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ESSENTIALLY ISOSPECTRAL TRANSFORMATIONS AND


THEIR APPLICATIONS


NAMIG J. GULIYEV


Abstract. We define and study the properties of Darboux-type transforma-
tions between Sturm–Liouville problems with boundary conditions containing
rational Herglotz–Nevanlinna functions of the eigenvalue parameter (including
the Dirichlet boundary conditions). Using these transformations, we obtain
various direct and inverse spectral results for these problems in a unified man-
ner, such as asymptotics of eigenvalues and norming constants, oscillation of
eigenfunctions, regularized trace formulas, and inverse uniqueness and exis-
tence theorems.
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1. Introduction


We consider the one-dimensional Schrödinger equation (the Sturm–Liouville
equation in Liouville normal form)


− y′′(x) + q(x)y(x) = λy(x) (1.1)


and the boundary conditions


y′(0)


y(0)
= −f(λ), y′(π)


y(π)
= F (λ), (1.2)


where q ∈ L1(0, π) is real-valued and


f(λ) = h0λ+ h+


d∑


k=1


δk
hk − λ


, F (λ) = H0λ+H +


D∑


k=1


∆k


Hk − λ
(1.3)


are rational Herglotz–Nevanlinna functions with real coefficients, i.e., h0, H0 ≥ 0,
δk,∆k > 0, h1 < . . . < hd, H1 < . . . < HD. We also include the case when the
first (respectively, the second) boundary condition is Dirichlet by writing f = ∞
(respectively, F = ∞).


It is straightforward to verify that if a function v without zeros is a fixed solution
of the equation (1.1) with λ replaced by µ, then for any solution y of this equation
with λ 6= µ, the function ŷ := y′− yv′/v is a solution of the same equation with the
potential q replaced by the potential q̂ := q − 2(v′/v)′. Also, the function v̂ := 1/v
is a solution of the above equation with λ and q replaced by µ and q̂ respectively
(cf. [39, Lemma 5.1]). Moreover, by applying the same procedure with v̂ instead of
v to the latter potential one arrives at the original potential. This technique allows
one to write the above differential expressions as


− d2


dx2
+ q(x) − µ =


(
d


dx
+
v′


v


)(
− d


dx
+
v′


v


)


and


− d2


dx2
+ q̂(x) − µ =


(
− d


dx
+
v′


v


)(
d


dx
+
v′


v


)


respectively. These transformations, called the direct and inverse Darboux transfor-
mations, and the corresponding factorizations play an important role in mathemat-
ical physics. For instance, such factorizations are used in supersymmetric quantum
mechanics as a way of obtaining supersymmetric partner potentials (q and q̂ in
the above notation) [12]. The Darboux transformations and their generalizations
also provide a powerful method of generating new exactly solvable potentials from
known ones in the theory of nonlinear evolution equations [37]. For Sturm–Liouville
problems with constant (i.e., independent of the eigenvalue parameter) boundary
conditions, these transformations were used in [13], [26], [27], [29], [39] to give a com-
plete characterization of the isospectral sets of potentials. An operator-theoretic
description of the method can be found in [14], [43]. See also [8] for a detailed histor-
ical overview and an operator-theoretic treatment of the Darboux transformations
in the case of boundary conditions containing the eigenvalue parameter.


Sturm–Liouville problems with boundary conditions dependent on the eigenvalue
parameter arise naturally in a variety of physical problems, including heat conduc-
tion, diffusion, vibration and electric circuit problems (see [18] and the references
therein). Churchill [11] seems to be the first who applied the Darboux transfor-
mations to Sturm–Liouville problems with boundary conditions dependent on the
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eigenvalue parameter. Binding, Browne and Watson [6], [7] studied problems with
a constant boundary condition at one endpoint and a boundary condition of the
form (1.2), (1.3) at the other endpoint. They observed that if y satisfies a boundary
condition of the latter form at an endpoint, then ŷ satisfies a condition of the same
form (1.2) with some other function of the form (1.3). An immediate consequence
of this is that if y is an eigenfunction of (1.1)-(1.2) corresponding to an eigenvalue
not equal to the above µ, then ŷ is an eigenfunction of another problem of the
same form corresponding to the same eigenvalue. Also, in some cases the above v̂
becomes an eigenfunction of the latter problem. In order to prove that all of its
eigenfunctions can be obtained in this way—in other words, that these boundary
value problems are essentially isospectral in the sense that their spectra coincide
(with the possible exception of the smallest eigenvalue of one of these problems)—
these authors studied the oscillation properties of eigenfunctions. On the contrary,
here we use the first-order asymptotics of the eigenvalues, and later deduce the
oscillation properties (among other things) from the essential isospectrality of our
transformations.


Another distinctive feature of the present work is that to each boundary condition
of the form (1.2), i.e. to each function of the form (1.3), we associate its index (an
integer) and a monic polynomial, and express various spectral characteristics of
boundary value problems of the form (1.1)-(1.2) in terms of these indices and the
coefficients of these polynomials, so that we are able to formulate our results without
considering separate cases as it is usually done in the literature.


The paper is organized as follows. In Section 2 we introduce the necessary
notation and prove some preliminary lemmas. Section 3 is devoted to transforma-
tions between rational Herglotz–Nevanlinna functions and between boundary value
problems having such functions in their boundary conditions. In Subsection 3.1 we
define a transformation between rational Herglotz–Nevanlinna functions and study
its properties. In Subsections 3.2 and 3.3 we define direct and inverse transforma-
tions between boundary value problems of the form (1.1)-(1.2), study properties
of the spectral data under these transformations, and show that these two trans-
formations are, in a sense, inverses of each other. We apply these transformations
in Section 4 to the solution of various direct and inverse spectral problems. In
Subsection 4.1 we obtain asymptotic formulas for the eigenvalues and the norming
constants (see Subsection 2.3 for the definition) of the problem (1.1)-(1.2). In Sub-
section 4.2 we extend the Sturm oscillation theorem to boundary conditions of the
form (1.2). In Subsection 4.3 we apply our direct transformation to the calculation
of the so-called regularized traces. In Subsection 4.4 we provide necessary and suf-
ficient conditions for two sequences of real numbers to be the eigenvalues and the
norming constants of a problem of the form (1.1)-(1.2). Subsection 4.5 is devoted to
symmetric boundary value problems. In Subsections 4.6 and 4.7 we provide partial
generalizations of the Hochstadt–Lieberman theorem and a theorem of Mochizuki
and Trooshin to the case of boundary value problems of the form (1.1)-(1.2).


2. Preliminaries


2.1. Notation. First we introduce some necessary notation. We assign to each
function f of the form (1.3) two polynomials f↑ and f↓ by writing this function as


f(λ) =
f↑(λ)


f↓(λ)
,
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where


f↓(λ) := h′0


d∏


k=1


(hk − λ), h′0 :=


{
1/h0, h0 > 0,


1, h0 = 0.


We define the index of f as


ind f := deg f↑ + deg f↓.


If f = ∞ then we just set


f↑(λ) := −1, f↓(λ) := 0, ind f := −1.


It can easily be verified that each nonconstant function f of the form (1.3) is
strictly increasing on any interval not containing any of its poles, and f(λ) → ±∞
(respectively, f(λ) → h) as λ → ±∞ if its index is odd (respectively, even). We
denote the smallest pole of f (if it has any) by


π̊(f) :=


{
h1, ind f ≥ 2,


+∞, ind f ≤ 1,


and the total number of poles of this function not exceeding λ by


Πf (λ) :=
∑


1≤k≤d
hk≤λ


1.


For every nonnegative integer n we denote by Rn the set of rational functions of
the form (1.3) with ind f = n; we also introduce R−1 := {∞}, which corresponds
to the Dirichlet boundary condition. Then R0 consists of all constant functions, R1


consists of all increasing affine functions and so on. We also denote


R :=


∞⋃


n=−1


Rn.


To every f ∈ R we assign a monic polynomial


ωf (λ) := (−1)⌊
ind f


2 ⌋λf↓
(
λ2
)
− (−1)⌈


ind f
2 ⌉f↑


(
λ2
)
,


where ⌊·⌋ and ⌈·⌉ are the usual floor and ceiling functions. We denote by ω1 and
ω2 respectively the second and third coefficients of this polynomial:


ωf (λ) = λind f+1 + ω1λ
ind f + ω2λ


ind f−1 + . . . .


It is easy to see that ω2 coincides with the second coefficient of (−1)⌈ ind f
2 ⌉+1f↑(λ) if


ind f is odd and coincides with the second coefficient of (−1)⌊ ind f
2 ⌋f↓(λ) otherwise.


