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1 Introduction


In the present work, we show the global well-posedness of the semi-relativistic, magnetic
Schrödinger-Poisson system on a finite domain. Such system is relevant to the description
of many-body semi-relativistic quantum particles in the mean-field limit (for example, in
heated plasma), when the particles move with extremely high velocities and interact with
an external magnetic field. Consider such semi-relativistic quantum particles localized in
domain Ω ⊂ R3 which is an open, bounded set with the Lebesgue measure |Ω| < ∞ and a
C2 boundary. The particles interact by the electrostatic field they collectively generate. In
the mean-field limit, the density matrix ρ(t) that describes the mixed state of the system
satisfies the Hartree-von Neumann equation


{


i∂tρ(t) = [HA,V , ρ(t)], x ∈ Ω, t ≥ 0


−∆V = n(t, x), n(t, x) = ρ(t, x, x), ρ(0) = ρ0
, (1.1)
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satisfying Dirichlet boundary conditions, ρ(t, x, y) = 0 if x or y ∈ ∂Ω, for t ≥ 0. The
Hamiltonian is given by


HA,V := TA,m + V (t, x) (1.2)


with the magnetic, relativistic kinetic energy operator


TA,m :=
√


(−i∇ + A)2 +m2 −m (1.3)


defined by means of the spectral calculus. Analogously to [6], we assume that A(x) ∈
C


1(Ω̄,R3) and divA = 0. In the present work (−i∇+ A)2 stands for the magnetic Dirichlet
Laplacian on L2(Ω), and m > 0 is the particle mass; see [4, 5] for a derivation of such
system of equations in the non-relativistic, non-magnetic case. Due to the fact that ρ(t)
is a nonnegative, self-adjoint trace-class operator acting on L2(Ω), its kernel can, for every
t ∈ R+, be decomposed with respect to an orthonormal basis of L2(Ω). The kernel of the
initial data ρ0 can be written in the form


ρ0(x, y) =
∑


k∈N


λkψ0,k(x)ψ0,k(y). (1.4)


Here {ψ0,k}k∈N stands for an orthonormal basis of L2(Ω), with ψk|∂Ω = 0 for all k ∈ N, and
coefficients


λ := {λk}k∈N ∈ ℓ1 , λk ≥ 0 ,
∑


k∈N


λk = 1. (1.5)


As proven below, there exists a one-parameter family of complete orthonormal bases of
L2(Ω), {ψk(t)}k∈N, with ψk(t)|∂Ω = 0 for all k ∈ N, and for t ∈ R+, such that the kernel of
the solution ρ(t) to (1.1) can be written as


ρ(t, x, y) =
∑


k∈N


λkψk(t, x)ψk(t, y). (1.6)


Notably, the coefficients λ are independent of t, and thus the same as those in ρ0, which is
because the operators −iHA,V and ρ(t) form a Lax pair in problem (1.1). When substituting
(1.6) in (1.1), the one- parameter family of orthonormal vectors {ψk(t)}k∈N is seen to satisfy
the semi-relativistic, magnetic Schrödinger-Poisson system


i
∂ψk


∂t
= TA,mψk + V [Ψ]ψk, k ∈ N, (1.7)


−∆V [Ψ] = n[Ψ], Ψ := {ψk}∞k=1, (1.8)


n[Ψ](t, x) =
∞
∑


k=1


λk|ψk(t, x)|2, (1.9)
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with initial data
ψk(t = 0, x) = ψ0,k(x), k ∈ N. (1.10)


Our potential function V [Ψ] is a solution of the Poisson equation (1.8). On both V [Ψ] and
ψk(t), for all k ∈ N, we impose Dirichlet boundary conditions


ψk(t, x) , V (x, t) = 0, t ≥ 0, ∀x ∈ ∂Ω. (1.11)


As we prove in Lemma 6 further down, solutions of (1.7)-(1.9) preserve the orthonormality
of {ψk(t)}k∈N. Let us introduce the magnetic Sobolev norms for functions:


