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Flow in Porous Media
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Darcy’s Law and Permeability

Darcy’s empirical law (1856). The fluid velocity is
proportional to the pressure gradient

u=—-KVp

where
u(x) is the volumetric flux (the Darcy velocity)
K(x) is the measured rock permeability
divided by the fluid viscosity
p(x) is the fluid pressure

Water

Sand
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Governing Equations of Single-phase Flow

Combined with conservation of mass, we obtain the second order elliptic
system

( u=—KVp in Q (Darcy's law)
T V-u=f in 2 (conservation)
. u-v=0 on 052

where
f(x) is the source or sink term (i.e., wells)

Objective: Approximate u (and p) accurately.
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A Variational Formulation

T he differential problem:
—V-KVp=f in €2
—KVp-v=20 on 0X2

Function Space:
X =H'/R = {w € L?:Vuwe (L2)3,/de:r; = o}
(1, ) = /sz(x) . é(x)dz  (Inner-product)

A variational problem:
Find p € X such that

a(p,w) = (KVp,Vw) = (f,w) VweX

Theorem: The two problems are equivalent, and there exists a unique
solution.
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Galerkin’s Method

Let X C X be a finite dimensional subspace.

An approximate variational problem:
Find p;, € X; such that

a(pp, wp) = (f, wp) V wp € Xp,
Theorem: There is C' > 0 such that

— < C min — W
Ip = pull <€ min Jlp—wplly

where

Juwl)y = { [ (wl? + 1vu?) dw}1/2

That is, up to C, the approximation is optimal.
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The Finite Element Method

Construction of X;: Define a grid over 2. Over A
each grid element E, let w;, € X; be a polynomial. T
Piece them together so they are continuous.

Q2

Theorem: For polynomials of degree k,

1/2
min flp =~ wnl < Cllolaat® where Julh={ ¥ [ 10%uf de

Corollary: py, — p as h — 0. In fact,

Ip = ppll1 < Cllpllpg1h® = O(RF)
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Heterogeneity and Problems of Scale
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Meter-Scale Natural Heterogeneity

Log10 X Permeability of Lawyer Canyon Log10 Z Permeability of Lawyer Canyon

-12.6
-13.3 -13.4
-14.0 -14.1
-14.7 -14.9
-15.4 -15.6

-16.1 -16.3

Lawyer Canyon data, meter scale
(ranges by a factor of 10°)

Difficulty: Fine-scale variation in K (the permeability) leads to fine-scale
variation in the solution (u,p).
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The Problem of Scale

Suppose K varies on the scale €. Then

Vp| = O(e™ 1) and |DFp| = O(e™")

Typical error estimates. From polynomial approximation theory, the best
approximation on a finite element partition 7; is

k
h
inf __llp—allo < Cllpllxh* ~ C(—)
q€PR_1(7p) €

e If h > ¢, this is not small!
e To resolve p, we need a spatial discretization h < e.
That is, we must resolve K in some way!
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Multiscale Finite Element Methods
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Multiscale Approaches
Objective. We want to solve the problem in a way that:

e does not fully incorporate the problem dynamics (i.e., solves some
global coarse scale problem to resolution H > ¢),

e vet captures significant features of the solution, by taking into
account the micro-structure (to resolution h < ¢€).

Possible solutions. (Sorry, this is a very incomplete list!)

e Multiscale finite elements e Variational multiscale analysis
1. Babuska, Caloz & Osborn 1994 1. Hughes 1995
2. Hou & Wu 1997 2. Hughes, Feijoo, Mazzei & Quincy
3. Hou, Wu & Cai 1999 1998
4. Efendiev, Hou & Wu 2000 3. Arbogast, Minkoff & Keenan 1998
5. Strouboulis, Copps & Babuska 2001 4. Brezzi 1999
6. Chen & Hou 2003 5. Arbogast 2004
7. Aarnes 2004 6. Arbogast & Boyd 2006
8. Aarnes, Krogstad & Lie 2006 ]
_ 95 e Multiscale mortar methods
e Multiscale finite volumes 1. Arbogast, Pencheva, Wheeler &
1. Jenny, Lee & Tchelepi 2003 Yotov 2007
2. He & Ren 2004 -
e Heterogeneous multiscale
e Multiscale basis optimization methods
1. Rath 2007 (Ph.D. dissertation) 1. E & Engquist 2003

Remark. These are really the same general method!



A Fluvial Subsurface Environment—1

Permeability field
(White and Horne, 1987)
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A Fluvial Subsurface Environment—2

Water saturation
contours

Using average
parameters smears the

r solution (as expected).