The numbers Ω1 and Ω2 are defined similarly for F .
Let ϕ(x, λ) and ψ(x, λ) be the solutions of (1.1) satisfying the initial conditions


ϕ(0, λ) = f↓(λ), ϕ′(0, λ) = −f↑(λ), ψ(π, λ) = F↓(λ), ψ′(π, λ) = F↑(λ).
(2.1)


Then standard arguments (e.g., [16, Theorem 1.1.1]) show that the eigenvalues of
the boundary value problem (1.1)-(1.2) coincide with the zeros of the characteristic
function


χ(λ) := F↑(λ)ϕ(π, λ) − F↓(λ)ϕ
′(π, λ) = f↓(λ)ψ


′(0, λ) + f↑(λ)ψ(0, λ),


are real and simple, and for each eigenvalue λn there exists a unique number βn 6= 0
such that


ψ(x, λn) = βnϕ(x, λn). (2.2)
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We denote by AC[0, π] the set of absolutely continuous functions on [0, π], and
by W1


2[0, π] the Sobolev space {f ∈ AC[0, π] : f ′ ∈ L2(0, π)}. In analogy with the
notation o(1/nα), we use the notation


xn = yn + ℓ2


(
1


nα


)


to mean
∑∞


n=0 |nα(xn − yn)|2 <∞. Finally, we denote by P(q, f, F ) the boundary


value problem (1.1)-(1.2), and by λ̊(q, f, F ) the smallest eigenvalue of this problem.


2.2. Hilbert space. We now introduce a Hilbert space and construct a self-adjoint
operator in it in such a way that the boundary value problem (1.1)-(1.2) will be
equivalent to the eigenvalue problem for this operator. The exact form of the
operator, however, depends on the functions f and F . When h0 > 0 and H0 > 0
we consider the Hilbert space H = L2(0, π)⊕Cd+D+2 with inner product given by


〈Y, Z〉 :=
∫ π


0


y(x)z(x) dx+
d∑


k=1


ykzk
δk


+
yd+1zd+1


h0
+


D∑


k=1


ηkζk
∆k


+
ηD+1ζD+1


H0


for


Y =






y(x)
y1
...


yd+1


η1
...


ηD+1






, Z =






z(x)
z1
...


zd+1


ζ1
...


ζD+1






∈ H.


In this space we define the operator


A(Y ) :=






−y′′(x) + q(x)y(x)
δ1y(0) + h1y1


...
δdy(0) + hdyd


y′(0) + hy(0)−∑d


k=1 yk
H1η1 −∆1y(π)


...
HDηD −∆Dy(π)


y′(π)−Hy(π)−∑D
k=1 ηk






with


D(A) := {Y ∈ H | y, y′ ∈ AC[0, π], −y′′ + qy ∈ L2(0, π),


yd+1 = −h0y(0), ηD+1 = H0y(π)}.


When at least one of the numbers h0, H0 is zero, the following modifications
are needed. We set H = L2(0, π) ⊕ C


d+D+1 in the case when only one of these
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numbers equals zero, and H = L2(0, π) ⊕ Cd+D otherwise. If h0 = 0 (respec-
tively, H0 = 0) we omit the (d + 2)-th components (respectively, the last compo-
nents) in the above paragraph, and replace the condition yd+1 = −h0y(0) (respec-
tively, ηD+1 = H0y(π)) by the condition y′(0)+hy(0)−


∑d
k=1 yk = 0 (respectively,


y′(π) − Hy(π) −∑D


k=1 ηk = 0) in the definition of the domain of A. If ind f ≤ 0
(respectively, indF ≤ 0), i.e., the first (respectively, the second) boundary condi-
tion is independent of the eigenvalue parameter, then there are no yk (respectively,
ηk) components at all, and the condition y′(0) = −hy(0) or y(0) = 0 (respectively,
the condition y′(π) = Hy(π) or y(π) = 0) is added in the definition of the domain
of A.


As in the case when only one of the boundary conditions depends on the eigen-
value parameter (see, e.g., [7], [18]), one can prove that the operatorA is self-adjoint,
its spectrum is discrete and coincides with the set of eigenvalues of (1.1)-(1.2), and
its eigenvectors


Φn :=






ϕ(x, λn)
δ1


λn−h1
ϕ(0, λn)
...


δd
λn−hd


ϕ(0, λn)


−h0ϕ(0, λn)
∆1


H1−λn
ϕ(π, λn)
...


∆D


HD−λn
ϕ(π, λn)


H0ϕ(π, λn)






are orthogonal.


2.3. Spectral data. We define the norming constants as


γn := ‖Φn‖2 =


∫ π


0


ϕ2(x, λn) dx+ f ′(λn)f
2
↓ (λn) +


1


β2
n


F ′(λn)F
2
↓ (λn). (2.3)


Since the number λn coincides with one of the poles of the function f (respectively,
F ) if and only if f↓(λn) = 0 (respectively, F↓(λn) = 0), the expression on the right-
hand side is well-defined in this case too. The numbers {λn, γn}n≥0 are called the
spectral data of the problem P(q, f, F ). We denote by γ̊(q, f, F ) the first norming
constant of the problem P(q, f, F ) (i.e., the norming constant corresponding to the


smallest eigenvalue λ̊(q, f, F ) of this problem).


Lemma 2.1. The following equality holds:


χ′(λn) = βnγn. (2.4)


Proof. Using (2.1) and (2.2) in the equality


(λ − λn)


∫ π


0


ψ(x, λ)ϕ(x, λn) dx = (ψ(x, λ)ϕ′(x, λn)− ψ′(x, λ)ϕ(x, λn))


∣∣∣∣
π


0


we obtain


χ(λ)


λ− λn
=


∫ π


0


ψ(x, λ)ϕ(x, λn) dx+
F↑(λ)F↓(λn)− F↓(λ)F↑(λn)


βn(λ− λn)


+
f↓(λ)− f↓(λn)


λ− λn
ψ′(0, λ) +


f↑(λ)− f↑(λn)


λ− λn
ψ(0, λ).
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As λ→ λn, this equality leads to (2.4). �


Lemma 2.2. The following first-order asymptotics holds:


√
λn = n− ind f + indF


2
+O


(
1


n


)
.


Proof. We write ϕ(x, λ) as


ϕ(x, λ) = f↓(λ)C(x, λ) − f↑(λ)S(x, λ),


where C(x, λ) and S(x, λ) are the solutions of (1.1) satisfying the initial conditions
C(0, λ) = S′(0, λ) = 1 and S(0, λ) = C′(0, λ) = 0. Using the well-known estimates
for C(x, λ) and S(x, λ) we calculate


ϕ(π, λ) =
(√


λ
)ind f


(
cos


(√
λ+


ind f


2


)
π +O


(
e| Im


√
λπ|


√
λ


))
,


ϕ′(π, λ) = −
(√


λ
)ind f+1


(
sin


(√
λ+


ind f


2


)
π +O


(
e| Im


√
λπ|


√
λ


))
.


Thus


χ(λ) =
(√


λ
)ind f+indF+1


(
sin


(√
λ+


ind f + indF


2


)
π +O


(
e| Im


√
λπ|


√
λ


))
.


Finally, a standard argument involving Rouché’s theorem concludes the proof. �


With this method one can in principle get sharper asymptotic formulas for the
spectral data. But we will later obtain them in a much shorter way (see Theo-
rem 4.1).


2.4. Smallest eigenvalues and nonexistence of zeros. Define a partial order
on the set R as follows: f 4 g if and only if either f = ∞, or f and g are two
functions satisfying f(λ) ≤ g(λ) for all λ < min{π̊(f), π̊(g)}.


Lemma 2.3. If f 4 f̃ and F 4 F̃ then λ̊(q, f, F ) ≥ λ̊(q, f̃ , F̃ ).


Proof. We only prove λ̊(q, f, F ) ≥ λ̊(q, f, F̃ ); the proof of λ̊(q, f, F̃ ) ≥ λ̊(q, f̃ , F̃ ) is


similar. Denote ν0 := λ̊(q, f,∞). Dividing both sides of the identity


ϕ(π, λ)ϕ′(π, µ)− ϕ′(π, λ)ϕ(π, µ)


= f↑(λ)f↓(µ)− f↓(λ)f↑(µ) + (λ− µ)


∫ π


0


ϕ(t, λ)ϕ(t, µ) dt


by µ− λ and taking the limit as µ→ λ we obtain


d


dλ


(
ϕ′(π, λ)


ϕ(π, λ)


)
= − 1


ϕ2(π, λ)


(
f2
↓ (λ)


df(λ)


dλ
+


∫ π


0


ϕ2(t, λ) dt


)
< 0


for λ ∈ (−∞, ν0). Lemma 2.2 implies


lim
λ→−∞


ϕ′(π, λ)


ϕ(π, λ)
= +∞, lim


λ→ν0−0


ϕ′(π, λ)


ϕ(π, λ)
= −∞.


Thus ϕ′(π, λ)/ϕ(π, λ) is strictly monotone decreasing from +∞ to −∞ as λ in-


creases from −∞ to ν0. This together with the fact that λ̊(q, f, F ) and λ̊(q, f, F̃ ) are
the smallest values of λ for which ϕ′(π, λ)/ϕ(π, λ) = F (λ) and ϕ′(π, λ)/ϕ(π, λ) =


F̃ (λ) respectively, concludes the proof. �
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Remark 2.1. The above proof also shows that λ̊(q, f, F ) < min{π̊(f), π̊(F )}.


Lemma 2.4. If λ ≤ λ̊(q, f,∞) (respectively, λ ≤ λ̊(q,∞, F )) then the function
ϕ(x, λ) (respectively, ψ(x, λ)) has no zeros in (0, π).