‖f‖2
H


1
2


A
(Ω)


:= ‖f‖2L2(Ω) + ‖| − i∇ + A| 12f‖2L2(Ω). (1.12)


‖f‖2H1


A
(Ω) := ‖f‖2L2(Ω) + ‖(−i∇ + A)f‖2L2(Ω). (1.13)


Here, |− i∇+A| denotes the operator
√


(−i∇ + A)2, and has the meaning of the relativistic
kinetic energy of a particle with zero mass in the presence of a magnetic field. The standard
Sobolev norms ‖f‖2


H
1
2 (Ω)


and ‖f‖2
H1(Ω) will be used when the magnetic vector potential A(x)


vanishes. The state space for our magnetic, semi-relativistic Schrödinger-Poisson system is
defined as


L := {(Ψ, λ) |Ψ = {ψk}∞k=1 ⊂ H
1


2


0,A(Ω)∩H1
A(Ω) is a complete orthonormal system in L2(Ω),


λ = {λk}∞k=1 ∈ ℓ1, λk ≥ 0, k ∈ N,


∞
∑


k=1


λk


∫


Ω


|(−i∇ + A)ψk|2dx <∞}.


For fixed λ ∈ ℓ1, λk ≥ 0, and for sequences of square integrable functions Φ := {φk}∞k=1 and
Ψ := {ψk}∞k=1, we define the inner product


(Φ,Ψ)XΩ
:=


∞
∑


k=1


λk(φk, ψk)L2(Ω),


which induces the norm


‖Φ‖XΩ
:= (


∞
∑


k=1


λk‖φk‖2L2(Ω))
1


2 .


Let us introduce the corresponding Hilbert space


XΩ := {Φ = {φk}∞k=1 | φk ∈ L2(Ω), ∀ k ∈ N, ‖Φ‖XΩ
<∞}.


Our main result is as follows.


Theorem 1. Let A(x) ∈ C1(Ω̄,R3) and divA = 0. For every initial state (Ψ(x, 0), λ) ∈ L,
there is a unique mild solution Ψ(x, t), t ∈ [0,∞), of (1.7)-(1.10) with (Ψ(x, t), λ) ∈ L. This
is also a unique strong global solution in XΩ, i.e. Ψ ∈ C([0,∞);ZΩ,A) ∩ C1([0,∞);XΩ).
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Proving the global well-posedness of the Schrödinger-Poisson system plays a crucial role
in establishing the existence and nonlinear stability of stationary states, i.e. the nonlinear
bound states of the Schrödinger-Poisson system, which was done in the non-relativistic,
non-magnetic case in [8, 12], in the magnetic, non-relativistic case in [6], in the semi-
relativistic case without a magnetic field in [1] and [2]. The global well posedness of the
non-relativistic, magnetic Schrödinger-Poisson system in the whole R3 was established in [7]
on the assumption that the vector potential A(x) is smooth and bounded. The problem in one
dimension was studied in [15]. The semiclassical limit of such system with the relativistic
kinetic energy was treated in [3]. The global well-posedness for a single semi-relativistic
Hartree problem in R3 was proved in [9]. In the present article, we study the infinite system
of equations in a bounded set with Dirichlet boundary conditions, and, as distinct from [9],
we do not use the regularization of the Poisson equation. Furthermore, both the results of
[9] and Theorem 1 above do not rely on Strichartz type estimates. Note that operator (1.3)
is crucial for the studies of the relativistic stability of matter in the presence of a magnetic
field (see e.g. [11]).


2 Proof of global well-posedness


We make a fixed choice of λ = {λk}∞k=1 ∈ ℓ1, with λk ≥ 0 and
∑


k∈N λk = 1, standing for
the sequence of coefficients determined by the initial data ρ0 of the Hartree-von Neumann
equation (1.1) via (1.6), for t = 0.