This is problematic for
nonlinearities!

F(avg(x)) # avg(F(x))

Upscaled to 6 x 6 Upscaled to 3 x 3
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Variational Multiscale Methods
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T he Variational Multiscale Method
(Hughes et al., 1995, 1998; Brezzi, 1999)

Goal: Find the part of the solution that is unresolved in standard finite

element approximation.

Problem: Find v € X such that

a(u,v) = f(v) Vv e X

Direct sum decomposition: Define coarse and fine (i.e., subgrid) scales
X=XoX

Then v =u 4+« is uniquely decomposed.

Separating scales: Find o € X and v’ € X’ such that

a(u+u,0) = (V) Vo€ X  (coarse scale)
a(u+u',v) = f() vo' € X' (subgrid scale)
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Closure Operator
We can define v/ : X — X’/ by
a(v 4+ u/'(v),0") = fF() Vo' e X'
Affine representation: Define the linear operator @’ : X — X’ by
a(v+3'(v),v) =0 Vo' € X'
and constant term @’ € X’/ by
a(d, V) = f(v) Vo' e X'
Then
o =4 () =a'(a) + T
Remark: Given the coarse scale, we recover the fine-scale. In upscaling

theory, closure operators are often assumed rather than being derived.
Hence the term subgrid upscaling.

Center for Subsurface Modeling
Institute for Computational Engineering and Sciences
The University of Texas at Austin, USA




Upscaling the Problem

Upscaled problem: Find u € X such that
a(a+ a'(a),v) = f(©) — a(@,v) Vo e X
or, in symmetric form,
a(u+ 3 (w), s+ 3 () = f(©) —a(@,?) Vo e X
Change of scale results in modifying both a and f:
A(u,v) = F(v) Vo e X

where

A: X xX —->R is A(u,v) =alu+3'(0),v+ d' (7))

F:X—>R is F(?) = f(v) — a(@,?)
Full two-scale solution:
v=u+v@ =u+d @ +7
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Approximation

Upscaled problem: Find uw € X such that
a(u+ 3 (), s+ 3 () = f(©) —a(@,?) Vo e X
Finite Element Approximation: Find u;, € X; C X such that
a(uy, + ' (up), v, + @' (0,)) = f(Up) — a(@', ) Vo, € X,
Multiscale Finite Element Space: Let
Xy, = {o, + ' (vy,) : v, € Xp}
Note that dim X;, = dim X3,.
Equivalent form: Find u;, € X}, + @ such that
a(up, vp) = f(0p) vV o, € X,

Remark: The key is to find a decomposition X = X & X’ so that we can
efficiently compute the upscaling operator @’ on )_(h.
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A Simple Example—1
(Babuska and Osborn, 1983; Hou and Wu, 1997)

Differential problem. Standard finite elements.
B O D |
_ = =0, -
< dw dw 0.75¢
p(0)=0 and p(1)=1 09
0.25-

0 0.25 0.5 0.75 1
The solution p(x) € X + =,
Xz{wEHl:w(O):w(1)=O}
satisfies

a(p,w) = (Kpg,wz) =0 Vw € X.

Constructing Xj,:

e Choose a uniform grid of five points: z; =1i/4, 1 =0,1,2,3,4.
e Let X be linear on each element.
Center for Subsurface Modeling
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A Simple Example—2

Two-scale decomposition: X = X @ X'.
Let X’ be the “bubble functions” over the grid

X' ={weH' :w(x) =0, i=0,1,2,3,4}
Localization: u'(v) breaks into 4 small or localized problems!
a(v+ 3 (0),))=0 WwWeX" on(z_1,z), i=1,2,3,4

Constructing X,: ¢ = w + 4/ ()

(—i<K%>—O 0<x<0.25

{  dx dx R : 0.75}

»(0)=0 and ¢(0.25)=1 osl

)

{ dx dx 0 | |
k¢(025) =1 and ?7D(O5) —0 0 0.25 0.5 0.75 1

Multiscale basis function
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A Simple Example—3

T T 17 |
1.5 1 0.75¢
1 0.5
0.5¢ 1 0.25f
% UU 0.25 oUs cy.'?su 1 % 025 05 075 1
Coefficient K True solution p
1 1
0.75¢ : 0.75}
0.5¢ N 1 0.5¢
0.25f 1 0.25f
% 025 05 075 1 % 025 05 075 1
Multiscale basis Multiscale vs. Standard
functions solution
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Mixed Variational Multiscale Methods
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Upscaling Second Order Elliptic PDE’S in Mixed Form
(Arbogast et al., 1998; Arbogast, 2000; 2004)