Proof. Let ν0 be defined as in the proof of Lemma 2.3. Since the function ϕ(x, ν0) is
an eigenfunction of the problem P(q, f,∞), it is a constant multiple of the function
Sπ(x, ν0), where Sπ(x, λ) is defined as the solution of (1.1) satisfying the initial
conditions Sπ(π, λ) = 0 and S′


π(π, λ) = 1. It is well-known that Sπ(x, λ) has no


zeros in (0, π) for λ ≤ λ̊(q,∞,∞) (i.e., for values of λ not greater than the smallest


eigenvalue of the Dirichlet problem for (1.1)). But ν0 ≤ λ̊(q,∞,∞) by Lemma 2.3.
Thus Sπ(x, ν0) and hence ϕ(x, ν0) has no zeros in (0, π).


Now suppose to the contrary that ϕ(x, λ) has zeros in (0, π) for some λ ≤ ν0.
Let x0 be its smallest positive zero. Remark 2.1 shows that ϕ(0, λ) = f↓(λ) > 0
and ϕ(0, ν0) = f↓(ν0) > 0. Thus ϕ(x, λ) > 0 and ϕ(x, ν0) > 0 for x ∈ (0, x0). Then
ϕ′(x0, λ0) < 0, and hence


0 > ϕ(x0, ν0)ϕ
′(x0, λ)− ϕ′(x0, ν0)ϕ(x0, λ)


= f↓(λ)f↓(ν0) (f(ν0)− f(λ)) + (ν0 − λ)


∫ x0


0


ϕ(t, ν0)ϕ(t, λ) dt > 0.


This contradiction proves the lemma for ϕ. The proof for ψ is similar. �


3. Transformations


3.1. Transformation of Nevanlinna functions. If we apply the Darboux trans-
formation to eigenfunctions of the problem (1.1)-(1.2), we obtain eigenfunctions
of another problem of the same form having some other functions from R in its
boundary conditions. We thus have a transformation between elements of R. In
this subsection we study such transformations.


We denote


S := {(µ, τ, f) ∈ R× R× R : µ < π̊(f), τ ≥ f(µ)} ,
and define the transformation


Θ : S → R, (µ, τ, f) 7→ f̂


by


f̂(λ) :=
µ− λ


f(λ) − τ
− τ.


In the particular case when f(λ) ≡ τ (respectively, f = ∞) this is understood as


f̂ := ∞ (respectively, f̂(λ) := −τ). One sees immediately from this definition that


Θ(µ,−τ,Θ(µ, τ, f)) = f. (3.1)


The other main properties of this transformation are summarized in the following
lemma.


Lemma 3.1. The transformation Θ is well-defined, i.e., f̂ := Θ(µ, τ, f) ∈ R. The


poles of f and f̂ interlace if ind f ≥ 2 and ind f̂ ≥ 2 (i.e., if both f and f̂ have


poles); moreover, π̊(f) < π̊(f̂) if τ = f(µ), and π̊(f) > π̊(f̂) if τ > f(µ). Also, if


τ = f(µ) then ind f̂ = ind f − 1,


f̂↑(λ) =
−τf↑(λ)−


(
λ− µ− τ2


)
f↓(λ)


λ− µ
, f̂↓(λ) =


f↑(λ) − τf↓(λ)


λ− µ
, (3.2)
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while if τ > f(µ) then ind f̂ = ind f + 1,


f̂↑(λ) = τf↑(λ) +
(
λ− µ− τ2


)
f↓(λ), f̂↓(λ) = −f↑(λ) + τf↓(λ). (3.3)


Proof. We assume that ind f ≥ 2, since the cases ind f = −1, 0, 1 can be verified
very easily. We have


f̂(λ) =
f↓(λ)(µ − λ)


τf↓(λ)− f↑(λ)
− τ,


where the polynomials f↑ and f↓, and thus f↓ and τf↓ − f↑ have no common roots.
When τ = f(µ) the polynomial τf↓(λ) − f↑(λ) is divisible by µ − λ, and hence


f̂ is a rational function with the set of poles {λ 6= µ | f(λ) = τ}. Denote by d̂


the cardinality of the latter set, and by ĥ1, ĥ2, . . ., ĥd̂ these poles. Recall that
f is strictly increasing on each of the intervals (−∞, h1), (h1, h2), . . . , (hd−1, hd),


(hd,+∞). Hence ĥk ∈ (hk, hk+1) for k = 1, . . ., d − 1. If ind f = 2d then f(λ) ր
h < f(µ) = τ as λ→ +∞, and thus d̂ = d− 1. Since the degree of the polynomial


(τf↓(λ) − f↑(λ)) /(µ− λ) also equals d− 1, the function f̂ can be written as


f̂(λ) = ĥ0λ+ ĥ+


d̂∑


k=1


δ̂k


ĥk − λ
. (3.4)


Also, since f̂(λ) → +∞ as λ → +∞, we obtain ĥ0 > 0, and since f(λ) ր τ as


λ ր ĥk, we obtain δ̂k > 0. Therefore f̂ ∈ R with ind f̂ = 2d̂ + 1 = ind f − 1.
Finally, the identities (3.2) are obtained by considering the leading coefficients of


the polynomials τf↑ +
(
λ− µ− τ2


)
f↓ and τf↓ − f↑. If ind f = 2d+ 1 then f̂ has


one more pole in (hd,+∞), i.e. d̂ = d. Also, since f(λ)/λ → h0 as λ → +∞, we


obtain that limλ→+∞ f̂(λ) is finite, i.e. ĥ0 = 0, and ind f̂ = 2d̂ = ind f − 1.
The case τ > f(µ) can be analyzed in a similar way by taking into account the


fact that the set of poles of f̂ is now {λ ∈ R | f(λ) = τ}. �


Remark 3.1. When ind f ≥ 1, there exists a number ν ∈ (µ, π̊(f)) with f(ν) = τ .
Thus one would be tempted to define the above transformation by


f̂(λ) :=
µ− λ


f(λ)− f(ν)
− f(ν)


for µ ≤ ν in the general case, as is done in [7], but obviously one cannot obtain an


increasing affine f̂ from a constant f in that way.


3.2. Direct transformation between problems. We now introduce the first
of our two essentially isospectral transformations between boundary value prob-
lems of the form (1.1)-(1.2), and study properties of the spectral data under this
transformation. Our transformation reduces the index of each boundary coeffi-
cient by one (if it is not already Dirichlet). Hence, by applying this transformation
max{ind f, indF} number of times to a boundary value problem of the form (1.1)-
(1.2), we will eventually arrive at a problem with boundary conditions independent
of the eigenvalue parameter. It is worth mentioning here that in the case when
ind f = indF = 0 our transformation coincides with the transformation + in [26],
and in the case when ind f = −1 (respectively, ind f = 0) it coincides with the
transformation SD (respectively, SN ) in [7].
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The domain Ŝ of our transformation consists of all possible boundary value
problems of the form (1.1)-(1.2), excluding the case when both boundary conditions
are Dirichlet:


Ŝ := {(q, f, F ) : q ∈ L1(0, π), f, F ∈ R, ind f + indF ≥ −1} .
We define the transformation


T̂ : Ŝ → L1(0, π)× R× R, (q, f, F ) 7→ (q̂, f̂ , F̂ )


by


q̂ := q − 2


(
v′


v


)′
, f̂ := Θ


(
Λ,−v


′(0)


v(0)
, f


)
, F̂ := Θ


(
Λ,
v′(π)


v(π)
, F


)
, (3.5)


where


Λ :=


{
λ0, f, F 6= ∞,


λ0 − 2, otherwise
and v(x) :=


{
ϕ(x,Λ), f 6= ∞,


ψ(x,Λ), f = ∞.
(3.6)


Then Remark 2.1, Lemmas 2.3, 2.4, 3.1 and the identity
(
v′(x)


v(x)


)′
= q(x)− Λ −


(
v′(x)


v(x)


)2


(3.7)


imply that the transformation T̂ is well-defined. Lemma 3.1 also shows that if


ind f ≥ 0 then ind f̂ = ind f − 1, and if ind f = −1 then ind f̂ = 0. The same is


true for F and F̂ .
To state the next theorem, we introduce the following notation: let


I := ind f − ind f̂ =


{
1, ind f ≥ 0,


−1, ind f = −1
(3.8)


and


J :=
ind f + indF


2
− ind f̂ + ind F̂


2
=


{
1, ind f, indF ≥ 0,


0, otherwise.
(3.9)


Theorem 3.1. If {λn, γn}n≥0 is the spectral data of the problem P(q, f, F ) and


(q̂, f̂ , F̂ ) = T̂(q, f, F ) then the spectral data of the transformed problem P(q̂, f̂ , F̂ )
is {


λn,
γn


(λn − Λ)I


}


n≥J


.


Proof. A routine calculation shows that for every n ≥ J (i.e., λn 6= Λ) the function


ϕ′(x, λn)−
v′(x)


v(x)
ϕ(x, λn)


is an eigenfunction of P(q̂, f̂ , F̂ ) corresponding to the eigenvalue λn. Hence the num-
bers λn for n ≥ J are eigenvalues of this boundary value problem, and Lemma 2.2
shows that there are no other eigenvalues.