Let us introduce the inner products (·, ·)YΩ,A
and (·, ·)ZΩ,A


which induce the generalized
inhomogenous magnetic Sobolev norms


‖Φ‖YΩ,A
:= (


∞
∑


k=1


λk‖φk‖2
H


1
2


A
(Ω)


)
1


2 and ‖Φ‖ZΩ,A
:= (


∞
∑


k=1


λk‖φk‖2H1


A
(Ω))


1


2 ,


and define the corresponding Hilbert spaces


YΩ,A := {Φ = {φk}∞k=1 | φk ∈ H
1


2


0,A(Ω), ∀ k ∈ N, ‖Φ‖YΩ,A
<∞}


and
ZΩ,A := {Φ = {φk}∞k=1 | φk ∈ H


1


2


0,A(Ω) ∩H1
A(Ω), ∀ k ∈ N, ‖Φ‖ZΩ,A


<∞}
respectively. Let us also introduce the generalized homogenous Sobolev norms


‖Φ‖ẎΩ,A
:= (


∞
∑


k=1


λk‖| − i∇+ A| 12φk‖2L2(Ω))
1


2 and ‖Φ‖ŻΩ,A
:= (


∞
∑


k=1


λk‖(−i∇+ A)φk‖2L2(Ω))
1


2 .


The notations ‖Φ‖ẎΩ , ‖Φ‖YΩ, ‖Φ‖ŻΩ
, ‖Φ‖ZΩ


will be used in the article when the magnetic
vector potential A(x) vanishes in Ω, analogously to Section 3 of [8]. Let us note the
following equivalence of magnetic and non magnetic norms.
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Lemma 2. Assume that the vector potential A(x) ∈ C1(Ω̄,R3) and the Coulomb gauge is
chosen, such that divA = 0.


a) Let Φ(x) ∈ YΩ,A. Then the norms ‖Φ‖YΩ,A
, ‖Φ‖ẎΩ,A


, ‖Φ‖YΩ and ‖Φ‖ẎΩ are equivalent.


b) Let Φ(x) ∈ ZΩ,A. Then the norms ‖Φ‖ZΩ,A
, ‖Φ‖ŻΩ,A


, ‖Φ‖ZΩ
and ‖Φ‖ŻΩ


are equivalent.


Proof. Let us note that the statement b) of the lemma is the result of the part c) of Lemma
A.2 of [6]. By means of the part a) of Lemma A.2 of [6], we have


C1‖∇f‖L2(Ω) ≤ ‖(−i∇ + A)f‖L2(Ω) ≤ C2‖∇f‖L2(Ω)


for f(x) ∈ H1
0,A(Ω), where C1,2 > 0 are constants. Hence, for the quadratic forms


C2
1(−∆f, f)L2(Ω) ≤ ((−i∇ + A)2f, f)L2(Ω) ≤ C2


2(−∆f, f)L2(Ω).


This implies that for the square roots of these operators we have


C1(|p|f, f)L2(Ω) ≤ (| − i∇ + A|f, f)L2(Ω) ≤ C2(|p|f, f)L2(Ω),


where |p| denotes the operator
√
−∆. Therefore, for the components of Φ = {φk}∞k=1 we


obtain
C1‖|p|


1


2φk‖2L2(Ω) ≤ ‖| − i∇ + A| 12φk‖2L2(Ω) ≤ C2‖|p|
1


2φk‖2L2(Ω), k ∈ N. (2.1)


Without loss of generality, we assume that in inequality (2.1) we have C1 ≤ 1 and C2 ≥ 1.
Then


C1[‖|p|
1


2φk‖2L2(Ω) + ‖φk‖2L2(Ω)] ≤ ‖| − i∇+ A| 12φk‖2L2(Ω) + C1‖φk‖2L2(Ω)


yields
C1‖φk‖2


H
1
2 (Ω)


≤ ‖φk‖2
H


1
2


A
(Ω)
, k ∈ N. (2.2)


Similarly, (2.1) gives us


‖| − i∇+ A| 12φk‖2L2(Ω) + ‖φk‖2L2(Ω) ≤ C2‖|p|
1


2φk‖2L2(Ω) + ‖φk‖2L2(Ω)


and therefore
‖φk‖2


H
1
2


A
(Ω)