[ K lu= —Vp in Q (Darcy’s law)
¢ V-u={f in 2 (conservation)
 ur= 0 on 0f2
Spaces:
W = L?/R

V =H(div) ={ve (L?)3:V-veL? v-v=0 on dQ}
(1, ) = /sz(x) . d(x)dz  (Inner-product)

A mixed variational formulation:
Find pe W and u € V such that

(K lu,v) = (p,V - V) VveV (Darcy's law)
(V- -u,w) = (f,w) VweW (conservation)
Center for Subsurface Modeling
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A Two-Scale Expansion

Define a coarse computational grid on (2.

Pressure space: W =W @ W/

W D {w € W : w is constant V coarse elements E.}
W/ — W_L
Velocity space: V=V @V’
Vc{veV:V.-veW} (conservation)
V={Hev:v.vVeW, 6 v.vo=00n0E.V E.} (locality)
such that

(a) V-V=W (coarse conservation)
(b)) V-V =W’ (subgrid conservation)
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Separation of Scales

Separate scales uniquely via the direct sum as

i+u eVaVv
p+pewaew

S
|

Coarse:
(K~ (@ 41u), %) =B, V-¥)
(V-a,w) = (f, )
Subgrid:
(K~ Y(a4+u),v) =@, Vv -v) VveVv
(V-u,w') = (f,w) v eWw
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The Closure Operator

Constant part: Define (p',@’) € W/ x V/ by
(K_lﬁ’,v’)Z(ﬁ’,V-V’) Vv eV
(V. -d,w) = (f,w) vV eWw
Linear part: For v € V, define (¢/,@/) € W/ x V'
(K 1@+d),vV)=@F,v-v) vveV
(V-i,v) = Vw ew

T hen
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The Upscaled Equation

The coarse scale equation, in symmetric form, is
Find (p,i) € W x V such that

(K~ t@+ d/(@), (¥ + 8/ (¥)))
=(p,V-v) — (K &, v) "
(Vﬁaw):(f7u—)) !

Full solution:
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Antidiffusion from the Correction Terms

We can also rewrite the problem as
Find (p,i) € W x V such that

(K14, v) — (K 1d/(w), 0/ (¥))
= (p,V-v) — (K ', ¥) VveV

(V-u,w) = (f,w) VioeWw

Thus the subscale correction is antidiffusive on the coarse scale.

Fine 30 x 30 Average K coarse 6 X 6
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Numerical Approximation
Choose any mixed space V x Wy on the coarse mesh.

Formulation 1: Find (Ug,pg) € Vi x Wy such that

(K Yy + 8 (Wp)), Fg +8'(¥)))
= (py,V -p) — (K, 9p) V ¥y €Vy
(V-uag,wyg) = (f,wg) V wy € Wy

Then — )= ~/
urxuy =uy+ua(uay)+u

pRpy=py+p{yg)+7p
Formulation 2: Define
Vg={vg+d'Fy) : Vg € Vy}
Find uyy € Vi + i and py € Wy such that

(K Yy, vg) = (b, V- Vg) VVvg eVy
(V-ug,wy) = (f,wg) Vwg e Wy

Remark: We have some multiscale finite elements!

< Riag
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T he Lowest Order Mixed Finite Elements

On a coarse element E with edge e.

Standard Raviart-Thomas (RTO) finite element. %

( %
Re = —Vw — =
< v°Re=1/1|;5||| . -~
(& on e
Re - v =
c 0 otherwise = =

Variational multiscale finite element: R'g/'s = Re + 1.,

)
RMS = _KVuw Y
7 - —
VR =1/|E - -
= T
1/lel one
) gvs ., = |1/ | P
O otherwise -
V-i,=0 —
7
~/ _
\ U, v =

Center for Subsurface Modeling
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Boundary Conditions for Local Subproblems

Neumann BCs for
constant outflow, but

oversample. (Hou et al.,
1997, 2003) Results in a
nonconforming method.

e
: — = !

1
A S
I = \I
%I 1
7 = \-:-g
1
- — —_— |
| =
l/ / 1
Z———77 ————— 1

REER

Neumann BCs for linear outflow.
(Arbogast, 2000)

7

7

Dual element problem with source and sink

—= T
_——= =
7

= T
/\
= B

terms. (Aarnes et al., 2004)
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Estimates of the Pressure
and Velocity Errors

Center for Subsurface Modeling
Institute for Computational Engineering and Sciences
The University of Texas at Austin, USA




Optimal Error Estimates

uruy =ty +d'(ay) + o
pRpg =py+p@Qg)+7p

Theorem (A., 2004).