For the part concerning the norming constants, we consider the cases ind f ≥ 0
and ind f = −1 separately. In the former case we set


ϕ̂n(x) :=
1


Λ− λn


(
ϕ′(x, λn)−


v′(x)


v(x)
ϕ(x, λn)


)
. (3.10)
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Then ϕ̂n satisfies the initial condition ϕ̂n(0) = f̂↓(λn) and the identity


ϕ̂2
n(x) =


(ϕ(x, λn)ϕ̂n(x))
′


Λ − λn
+
ϕ2(x, λn)


λn − Λ
.


Now if ind f ≥ 1 then from Lemma 3.1 we obtain


f̂ ′(λn)f̂
2
↓ (λn) =


f↓(λn)f̂↓(λn)


Λ− λn
+
f ′(λn)f2


↓ (λn)


λn − Λ
.


Similarly in the case indF ≥ 1 we have


F̂ ′(λn)ϕ̂
2
n(π) =


ϕ(π, λn)ϕ̂n(π)


λn − Λ
+
F ′(λn)ϕ2(π, λn)


λn − Λ
.


Using the last three identities we calculate


γ̂n :=


∫ π


0


ϕ̂2
n(x) dx + f̂ ′(λn)f̂


2
↓ (λn) + F̂ ′(λn)ϕ̂


2
n(π)


=
1


λn − Λ


(∫ π


0


ϕ2(x, λn) dx+ f ′(λn)f
2
↓ (λn) + F ′(λn)ϕ


2(π, λn)


)


=
γn


λn − Λ
.


Since in the case when ind f = 0 (respectively, indF ≤ 0) the second summands
(respectively, the last summands) are absent, by definition, from the expressions
for the norming constants and ϕ̂n(0) = 0 (respectively, ϕ(π, λn)ϕ̂n(π) = 0), the
above relation between γ̂n and γn holds also if ind f = 0 or indF ≤ 0.


In the case ind f = −1 we define ϕ̂n by


ϕ̂n(x) := ϕ′(x, λn)−
v′(x)


v(x)
ϕ(x, λn).


Then ϕ̂n satisfies the initial condition ϕ̂n(0) = 1 ≡ f̂↓(λn), and arguing as above,
we establish the equality γ̂n = γn(λn − Λ). �


Remark 3.2. The motivation for choosing the values given in (3.6) for Λ is due to
the following observation. By choosing v as an eigenfunction corresponding to the
smallest eigenvalue we reduce the indices of both boundary coefficients. This is
possible because of Lemmas 2.3 and 2.4. But if one of the boundary conditions is
Dirichlet then this eigenfunction equals zero at an endpoint of the interval [0, π].
The above lemmas show that one can choose Λ as any number strictly less than λ0.
The reason we do not choose λ0 − 1 is that, as Theorem 3.1 shows, the norming
constant γ0 is either multiplied or divided by λ0 − Λ, depending on which one of
the boundary conditions is Dirichlet. By choosing λ0 − 2 (for definiteness) we will
be able to determine this boundary condition in the next subsection.


3.2.1. An expression for γ̊(q, f, F ). We are now going to obtain an expression for
the first norming constant γ0 of the problem P(q, f, F ) with f, F 6= ∞ in terms of


the transformed problem P(q̂, f̂ , F̂ ), where (q̂, f̂ , F̂ ) := T̂(q, f, F ). This expression


will be used in the next subsection to invert the action of T̂.
Let Ĉ(x, λ) and Ŝ(x, λ) be the solutions of the equation


− y′′(x) + q̂(x)y(x) = λy(x) (3.11)


satisfying the initial conditions


Ĉ(0, λ) = Ŝ′(0, λ) = 1, Ŝ(0, λ) = Ĉ′(0, λ) = 0. (3.12)
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It is easy to see that the function 1/ϕ(x, λ0) satisfies the equation (3.11) and the
initial conditions


1


ϕ(0, λ0)
=


1


f↓(λ0)
,


1


ϕ(0, λ0)
=
f↑(λ0)


f2
↓ (λ0)


=
f(λ0)


f↓(λ0)
.


Thus
1


ϕ(x, λ0)
=


1


f↓(λ0)


(
Ĉ(x, λ0) + f(λ0)Ŝ(x, λ0)


)
.


Since Ŝ(x, λ0) and 1/ϕ(x, λ0) are both solutions of the equation (3.11), their Wron-
skian is constant:


Ŝ′(x, λ0)


ϕ(x, λ0)
+ Ŝ(x, λ0)


ϕ′(x, λ0)


ϕ2(x, λ0)
=
Ŝ′(0, λ0)


ϕ(0, λ0)
+ Ŝ(0, λ0)


ϕ′(0, λ0)


ϕ2(0, λ0)
=


1


f↓(λ0)
,


and hence


ϕ2(x, λ0) = f↓(λ0)
(
Ŝ(x, λ0)ϕ(x, λ0)


)′
.


If ind f ≥ 1 and indF ≥ 1 then we have


f ′(λ0) = − 1


f̂(λ0) + f(λ0)


and


F ′(λ0) = − 1


F̂ (λ0) + F (λ0)
= −


(
F̂ (λ0) +


ϕ′(π, λ0)


ϕ(π, λ0)


)−1


.


Using the above identities and (3.2) we calculate


γ0 =


∫ π


0


ϕ2(x, λ0) dx + f ′(λ0)f
2
↓ (λ0) + F ′(λ0)ϕ


2(π, λ0)


= f↓(λ0)Ŝ(π, λ0)ϕ(π, λ0)−
f2
↓ (λ0)


f̂(λ0) + f(λ0)
− ϕ2(π, λ0)


(
F̂ (λ0) +


ϕ′(π, λ0)


ϕ(π, λ0)


)−1


= ϕ(π, λ0)


(
f↓(λ0)Ŝ(π, λ0)−


ϕ2(π, λ0)


F̂ (λ0)ϕ(π, λ0) + ϕ′(π, λ0)


)
−


f2
↓ (λ0)


f̂(λ0) + f(λ0)


= f↓(λ0)ϕ
2(π, λ0)


Ŝ(π, λ0)F̂ (λ0)− Ŝ′(π, λ0)


F̂ (λ0)ϕ(π, λ0) + ϕ′(π, λ0)
−


f2
↓ (λ0)


f̂(λ0) + f(λ0)


= −f̂↓(λ0)
(
f̂(λ0) + f(λ0)


)( 1


κ + f(λ0)
+ f̂↓(λ0)


)
,


where


κ :=
Ĉ′(π, λ0)− Ĉ(π, λ0)F̂ (λ0)


Ŝ′(π, λ0)− Ŝ(π, λ0)F̂ (λ0)
.


If f (respectively, F ) is constant then f̂ = ∞ (respectively, F̂ = ∞), and we only
need to replace the above expression for γ0 (respectively, for κ) by


γ0 =
1


κ + f(λ0)


(respectively, κ := Ĉ(π, λ0)/Ŝ(π, λ0)).
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3.3. Inverse transformation between problems. By applying the transforma-


tion T̂ to a problem P(q, f, F ) of the form (1.1)-(1.2) we obtain a new problem


P(q̂, f̂ , F̂ ) of the same form. Now we want to restore the original problem P(q, f, F )


from the transformed problem P(q̂, f̂ , F̂ ). As we will see below, in order to be able
to determine the original problem we need some more information, e.g., the smallest
eigenvalue λ0 and the corresponding norming constant γ0 of the problem P(q, f, F ).
But first we need to determine whether one of f and F is ∞ or not. Theorem 3.1


shows that λ̊(q, f, F ) = λ̊(q̂, f̂ , F̂ ) if and only if one of the boundary conditions of
the problem P(q, f, F ) is Dirichlet. In this case the same theorem together with
(3.6) also tells us which of the two boundary conditions is Dirichlet, and the value
of v′/v at one of the endpoints of the interval [0, π] can be immediately found
from (3.5). In the case when none of the boundary conditions is Dirichlet, this


value can be found from the expression for γ̊(q, f, F ) in terms of P(q̂, f̂ , F̂ ). Know-
ing this value, v can be uniquely (up to a constant multiple) determined by the fact
that 1/v satisfies the equation (3.11) with λ = Λ.