≤ C2‖φk‖2
H


1
2 (Ω)


, k ∈ N. (2.3)


Let us multiply both sides of (2.2) and (2.3) by λk and sum over k ∈ N. Thus, we arrive at
√


C1‖Φ‖YΩ ≤ ‖Φ‖YΩ,A
≤
√


C2‖Φ‖YΩ ,


such that the norms ‖.‖YΩ,A
and ‖.‖YΩ are equivalent. The equivalence of ‖.‖YΩ and ‖.‖ẎΩ


norms was established in Lemma 2 of [1]. We multiply all sides of inequality (2.1) by λk
and add up over k ∈ N. This yields


√


C1‖Φ‖ẎΩ ≤ ‖Φ‖ẎΩ,A
≤
√


C2‖Φ‖ẎΩ ,


such that the norms ‖.‖ẎΩ,A
and ‖.‖ẎΩ are equivalent as well.
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Let Ψ = {ψk}∞k=1 be a wave function and the magnetic, relativistic kinetic energy operator
acts on it TA,mΨ = (


√


(−i∇ + A)2 +m2 −m)Ψ componentwise. We have the following two
technical statements.


Lemma 3. The domain of the magnetic, semi-relativistic kinetic energy operator is given
by D(TA,m) = ZΩ,A ⊆ XΩ.


Proof. Let Ψ ∈ ZΩ,A. Hence


‖Ψ‖ZΩ,A
= (


∞
∑


k=1


λk[‖(−i∇ + A)ψk‖2L2(Ω) + ‖ψk‖2L2(Ω)])
1


2 ≥ (


∞
∑


k=1


λk‖ψk‖2L2(Ω))
1


2 = ‖Ψ‖XΩ
,


such that Ψ ∈ XΩ. Let us estimate ‖TA,mψk‖2L2(Ω) as


([(−i∇ + A)2 +m2]ψk, ψk)L2(Ω) +m2‖ψk‖2L2(Ω) − 2m(
√


(−i∇ + A)2 +m2ψk, ψk)L2(Ω)


≤ ‖(−i∇ + A)ψk‖2L2(Ω) + 2m2‖ψk‖2L2(Ω) ≤ c(m)‖ψk‖2H1


A
(Ω),


where c(m) is a mass dependent constant. Thus


‖TA,mΨ‖2XΩ
=


∞
∑


k=1


λk‖TA,mψk‖2L2(Ω) ≤ c(m)‖Ψ‖2ZΩ,A
<∞.


Lemma 4. The operator TA,m generates the group e−iTA,mt, t ∈ R, of unitary operators on
XΩ.


Let us rewrite our magnetic, semi-relativistic Schrödinger-Poisson system for x ∈ Ω into
the form


Ψt = −iTA,mΨ+ F [Ψ(x, t)], where F [Ψ] := i−1V [Ψ]Ψ, (2.4)


−∆V [Ψ] = n[Ψ], where V |∂Ω = 0,


n[Ψ] =
∞
∑


k=1


λk|ψk|2


and establish the following technical result.


Lemma 5. The map defined in (2.4) F : ZΩ,A → ZΩ,A is locally Lipschitz continuous.
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Proof. Let Ψ, Φ ∈ ZΩ,A with Ψ = {ψk}∞k=1, Φ = {φk}∞k=1 and t ∈ [0, T ). Then, according to
the result of Lemma 5 of [1],


‖F [Ψ]− F [Φ]‖ZΩ
≤ C(‖Ψ‖2ZΩ


+ ‖Φ‖2ZΩ
)‖Ψ− Φ‖ZΩ


.


The result of the lemma follows from the equivalence of magnetic and non magnetic norms
established in Lemma 2 above.


