitude of the third velocity. Given the choice between 

(i) no definite position or momentum of a particle but with the actual ρ′ matching perfectly with the 
idealised or theoretical ρ (including the tail ends) as derived from the Schrödinger equation (the 
Copenhagen Interpretation) and (ii) definite position and definite momentum of a particle but with 

the actual ρ′ somewhat different from the idealised or theoretical ρ only at the tail ends, the author 

is willing to sacrifice perfect matching between ρ′ and ρ at the tail ends to adopt position (ii) as that 

sacrifice is easier to make compared to the sacrifice of definite position and momentum of a 
particle. 

 Finally, as is already evident in the last paragraph, this paper takes seriously  the particle 
interpretation of quantum mechanics, i.e., ontologically the particle is an entity which is at one 

definite place at  any given instant; however, equally it  takes seriously the wave-like behaviour of 
the particle, i.e., functionally the evolution of the particle’s trajectory and velocity is partly 
governed by the Schrödinger wave equation while the particle has freedom to surf on the S surface.

Appendix A: Solution of the Radial Equation with Modified Bessel Functions of the First and 
Second Kind

 Now we consider the Helmholtz Equation of the other form with  as the parameter (a is real):

The radial equation is

with R given by the modified Bessel functions of the first and second kind, , .  
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Figure 10: Square of the Modified Bessel functions of the first kind, , as a function of r

For , the normalisation integral does not converge so that it is not a physically meaningful 

solution. 

For , the normalisation integral converges, and the integral for the integrated angular 

momentum converges to the correct value. However, the integrated spin energy of the particle 

does not converge. See Figure 11 for the function of . Hence, this solution is also not physical.

Figure 11: Square of the Modified Bessel functions of the second kind, , as a function of r
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Appendix B: and  for the Hydrogen Electron

Figure 12: Contours of R for  given by , the values 
of the constants are 1 to 9 (interval 1), 9.7, 0 to -4 (interval -1), and -4.85

Since m=0, the angular momentum about the vertical axis is zero. The electron can cross the 
vertical and horizontal axes without incurring infinite speed. There are four nodal contours (joining 

to form two diagonal axes) giving four regions of possible motion for the electrons. In each region, 
the electron circulates along the ρ contours while being moved by  the third non-deterministic 
velocity  on the surface. To find an analytic expression for the spin of the electron around a point 

of maximum ρ in each region, one could assume that the net contribution to the spin angular 
momentum from the non-deterministic velocity over the period T, or multiple periods of T, will be 
zero. However, it is still not easy  to find the analytic expression as the contours are not circular. A 
numerical approach may produce an interesting result. 
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Figure 13: Contours of R for  given by , the values of the 
constants are 0.5 to 4.5 (interval 0.5) and 4.8

In the case of , the orbital angular momentum around the vertical axis is non-zero. The 

electron can cross the horizontal axis without incurring infinite speed but cannot cross the vertical  

axis as it will incur infinite speed. The electron circulates along the ρ contours while being moved 
by the third non-deterministic velocity on the surface and at  the same time orbiting around the 

vertical axis. There is a fully  three dimensional motion for the electron in this case, as in , since 

both has non-zero m. However, the net spin angular momentum over a period T is predicted to be 
zero because of the non-zero m even though its instantaneous value is not zero.
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