With these considerations in mind, we define the transformation


T̃ : S̃ → L1(0, π)× R× R, (µ, ν, q, f, F ) 7→ (q̃, f̃ , F̃ )


on the union
S̃ := S̃1 ∪ S̃2 ∪ S̃3


of the sets


S̃1 :=
{
(µ, ν, q, f, F ) : q ∈ L1(0, π), f, F ∈ R, µ < λ̊(q, f, F ), ν > 0


}
,


S̃2 :=
{
(µ, ν, q, f, F ) : q ∈ L1(0, π), f ∈ R0, F ∈ R,


µ = λ̊(q, f, F ), ν = γ̊(q, f, F )/2
}


and


S̃3 :=
{
(µ, ν, q, f, F ) : q ∈ L1(0, π), f ∈ R, F ∈ R0,


µ = λ̊(q, f, F ), ν = 2γ̊(q, f, F )
}


as follows. Let (µ, ν, q, f, F ) ∈ S̃.
If µ < λ̊(q, f, F ) we denote Λ := µ and


κ :=
C′(π, µ)− C(π, µ)F (µ)


S′(π, µ)− S(π, µ)F (µ)


(in the case when F = ∞ this is understood as κ := C(π, µ)/S(π, µ)). Lemma 2.3


implies µ < λ̊(q,∞, F ), and hence κ is well-defined. Arguing as in the proof of


Lemma 2.3 we see that P(q,κ, F ) has only one eigenvalue not exceeding λ̊(q,∞, F ),


and hence µ = λ̊(q,κ, F ). The same proof also shows that if f 6= ∞ then


f(µ) < f
(
λ̊(q, f, F )


)
= −


ψ′
(
0, λ̊(q, f, F )


)


ψ
(
0, λ̊(q, f, F )


) < −ψ
′(0, µ)


ψ(0, µ)
= κ.


The function


γ(t) := −f↓(µ) (f(µ) + t)


(
1


κ + t
+ f↓(µ)


)
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is strictly monotone decreasing from +∞ to 0 as t increases from −κ to −f(µ).
Thus there is a unique τ ∈ (−κ,−f(µ)) such that γ(τ) = ν. In the case f = ∞ we
just set τ := 1


ν
−κ. We denote by u the solution of (1.1) with λ = µ, u(0) = 1 and


u′(0) = τ . Lemma 2.3 implies that µ = λ̊(q,κ, F ) ≤ λ̊(q,κ,∞) < λ̊(q,−τ,∞), and
hence Lemma 2.4 shows that u has no zeros on [0, π]. Moreover, if F 6= ∞ then
using the asymptotics of the solutions S and S′ we obtain that the denominator
of the above expression for κ is strictly positive, and thus τ > −κ implies F (µ) <
u′(π)/u(π).


If µ = λ̊(q, f, F ), then either ν = γ̊(q, f, F )/2 or ν = 2γ̊(q, f, F ). In the former
case f is constant and we denote u := ϕ(x, µ− 2). In the latter case F is constant
and this time we denote u := ψ(x, µ− 2). In both cases u has no zeros on [0, π] by
Lemma 2.4, and we set Λ := µ− 2.


Finally, we define


q̃ := q − 2


(
u′


u


)′
, f̃ := Θ


(
Λ,−u


′(0)


u(0)
, f


)
, F̃ := Θ


(
Λ,
u′(π)


u(π)
, F


)
.


Now we prove that, in a sense, the two transformations that we defined in this
and the previous subsections are inverses of each other.


Theorem 3.2. The transformations T̂ and T̃ are inverses of each other in the


sense that if (q, f, F ) ∈ Ŝ and (q̂, f̂ , F̂ ) = T̂(q, f, F ) then


T̃
(
λ̊(q, f, F ), γ̊(q, f, F ), q̂, f̂ , F̂


)
= (q, f, F ),


and conversely if (µ, ν, q, f, F ) ∈ S̃ then T̂T̃(µ, ν, q, f, F ) = (q, f, F ).


Proof. Denote λ0 := λ̊(q, f, F ) and (q̃, f̃ , F̃ ) := T̃
(
λ0, γ̊(q, f, F ), q̂, f̂ , F̂


)
. If f 6= ∞


and F 6= ∞ then
(
λ0, γ̊(q, f, F ), q̂, f̂ , F̂


)
∈ S̃1. Comparing the definition of T̃


with the expression for γ̊(q, f, F ) derived in Subsubsection 3.2.1, we conclude that
τ = f(λ0). Thus the functions f↓(λ0)/v(x) and u(x) satisfy the equation (3.11)
with λ = λ0 and the same initial conditions, and hence u(x) = f↓(λ0)/v(x). Then


u′(x)


u(x)
= −v


′(x)


v(x)
,


and thus


q̃(x) = q̂(x)− 2


(
u′(x)


u(x)


)′
= q(x) − 2


(
v′(x)


v(x)


)′
− 2


(
u′(x)


u(x)


)′
= q(x).


Finally, the identity (3.1) implies


f̃ = Θ


(
λ0,−


u′(0)


u(0)
,Θ


(
λ0,−


v′(0)


v(0)
, f


))
= f


and similarly F̃ = F . The remaining cases and the converse statement can be
analyzed in an analogous manner. �


We can also prove an analogue of Theorem 3.1 for the transformation T̃.


Theorem 3.3. If {λn, γn}n≥0 is the spectral data of the problem P(q, f, F ) and


(q̃, f̃ , F̃ ) = T̃(µ, ν, q, f, F ) then the spectral data of the problem P(q̃, f̃ , F̃ ) is
{
λn, γn(λn − Λ)I


}
n≥−J


,
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where λ−1 := µ, γ−1 := ν, and I and J are defined as


I := ind f̃ − ind f, J :=
ind f̃ + ind F̃


2
− ind f + indF


2
.


Proof. If µ < λ̊(q, f, F ) (i.e., J = 1) then one can easily verify that the function


1/u is an eigenfunction of P(q̃, f̃ , F̃ ) corresponding to the eigenvalue µ. It follows


from the definition of Θ that f̃(µ) = τ . Comparison of the definition of T̃ with the


expression for γ̊(q, f, F ) derived in Subsubsection 3.2.1 gives γ̊(q̃, f̃ , F̃ ) = ν. The
rest of the proof follows readily from Theorems 3.1 and 3.2. �


4. Applications


4.1. Asymptotics of eigenvalues and norming constants. As mentioned ear-
lier, it is possible to obtain sharper asymptotic formulas for the spectral data of the
problem P(q, f, F ) by following the method of the proof of Lemma 2.2. However,
this method requires a large amount of calculation, and has already been done in
the case of constant boundary conditions (see, e.g., [16, Theorem 1.1.3 and Remark


1.1.2]). Our next theorem shows that the transformation T̂ allows us to extend
them to the case of boundary conditions (1.2) with much less calculation and write
them in a unified manner. But first we start with a preliminary lemma.


Lemma 4.1. If (q̂, f̂ , F̂ ) = T̂(q, f, F ) then


1


2


∫ π


0


q(x) dx + ω1 +Ω1 =
1


2


∫ π


0


q̂(x) dx + ω̂1 + Ω̂1,


where ω̂1 and Ω̂1 are the second coefficients of the polynomials ω
f̂
and ω


F̂
respec-


tively.


Proof. We consider only the case ind f , indF ≥ 0. The other cases when f = ∞
or F = ∞ can be analyzed in a similar way. If h0 > 0 then f̂ is of the form (3.4)


with ĥ0 = 0 and


ĥ = − 1


h0
− f(λ0).


If ind f > 0 and h0 = 0 then


ĥ0 =
1


f(λ0)− h
.


Finally, if ind f = 0 then f̂ = ∞. In all these cases ω̂1 = ω1 + f(λ0). Similarly


Ω̂1 = Ω1 + F (λ0). Hence (3.5) implies


1


2


∫ π


0


q̂(x) dx + ω̂1 + Ω̂1


=
1


2


∫ π


0


q(x) dx − ϕ′(π, λ0)


ϕ(π, λ0)
+
ϕ′(0, λ0)


ϕ(0, λ0)
+ ω1 + f(λ0) + Ω1 + F (λ0)


=
1


2


∫ π


0


q(x) dx + ω1 +Ω.


�


We are now in a position to prove
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Theorem 4.1. The spectral data of the problem P(q, f, F ) have the asymptotics


√
λn = n− ind f + indF


2
+


1


πn


(
1


2


∫ π


0


q(x) dx + ω1 +Ω1


)
+
ξn
n
,


γn =
π


2


(
n− ind f + indF


2


)2 ind f (
1 +


ξ′n
n


)
,


where {ξn}, {ξ′n} = o(1) if q ∈ L1(0, π) and {ξn}, {ξ′n} ∈ ℓ2 if q ∈ L2(0, π).


Proof. We give the proof for the case q ∈ L1(0, π); the case when q ∈ L2(0, π) differs
from it only in the form of the remainder terms. Consider the chain of problems
P(q(k), f (k), F (k)) defined by


(q(0), f (0), F (0)) := (q, f, F ),


(q(k), f (k), F (k)) := T̂(q(k−1), f (k−1), F (k−1)), k = 1, 2, . . . ,K,
(4.1)


where K := max{ind f, indF}. Then the last problem P(q(K), f (K), F (K)) has
constant boundary conditions, and hence its eigenvalues have the asymptotics


√
λ
(K)
n = n− ind f (K) + indF (K)


2


+
1


πn


(
1


2


∫ π


0


q(K)(x) dx+ ω(K) + Ω(K)


)
+ o


(
1


n


)
.