From standard arguments (see for instance Theorem 1.7 of [13]) and Lemma 5 it follows
that our magnetic, semi-relativistic Schrödinger-Poisson system admits a unique mild solu-
tion Ψ belonging to ZΩ,A on a time interval [0, T ), for a certain T > 0, satisfying the integral
equation


Ψ(t) = e−iTA,mtΨ(0) +


∫ t


0


e−iTA,m(t−s)F [Ψ(s)]ds (2.5)


in ZΩ,A. Furthermore,
limtրT‖Ψ(t)‖ZΩ,A


= ∞
in the case if T is finite. Let us also note that Ψ is a unique strong solution in XΩ, such
that Ψ ∈ C([0, T );ZΩ,A)∩C1([0, T );XΩ). Below we will establish that this solution is in fact
global in time. First let us prove the following proposition.


Lemma 6. Suppose for the unique mild solution (2.5) of the magnetic, semi-relativistic
Schrödinger-Poisson system (1.7)-(1.10) at t = 0 the functions {ψk(x, 0)}∞k=1 form a complete
orthonormal system in L2(Ω). Then, for any t ∈ [0, T ), the set {ψk(x, t)}∞k=1 remains a
complete orthonormal system in L2(Ω). Moreover, the XΩ-norm is preserved: ‖Ψ(x, t)‖XΩ


=
‖Ψ(x, 0)‖XΩ


, t ∈ [0, T ).


Proof. By means of (1.7), we obtain


d


dt
(ψk, ψl)L2(Ω) = −i((TA,m + VΨ)ψk, ψl)L2(Ω) + i(ψk, (TA,m + VΨ)ψl)L2(Ω) = 0.


This gives us


(ψk(x, t), ψl(x, t))L2(Ω) = (ψk(x, 0), ψl(x, 0))L2(Ω) = δk,l, k, l ∈ N.


Here δk,l denotes the Kronecker symbol. Thus, for k ∈ N


‖ψk(., t)‖2L2(Ω) = ‖ψk(., 0)‖2L2(Ω).
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Therefore, for t ∈ [0, T ), we have the preservation of the XΩ-norm, namely


‖Ψ(., t)‖XΩ
=


(


∞
∑


k=1


λk‖ψk(x, t)‖2L2(Ω)


)
1


2


=


(


∞
∑


k=1


λk‖ψk(x, 0)‖2L2(Ω)


)
1


2


= ‖Ψ(., 0)‖XΩ
.


For the unique given solution Ψ(t) of our magnetic, semi-relativistic Schrödinger-Poisson
system on [0, T ), we arrive at the time-dependent one-particle Hamiltonian


HA,VΨ(t) = TA,m + VΨ(t, x),


where the potential VΨ solves −∆VΨ(t, x) = n[Ψ(t)] with Dirichlet boundary conditions, see
(1.2). The properties of VΨ are discussed in more detail in Lemma 8 below. Accordingly,
the components of Ψ(t) satisfy the non-autonomous magnetic, semi-relativistic Schrödinger
equation i∂tψk(t, x) = HA,VΨ(t)ψk(t, x), for k ∈ N, on the time interval [0, T ). Therefore, by


means of Theorem X.71 of [14], there exists a propagator, denoted as e−i
∫ t


0
HA,VΨ


(τ)dτ such
that for t ∈ [0, T ),


ψk(x, t) = e−i
∫ t


0
HA,VΨ


(τ)dτψk(x, 0), k ∈ N. (2.6)


Consider an arbitrary function f(x) ∈ L2(Ω). Obviously, we have the expansion


f(x) =


∞
∑


k=1


(f(y), ψk(y, 0))L2(Ω)ψk(x, 0)


and analogously


ei
∫ t


0
HA,VΨ


(τ)dτf(x) =


∞
∑


k=1


(ei
∫ t


0
HA,VΨ


(τ)dτf(y), ψk(y, 0))L2(Ω)ψk(x, 0).


Therefore, by virtue of (2.6) we derive the expansion


f(x) =


∞
∑


k=1


(f(y), ψk(y, t))L2(Ω)ψk(x, t)


for t ∈ [0, T ).