Let I and J be defined by (3.8)-(3.9) with f and F replaced by f (K−1) and F (K−1)


respectively. Using Theorem 3.1 and Lemma 4.1 we calculate


√
λ
(K−1)
n =


√
λ
(K)
n−J


= n− J − ind f (K) + indF (K)


2


+
1


π(n− J)


(
1


2


∫ π


0


q(K)(x) dx + ω(K) +Ω(K)


)
+ o


(
1


n


)


= n− ind f (K−1) + indF (K−1)


2


+
1


πn


(
1


2


∫ π


0


q(K−1)(x) dx+ ω(K−1) +Ω(K−1)


)
+ o


(
1


n


)
,


where we used the obvious relation


1


π(n− J)
=


1


πn
+O


(
1


n2


)
.


Repeating this argument K − 1 more times yields the above asymptotics for
√
λn.


In a similar manner, from


γ(K)
n =


π


2


(
n− ind f (K) + indF (K)


2


)2 ind f(K) (
1 + o


(
1


n


))
,
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Theorem 3.1 and Lemma 4.1 we obtain


γ(K−1)
n = γ


(K)
n−J


(
λ(K−1)
n − µ


)I


=
π


2


(
n− J − ind f (K) + indF (K)


2


)2 ind f(K)


×
(
n− ind f (K−1) + indF (K−1)


2


)2I (
1 + o


(
1


n


))


=
π


2


(
n− ind f (K−1) + indF (K−1)


2


)2 ind f(K−1) (
1 + o


(
1


n


))
.


Again, repeating this argument K− 1 more times we get the above asymptotics for
the sequence γn. �


4.2. Oscillation of eigenfunctions. The Sturm oscillation theorem says that an
eigenfunction corresponding to the n-th eigenvalue of the Sturm–Liouville problem
with constant boundary conditions has exactly n zeros in the open interval (0, π)
(see, e.g., [16, Theorem 1.2.2]). Oscillation properties of the eigenfunctions of prob-
lems with boundary conditions dependent on the eigenvalue parameter have been


studied, e.g., in [5, Appendix I], [6, Section 3]. By using the transformation T̂, we
will now extend these results to boundary value problems of the form (1.1)-(1.2).
But first we need the following auxiliary result.


Lemma 4.2. Let J and ϕ̂n be defined by the formulas (3.9) and (3.10) respectively.
If the function ϕ̂n(x) has N zeros in (0, π) then the function ϕ(x, λn) has exactly
N + J +Π


f̂
(λn) +Π


F̂
(λn)−Πf (λn)−ΠF (λn) zeros in (0, π).


Proof. We give the proof for the case f 6= ∞; in the case when f = ∞ we only need
to consider ψ instead of ϕ. Let Λ be defined by (3.6). The identities


(ϕ̂n(x)ϕ(x,Λ))
′
= ϕ(x, λn)ϕ(x,Λ),


(
ϕ(x, λn)


ϕ(x,Λ)


)′
= (Λ − λn)


ϕ̂n(x)


ϕ(x,Λ)


imply that between any two zeros of the function ϕ̂n(x) there is a zero of the
function ϕ(x, λn) and vice versa. If we denote by x1, . . ., xN the zeros of the
function ϕ̂n(x) in (0, π) then the function ϕ(x, λn) has N − 1 zeros in (x1, xN ).
Using the equalities


ϕ̂n(0)ϕ(0,Λ) = f̂↓(λn)f↓(Λ), ϕ(0, λn)ϕ(0,Λ) = f↓(λn)f↓(Λ)


and the above identities one can easily check that ϕ(x, λn) has a zero in (0, x1)


if and only if f̂↓(λn)f↓(λn) > 0 or f̂↓(λn) = 0, i.e., if and only if the functions


f and f̂ have the same number of poles not exceeding λn. A similar assertion


holds for the interval (xN , π) and the functions F and F̂ if the boundary condition
at π is not Dirichlet (i.e., J = 1). Otherwise, if the boundary condition at π is
Dirichlet (i.e., J = 0), the function ϕ(x, λn) does not have a zero in (xN , π), but
ΠF (λn) = Π


F̂
(λn) = 0. This concludes the proof. �


Now we are ready to prove our main oscillation result.


Theorem 4.2. An eigenfunction of the problem P(q, f, F ) corresponding to the
eigenvalue λn has exactly n−Πf (λn)−ΠF (λn) zeros in (0, π).
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Proof. Consider the problems P(q(k), f (k), F (k)) defined by (4.1). Let J (k) be
defined by (3.9) with f and F replaced by f (k) and F (k) respectively. Since
the last problem P(q(K), f (K), F (K)) has constant boundary conditions, its eigen-


function corresponding to the eigenvalue λ
(K)
m has m zeros in the open interval


(0, π) for each m ≥ 0. On the other hand, the constancy of f (K) and F (K)


implies Πf(K)(λ) ≡ 0 and ΠF (K)(λ) ≡ 0, and hence the statement of the the-
orem holds in this case. By successive applications of Theorem 3.1, it follows


that λn = λ
(K)
n−J′ , where J ′ :=


∑K−1
k=0 J (k). Applying Lemma 4.2 successively to


the problems P(q(K−1), f (K−1), F (K−1)), . . ., P(q(0), f (0), F (0)), we obtain that an
eigenfunction of P(q, f, F ) corresponding to the eigenvalue λn has


n− J ′ +
K−1∑


k=0


(
J (k) +Πf(k+1)(λn) +ΠF (k+1)(λn)−Πf(k)(λn)−ΠF (k)(λn)


)


= n−Πf (λn)−ΠF (λn)


zeros in (0, π). �


4.3. Regularized trace formulas. In this subsection, we apply our direct trans-
formation to the calculation of regularized traces. We refer to [41] for a relatively
recent survey on this topic. Regularized traces of Sturm–Liouville problems with
boundary conditions dependent on the eigenvalue parameter have been calculated
in [15], [21], [31].


Throughout this subsection we assume that q ∈ W1
2[0, π]. As in the case of


constant boundary conditions (see, e.g., [16, Remark 1.1.1], [33, Appendix II] or
[36, Theorem 1.5.1]), one can obtain more precise asymptotics for the spectral data
of P(q, f, F ), depending on the smoothness of the potential q. In particular, if
q ∈ W1


2[0, π] then the eigenvalues of the problem P(q, f, F ) have the asymptotics


√
λn = n− a+


b


n− a
+ ℓ2


(
1


n2


)
,


where


a :=
ind f + indF


2
, b :=


1


π


(
1


2


∫ π


0


q(x) dx + ω1 +Ω1


)
.


Hence the following series (called the first regularized trace) converges:


Trace(q, f, F ) :=
∑


n<a


λn +
∑


n=a


(λn − b) +
∑


n>a


(
λn − (n− a)2 − 2b


)
.


The sum of this series has already been calculated in [15]. Here we express sλ in
terms of q, ω1, ω2, Ω1 and Ω2, and give another proof of these formulas, based on


the use of the transformation T̂.
Again, we begin with a preliminary lemma.


Lemma 4.3. Let (q̂, f̂ , F̂ ) := T̂(q, f, F ), and let ω̂1 and ω̂2 (respectively, Ω̂1 and


Ω̂2) be the second and third coefficients of the polynomial ω
f̂
(respectively, ω


F̂
).


We have


(−1)ind f̂ q̂(0)


4
− ω̂2


1


2
− ω̂2 =


(−1)ind fq(0)


4
− ω2


1


2
− ω2 ∓


Λ


2
,


where Λ is defined by (3.6), and the plus sign is used if and only if f = ∞.
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Proof. The proof of Lemma 4.1 shows that ω̂1 = ω1 + f(Λ). If f 6= ∞ then (3.5),
(3.6) and (3.7) imply


q̂(0) = −q(0) + 2Λ + 2f2(Λ).


We start with the case when h0 > 0 (i.e., ind f is odd and positive). From the first
identity of (3.2) we get ω̂2 = ω2 − ω1f(Λ) + Λ. Thus


(−1)ind f̂ q̂(0)


4
− ω̂2


1


2
− ω̂2


= −q(0)
4


+
Λ + f2(Λ)


2
− ω2


1


2
− ω1f(Λ)−


f2(Λ)


2
− ω2 + ω1f(Λ)− Λ


= −q(0)
4


− ω2
1


2
− ω2 −


Λ


2
.


In the case when h0 = 0 (i.e., ind f is even) from the second identity of (3.2) we
get ω̂2 = ω2 − ω1f(Λ)− f2(Λ). Hence


(−1)ind f̂ q̂(0)


4
− ω̂2


1


2
− ω̂2


=
q(0)


4
− Λ + f2(Λ)


2
− ω2


1


2
− ω1f(Λ)−


f2(Λ)


2
− ω2 + ω1f(Λ) + f2(Λ)


=
q(0)


4
− ω2


1


2
− ω2 −


Λ


2
.


Finally, if f = ∞ then f̂ is constant, and thus ω̂1 = −f̂ and ω̂2 = ω1 = ω2 = 0.
From (3.5), (3.6) and (3.7) we have


q̂(0) = −q(0) + 2Λ + 2f̂2.


Therefore


(−1)ind f̂ q̂(0)


4
− ω̂2


1


2
− ω̂2 = −q(0)


4
+


Λ + f̂2


2
− f̂2


2
= −q(0)


4
+


Λ


2
.


�


Theorem 4.3. The following identity holds:


Trace(q, f, F ) =
(−1)ind fq(0)


4
+


(−1)indF q(π)


4
− ω2


1


2
− Ω2


1


2
− ω2 − Ω2.


Proof. Consider again the problems P(q(k), f (k), F (k)) defined by (4.1). Since the
last problem P(q(K), f (K), F (K)) has constant boundary conditions, the identity in
the statement of the theorem holds for this problem. We now consider the problem


P(q(K−1), f (K−1), F (K−1)). If ind f (K−1), indF (K−1) ≥ 0 then Λ(K−1) = λ
(K−1)
0 .


In this case P(q(K−1), f (K−1), F (K−1)) has the extra eigenvalue λ
(K−1)
0 and hence


Trace(q(K−1), f (K−1), F (K−1)) = λ
(K−1)
0 +Trace(q(K), f (K), F (K)).
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Using Lemma 4.3 we calculate


Trace(q(K−1), f (K−1), F (K−1)) = Trace(q(K), f (K), F (K)) + λ
(K−1)
0


=
(−1)ind f(K)


q(K)(0)


4
−


(
ω
(K)
1


)2


2
− ω


(K)
2 +


λ
(K−1)
0


2


+
(−1)indF (K)


q(K)(π)


4
−


(
Ω


(K)
1


)2


2
− Ω


(K)
2 +


λ
(K−1)
0


2


=
(−1)ind f(K−1)


q(K−1)(0)


4
−


(
ω
(K−1)
1


)2


2
− ω


(K−1)
2


+
(−1)indF (K−1)


q(K−1)(π)


4
−


(
Ω


(K−1)
1


)2


2
− Ω


(K−1)
2 .


If one of f (K−1) and F (K−1) is ∞ then the other one is not, and thus the terms ∓Λ
2


in Lemma 4.3 cancel each other out. Since in this case P(q(K−1), f (K−1), F (K−1))
and P(q(K), f (K), F (K)) are isospectral, we have Trace(q(K−1), f (K−1), F (K−1)) =
Trace(q(K), f (K), F (K)). Applying now Lemma 4.3, we arrive at the same value
for Trace(q(K−1), f (K−1), F (K−1)). Repeating this argument K − 1 more times
concludes the proof. �


4.4. Inverse problem by spectral data. Inverse eigenvalue problems for the
Sturm–Liouville equation with boundary conditions dependent on the eigenvalue
parameter have been studied in many works. Most of them consider the case of
linear dependence on the eigenvalue parameter (see, e.g., [2], [4], [20], [30], [35]).
More general boundary conditions have also been studied (see, e.g., [1], [7], [9], [10],
[17]). Problems with coupled boundary conditions dependent on the eigenvalue
parameter are considered in [28], [42].


Throughout this and the next subsection, we consider problems P(q, f, F ) with
q ∈ L2(0, π), since in this case the necessary and sufficient conditions for the solv-
ability of the inverse problem are especially elegant (see also Remark 4.1 at the end
of the subsection). Theorem 4.1 shows that the spectral data of a problem of the
form (1.1)-(1.2) necessarily satisfies the conditions


λ0 < λ1 < λ2 < . . . , γn > 0, n ≥ 0 (4.2)


and √
λn = n− M +N


2
+


σ


πn
+ ℓ2


(
1


n


)
,


γn =
π


2


(
n− M +N


2


)2M (
1 + ℓ2


(
1


n


)) (4.3)


for some real σ and integersM , N ≥ −1. The aim of this subsection is to prove that
these necessary conditions are also sufficient for sequences of real numbers {λn}n≥0


and {γn}n≥0 to be the eigenvalues and the norming constants of a problem of the
form (1.1)-(1.2).


It is well-known that for sequences of real numbers {λn}n≥0 and {γn}n≥0 satis-
fying these conditions with −1 ≤M , N ≤ 0, there exists a unique boundary value
problem P(q, f, F ) with constant boundary conditions having these sequences as
its spectral data (see, e.g., [16, Theorem 1.5.2 and Remark 1.5.1]). In this case
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M = −1 (respectively, N = −1) if and only if f = ∞ (respectively, F = ∞), i.e.,
if and only if the boundary condition at 0 (respectively, at π) is Dirichlet. The
transformations defined in Section 3 allow us to extend this result to the case of
boundary conditions (1.2).


Theorem 4.4. Let {λn}n≥0 and {γn}n≥0 be sequences of real numbers satisfying
the conditions (4.2) and (4.3). Then there exists a unique boundary value problem
P(q, f, F ) having the spectral data {λn, γn}n≥0.


Proof. Denote K := max{M,N}, and consider the numbers M (k), N (k) and the


sequences {λ(k)n }n≥0, {γ(k)n }n≥0 for k = 0, 1, . . ., K defined by


M (0) :=M, N (0) := N, λ(0)n := λn, γ(0)n := γn


and
M (k) :=M (k−1) − I, N (k) := N (k−1) + I − 2J,


λ(k)n := λ
(k−1)
n−J , γ(k)n :=


γ
(k−1)
n−J


(λ
(k−1)
n−J − λ


(k−1)
0 − 1 + J)I


,


where


I :=


{
1, M (k−1) ≥ 0,


−1, M (k−1) = −1,
J :=


{
1, M (k−1), N (k−1) ≥ 0,


0, otherwise


(we omit the indices of I and J to avoid double indices). It is easy to see that
they satisfy the conditions (4.2) and (4.3) with M , N , λn and γn replaced byM (k),


N (k), λ
(k)
n and γ


(k)
n respectively. Moreover, one of the numbersM (K) and N (K) is 0,


while the other one is either 0 or −1. Hence there exists a boundary value problem


P(q(K), f (K), F (K)) (with constant boundary conditions) having {λ(K)
n , γ


(K)
n }n≥0


as its spectral data. Now we successively define P(q(K−1), f (K−1), F (K−1)), . . . ,
P(q(0), f (0), F (0)) by


(q(k−1), f (k−1), F (k−1)) := T̃(λ
(k−1)
0 , γ


(k−1)
0 , q(k), f (k), F (k)).


Theorem 3.3 ensures at each step that the spectral data of P(q(k), f (k), F (k)) is


{λ(k)n , γ
(k)
n }n≥0, and hence the existence part of the theorem follows.


To prove the uniqueness part assume that P(q, f, F ) and P(q̃, f̃ , F̃ ) have the


same spectral data. Theorem 4.1 implies ind f = ind f̃ and indF = ind F̃ . Denote
K := max{ind f, indF}. Together with the problems P(q(k), f (k), F (k)) defined by


(4.1) we consider the problems P(q̃(k), f̃ (k), F̃ (k)) defined by


(q̃(0), f̃ (0), F̃ (0)) := (q̃, f̃ , F̃ ),


(q̃(k), f̃ (k), F̃ (k)) := T̂(q̃(k−1), f̃ (k−1), F̃ (k−1)), k = 1, 2, . . . ,K.
(4.4)


It follows from Theorem 3.1 that P(q(k), f (k), F (k)) and P(q̃(k), f̃ (k), F̃ (k)) have


the same spectral data. In particular, P(q(K), f (K), F (K)) and P(q̃(K), f̃ (K), F̃ (K))
are two problems with constant boundary conditions and the same spectral data.


Therefore (q(K), f (K), F (K)) = (q̃(K), f̃ (K), F̃ (K)). Finally, successive applications
of Theorem 3.2 concludes the proof. �


Remark 4.1. A similar characterization can be obtained for potentials q ∈ L1(0, π).
In this case, however, in addition to the asymptotics of the spectral data, one more
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condition is needed, namely that a certain function of two variables (the kernel of
the Gelfand–Levitan–Marchenko equation) has summable first derivatives (see [33,
Theorem 1.6.1]). For problems P(q, f, F ) with ind f ≤ 0 this result can be found
in [7, Section 6].


4.5. Symmetric case. Theorem 4.4 shows that the spectrum of a boundary value
problem of the form (1.1)-(1.2) does not uniquely determine this problem. But the
situation is different in the case of symmetric boundary value problems, i.e., for
P(q, f, f) with q(x) = q(π − x). In this subsection we will prove that the spectrum
alone determines the symmetric potential q and the boundary coefficient f .


We start by studying the properties of symmetric problems. Theorem 4.1 shows
that the eigenvalues of P(q, f, f) satisfy the asymptotics


√
λn = n−M +


σ


πn
+ ℓ2


(
1


n


)
, (4.5)


where M = ind f and


σ =
1


2


∫ π


0


q(x) dx + 2ω1.


Since our problem is symmetric, it follows from (2.1) that ψ(x, λ) = ϕ(π − x, λ).
Then (2.2) implies ψ(x, λn) = β2


nψ(x, λn), and hence β2
n = 1. Using Theorem 4.2


we obtain βn = (−1)n. Thus Lemma 2.1 implies


γn = (−1)nχ′(λn). (4.6)


It follows from the asymptotics of χ(λ) (see the proof of Lemma 2.2) that this
function is an entire function of order 1/2, and hence from Hadamard’s theorem
(see, e.g., [32, Section 4.2]) we obtain


χ(λ) = −π
M∏


n=0


(λn − λ)


∞∏


n=M+1


λn − λ


(n−M)2
. (4.7)


Now we are ready to state the main result of this subsection.