Moreover, we establish the conservation of energy for the solutions to the magnetic,
semi-relativistic Schrödinger-Poisson system in the following sense.


Lemma 7. For the unique mild solution (2.5) of the Schrödinger-Poisson system (1.7)-(1.10)
and for any value of time t ∈ [0, T ) we have the identity


∑


k∈N


λk‖T
1


2


A,mψk(x, t)‖2L2(Ω) +
1


2
‖∇V [Ψ(x, t)]‖2L2(Ω)


=
∑


k∈N


λk‖T
1


2


A,mψk(x, 0)‖2L2(Ω) +
1


2
‖∇V [Ψ(x, 0)]‖2L2(Ω).
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Proof. The complex conjugation of the Schrödinger-Poisson system (1.7) gives us


−i∂ψ̄k
∂t


= TA,mψk + V [ψ]ψ̄k, k ∈ N. (2.7)


We add the k-th equation of the original system (1.7) multiplied by
∂ψ̄k


∂t
, and the k-th


equation of (2.7) multiplied by
∂ψk


∂t
and arrive at


∂


∂t
‖T


1


2


A,mψk‖2L2(Ω) +


∫


Ω


V [ψ]
∂


∂t
|ψk|2dx = 0, k ∈ N.


Hence, multiplying by λk, and summing over k, we obtain


∂


∂t


∑


k∈N


λk‖T
1


2


A,mψk(x, t)‖2L2(Ω) +


∫


Ω


V [Ψ(x, t)]
∂


∂t
n[Ψ(x, t)]dx = 0. (2.8)


It can be easily verified that


∂


∂t
‖∇V [Ψ(x, t)]‖2L2(Ω) = 2


∫


Ω


V [Ψ(x, t)]
∂


∂t
n[Ψ(x, t)]dx.


By substituting this identity into (2.8), we complete the proof of the lemma.


With the auxiliary statements proven above at our disposal, we may now prove our main
result, Theorem 1.


Proof of Theorem 1. The proof follows from the blow-up alternative and the conservation
laws. Let us recall that the mild solution of the Schrödinger-Poisson system (1.7)-(1.10) is
given by (2.5). We apply the norm ‖.‖ŻΩ,A


to both sides of (2.5), which yields


‖Ψ(t)‖ŻΩ,A
≤ ‖e−iTA,mtΨ(0)‖ŻΩ,A


+


∫ t


0


‖e−iTA,m(t−s)F [Ψ(s)]‖ŻΩ,A
ds.


Hence,


‖Ψ(t)‖ŻΩ,A
≤ ‖Ψ(0)‖ŻΩ,A


+


∫ t


0


‖F [Ψ(s)]‖ŻΩ,A
ds.


In the proof of Theorem 1 of [1], it was shown that


‖F [Ψ]‖ŻΩ
≤ C‖Ψ‖2


ẎΩ
‖Ψ‖ŻΩ


.


By virtue of the equivalence of the magnetic and non magnetic norms established in our
Lemma 2 above, we obtain


‖F [Ψ]‖ŻΩ,A
≤ C‖Ψ‖2


ẎΩ,A
‖Ψ‖ŻΩ,A


. (2.9)
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The energy conservation established in Lemma 7 above gives us the boundedness of the
quantity


∑


k∈N


λk‖T
1


2


A,mψk(x, t)‖2L2(Ω), t ∈ [0, T )


by the amount of the initial energy of our magnetic, semi-relativistic Schrödinger-Poisson
system. Since the ‖.‖XΩ


norm is conserved for our unique mild solution according to Lemma
6, we have the boundedness of the quantity


∑


k∈N


λk(
√


(−i∇ + A)2 +m2ψk(x, t), ψk(x, t))L2(Ω)


for t ∈ [0, T ). Because
√


(−i∇ + A)2 +m2 ≥ |− i∇+A| in the sense of the quadratic forms,
we derive the boundedness of


‖Ψ‖2
ẎΩ,A


=
∑


k∈N


λk‖| − i∇ + A| 12ψk‖2L2(Ω), t ∈ [0, T )


for our unique mild solution. Then (2.9) yields


‖F [Ψ]‖ŻΩ,A
≤ C0‖Ψ‖ŻΩ,A


,


where C0 is a positive constant obtained by virtue of our conservation laws discussed above.
This gives us


‖Ψ(t)‖ŻΩ,A
≤ ‖Ψ(0)‖ŻΩ,A


+ C0


∫ t


0


‖Ψ(s)‖ŻΩ,A
ds.


By the Gronwall’s lemma,


‖Ψ(t)‖ŻΩ,A
≤ ‖Ψ(0)‖ŻΩ,A


eC0t, t ∈ [0, T ).


Therefore, by virtue of the blow-up alternative, our magnetic, semi-relativistic Schrödinger-
Poisson system is globally well-posed in ZΩ,A.


We conclude the article with addressing the properties of the scalar potential function
involved in our magnetic, semi-relativistic Schrödinger-Poisson system.


Lemma 8. For (Ψ, λ) ∈ L we have


nψ,λ =


∞
∑


k=1


λk|ψk|2 ∈ L2(Ω).


Let Vψ,λ denote the Coulomb potential induced by nψ,λ, such that


−∆Vψ,λ(x) = nψ,λ(x), x ∈ Ω; Vψ,λ(x) = 0, x ∈ ∂Ω.


Then Vψ,λ(x) ∈ H1
0 (Ω) ∩H2(Ω).
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Proof. Clearly, by virtue of the Schwarz inequality we have the upper bound


‖nψ,λ‖2L2(Ω) =
∑


k,s∈N


λkλs


∫


Ω


|ψk(x)|2|ψs(x)|2dx ≤
(


∑


k∈N


λk


√


∫


Ω


|ψk(x)|4dx
)2


.


By means of the Hölder’s inequality,


∫


Ω


|ψk(x)|4dx ≤
(


∫


Ω


|ψk(x)|6dx
)


2


3


|Ω| 13 .


Let us use the standard Sobolev inequality (see e.g. p.186 of [10])


‖∇f‖L2(Ω) ≥ cs‖f‖L6(Ω),


where cs > 0 is a constant. This along with the Diamagnetic inequality
∫


Ω


|(−i∇ + A)f |2dx ≥
∫


Ω


|∇|f ||2dx


(see e.g. p.179 of [10]) gives us


√


∫


Ω


|ψk(x)|4dx ≤ |Ω| 16
c2s


∫


Ω


|∇|ψk||2dx ≤ |Ω| 16
c2s


‖(−i∇ + A)ψk‖2L2(Ω).


Therefore,


‖nψ,λ‖2L2(Ω) ≤
|Ω| 13
c4s


(
∑


k∈N


λk‖(−i∇+ A)ψk‖2L2(Ω))
2 =


|Ω| 13
c4s


‖Ψ‖4
ŻΩ,A


<∞,


such that nψ,λ(x) ∈ L2(Ω). Then, by means of our Poisson equation we have ∆Vψ,λ ∈ L2(Ω).
Let {µ0


k}k∈N denote the set of the Dirichlet eigenvalues for the negative Laplace operator
on L2(Ω), such that µ0


k > 0, k ∈ N and µ0
1 is the lowest eigenvalue. Thus, since Vψ,λ =


(−∆)−1nψ,λ, we have the estimate


‖Vψ,λ‖L2(Ω) ≤
1


µ0
1


‖nψ,λ‖L2(Ω) <∞.


Furthermore, since Vψ,λ vanishes on the Lipschitz boundary of our bounded set Ω as assumed,
Vψ,λ is a trace zero function in H1(Ω). Let us also note that Vψ,λ(x) ∈ L∞(Ω) ⊂ H2(Ω) by
virtue of the Sobolev embedding.


Acknowledgements V.V. is grateful to F.Gesztesy for the stimulating discussions and to
I.M.Sigal for the support.
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