Theorem 4.5. Let {λn}n≥0 be a strictly increasing sequence of real numbers sat-
isfying the asymptotics (4.5) for some real σ and integer M ≥ −1. Then there
exists a unique symmetric boundary value problem P(q, f, f) having the spectrum
{λn}n≥0.


Proof. Define χ by (4.7) and then γn by (4.6). It follows from [36, Lemma 3.4.2]
that χ has a representation of the form


χ(λ) = −
(
sinπ


√
λ√


λ
− 4σ cosπ


√
λ


4λ− 1
+
g(λ)


λ


)
M∏


n=0


(λn − λ),


where g(λ) =
∫ π


0
g̃(t) cos


√
λt dt for some g̃ ∈ L2(0, π). This representation and


(4.7) imply that γn are strictly positive numbers satisfying the asymptotics


γn =
π


2
(n−M)2M


(
1 + ℓ2


(
1


n


))
.


The rest of the proof now follows from Theorem 4.4. �
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4.6. Inverse problem with partial information on the potential. Another
type of inverse problems where the spectrum alone is sufficient are the so-called
problems with partial information on the potential. In the case of constant (i.e., in-
dependent of the eigenvalue parameter) boundary conditions Hochstadt and Lieber-
man [23] showed that the knowledge of the norming constants can be replaced by
the knowledge of the potential on half the interval and of the boundary constants.
Hald [22] proved that one of the boundary constants need not be assumed known,
i.e., for a problem P(q, h,H) with constant boundary conditions (h, H ∈ R∪ {∞})
the knowledge of q on [0, π/2] together with h and the spectrum uniquely deter-
mine H and q a.e. on all of [0, π/2] (see [22, Lemma 1], [19, Theorem A.1]). Later
Gesztesy and Simon [19] and Ramm [40] showed that if the potential is known
on more than half the interval then only a finite density subset of eigenvalues is
needed. See also [3], [24], [25], [34], [45] for further developments in this direction,
and [4], [44], [46] for boundary conditions dependent on the eigenvalue parameter.
Here we generalize the Hochstadt–Lieberman theorem to the case of boundary value
problems of the form (1.1)-(1.2).


Theorem 4.6. Let {λn}n≥0 and {λ̃n}n≥0 denote the eigenvalues of the problems


P(q, f, F ) and P(q̃, f, F̃ ) respectively, where q, q̃ ∈ L1(0, π), f , F , F̃ ∈ R and


ind f ≥ indF . If q(x) = q̃(x) a.e. on [0, π/2] and λn = λ̃n for n ≥ 0, then


(q, f, F ) = (q̃, f, F̃ ).


Proof. From the asymptotics of the eigenvalues (see Theorem 4.1) we obtain that


indF = ind F̃ . DenoteK := ind f , and consider the problems P(q(k), f (k), F (k)) and


P(q̃(k), f̃ (k), F̃ (k)) defined by the formulas (4.1) and (4.4) respectively. Then f (k) =


f̃ (k) and ind f (k) ≥ indF (k) = ind F̃ (k) for each k = 1, 2, . . ., K; in particular,
f (K) ∈ R0 and F (K) ∈ R1 ∪R0. Denote by v(k)(x) and ṽ(k)(x) the solutions of the
equations −y′′(x) + q(k)(x)y(x) = Λ(k)y(x) and −y′′(x) + q̃(k)(x)y(x) = Λ(k)y(x)
respectively satisfying the initial conditions


v(k)(0) = ṽ(k)(0) = f
(k)
↓ (Λ(k)),


(
v(k)


)′
(0) =


(
ṽ(k)


)′
(0) = −f (k)


↑ (Λ(k)),


where


Λ(k) :=


{
λ̊(q(k), f (k), F (k)), F (k) 6= ∞,


λ̊(q(k), f (k), F (k))− 2, F (k) = ∞.


Using the definition of the transformation T̂, for each k = 0, 1, . . ., K − 1 we
successively obtain v(k)(x) = ṽ(k)(x) on [0, π/2] and q(k+1)(x) = q̃(k+1)(x) a.e. on


[0, π/2]. Then the problems P(q(K), f (K), F (K)) and P(q̃(K), f (K), F̃ (K)) with con-
stant boundary conditions satisfy the conditions of the Hochstadt–Lieberman the-


orem, and thus (q(K), f (K), F (K)) = (q̃(K), f (K), F̃ (K)). We now observe that both
1/v(K−1) and 1/ṽ(K−1) satisfy the equation −y′′(x) + q(K)(x)y(x) = Λ(K−1)y(x)
and the same initial conditions at 0. Hence v(K−1)(x) = ṽ(K−1)(x) on all of [0, π].
Thus


q(K−1) = q(K) + 2


((
v(K−1)


)′


v(K−1)


)′


= q(K) + 2


((
ṽ(K−1)


)′


ṽ(K−1)


)′


= q̃(K−1)
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a.e. on [0, π], and


F (K−1) = Θ


(
Λ(K−1),−


(
v(K−1)


)′
(π)


v(K−1)(π)
, F (K)


)


= Θ


(
Λ(K−1),−


(
ṽ(K−1)


)′
(π)


ṽ(K−1)(π)
, F (K)


)
= F̃ (K−1).


Repeating this argument K − 1 more times concludes the proof. �


Remark 4.2. The condition ind f ≥ indF also appears in the above-cited works [4],
[44], [46]. The question of whether this condition can be removed seems to be open.


One can also try to apply the transformations T̂ and T̃ to other results mentioned
above. But in order for this to work, a very restrictive additional condition (the
equality of the first several eigenvalues) must be imposed, and hence we do not
present these results here.


4.7. Inverse problem by interior spectral data. In this final subsection, we
consider a new type of uniqueness problem that has appeared relatively recently.
Using the main ideas of [23], Mochizuki and Trooshin [38] proved that for a problem
P(q, h,H) with constant boundary conditions (h, H ∈ R ∪ {∞}) the knowledge of
h and H , the spectrum and the values of the function ϕ′(π/2, λ)/ϕ(π/2, λ) at the
eigenvalues uniquely determines q a.e. on [0, π]. Our transformations allow us to
extend this result to the case of boundary conditions of the form (1.2) with equal
indices.


Theorem 4.7. Let {λn}n≥0 and {λ̃n}n≥0 denote the eigenvalues of the problems
P(q, f, F ) and P(q̃, f, F ) respectively, and let yn and ỹn be corresponding eigen-


functions, where q, q̃ ∈ L1(0, π), f , F ∈ R and ind f = indF . If λn = λ̃n and
y′(π/2)/y(π/2) = ỹ′(π/2)/ỹ(π/2) for all n ≥ 0 then q(x) = q̃(x) a.e. on [0, π].


Proof. Let K := ind f = indF , and consider again the problems P(q(k), f (k), F (k))


and P(q̃(k), f̃ (k), F̃ (k)) defined by (4.1) and (4.4) respectively. Since the indices of f
and F are equal, the numbers J defined by (3.9) always equal 1, and thus both these


problems have eigenvalues {λn+k}n≥0. We also have f (k) = f̃ (k) and F (k) = F̃ (k).
It follows from the identities in the proof of Lemma 4.2 that


(
y
(k+1)
n


)′ (π
2


)


y
(k+1)
n


(π
2


) = (λk−λn+k+1)






(
y
(k)
n+1


)′ (π
2


)


y
(k)
n+1


(π
2


) −


(
y
(k)
0


)′ (π
2


)


y
(k)
0


(π
2


)






−1


−


(
y
(k)
0


)′ (π
2


)


y
(k)
0


(π
2


)


for k = 0, . . ., K − 1 and n = 0, 1, 2, . . .. The same is true for eigenfunctions ỹ
(k)
n


of the problems P(q̃(k), f̃ (k), F̃ (k)). Hence
(
y
(k)
n


)′ (π
2


)


y
(k)
n


(π
2


) =


(
ỹ
(k)
n


)′ (π
2


)


ỹ
(k)
n


(π
2


) , n = 0, 1, 2, . . .


for each k. In particular, P(q(K), f (K), F (K)) and P(q̃(K), f (K), F (K)) are two prob-
lems with constant boundary conditions, and thus q(K)(x) = q̃(K)(x) a.e. on [0, π]
by the above-mentioned theorem of Mochizuki and Trooshin. Then the functions
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1/y
(K−1)
0 and 1/ỹ


(K−1)
0 satisfy the equation −y′′(x) + q(K)(x)y(x) = λn+K−1y(x)


and the same initial conditions at 0. Therefore y
(K−1)
0 = ỹ


(K−1)
0 on all of [0, π],


q(K−1) = q(K) + 2






(
y
(K−1)
0


)′


y
(K−1)
0






′


= q(K) + 2






(
ỹ
(K−1)
0


)′


ỹ
(K−1)
0






′


= q̃(K−1),


and repeating this argument K − 1 more times concludes the proof. �


Remark 4.3. As in the previous theorem, the question remains open whether the
condition ind f = indF , which also appears in [44], can be removed.
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