IK~Y2@—umlo < inf KTV (u—vi)lo

VHEVH‘|‘V
Vovg=f

V-UH:f

Remark: We have assumed that the upscaling operator is solved exactly,
since it can be well resolved on a fine grid.
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Error Estimates from Polynomial Approximation Theory
Let L be the order of approximation of the coarse mixed finite element
velocity space used. Typically:

L =1 for lowest order Raviart-Thomas (RTO) spaces
L =2 for lowest order Brezzi-Douglas-Marini (BDM1) spaces

Theorem (A., 2004).
lu—ugllo < Clu|| H" = O(H")
V-ug =7
lp — prllo < Clu|| H- T = o)
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Homogenization
Suppose that K is locally periodic of period €. Then
K(x) = k(x,x/¢€)

where k(x,y) is periodic in y of period 1 on the unit cube Y.

Let Ko be the homogenized permeability matrix, defined by
v
X (:E,y)) dy

Ko)ij(x) — /Y /i(a:',y) <5’L] —

Oy;
where, for fixed z, x’/(z,y) is the Y-periodic solution of
: OK
Vy - (kVyx?)) = Do
Yj

Homogenized solution: Let (ug,pg) solve

( ug = —KoVpg in €2
¢ V-ug=f in 2
| ug-v=0 on 0f2

Then (ug,pg) is a smooth “approximation” of (u,p).
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Multiscale Error Estimates

Theorem (Chen and Hou, 2003; A. and Boyd, 2005). Assuming
periodicity and the mixed variational multiscale method with L =1

(RTO) or 2 (BDM1):
I~ willo < O eliolla + | ol o + HE (ol + 17l-1)

= O(H" + \/e/H)

Ip = prllo < C(e+ (e/H)Y "+ H)|lu - ugllo
where d is the space dimension and n >0 ifd=2 and n=0 if d = 3.
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Approximation of the Subgrid

Approximate the subgrid part of the basis functions by a mixed method
on a fine grid of spacing h ~ e.
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Composite Numerical Grid for BDM1-RTO
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Numerical Examples and Application
to Subsurface Flow Simulation
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Horizontal Flood

Pressure contours for a horizontal flood

Fine 40 x 40 solution Upscaled to 10 x 10
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Application to Waterflood Simulation

Use standard equations and sequential solution.

Pressure equation: Global pressure formulation.

0
8—§f—|—v-u=q(P)

u=—KXS) (VP _ p(S)ge3)
Upscale this equation. Use BDM1/RTO unless otherwise noted.

Saturation equation: Kirchhoff formulation.

06 B
W‘Fv'uw—Qw(S)

uy = —KVQ(S) + c(u, S)

Solve on the fine scale.
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A Fluvial Subsurface Environment—1

A

Average K 6 X 6

BK= 01D
K= 1.0D
[ IK=10.0D
Permeability field

(White & Horne, 1987)

Upscaled to 6 x 6 Upscaled to 3 x 3
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30 x 30 Fine

Fluvial Water Saturation Contours at 200 days—2

6 x 6 BDM1/RTO 6 x 6 Dual 6 X6 RTO/RTO

3x3 BDM1/RTO 3%x3 Dual 3X%X3 RTO/RTO
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A Quarter Five-spot Oil Reservoir Waterflood

Logarithm of the permeability

Log10 of X-Fermea bility

0 5 10 16 20y 25 30 35 40

Fine 40 x 40

-11 746
-12.008
12273
-12.536
-12.800
-13.063
-13.326
-13.580
-13.833
14116
-14.350
-14.643
-14 806
-15.170
-15.433
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A Quarter Five-spot Oil Reservoir Waterflood—2

Water saturation contours at 100 days

FINE SCALE SATURATION Saturati UPSCALED SATURATION
Example1: 40 X440 at time 100 days

1.000
na7s
0850

Example1:40X40 to 5X5 at time 100 days

nassd0 I 0885
— n.aon — n.aon
— n.&7s — n.&7s
— n.850 — n.850
— n.&25 — n.&25
|| 0.80035 — 0.800
— 077s — 0775
— o750 — 0750
— o7es — 0725
L p7o030 — o7
— 0.B7S — 0675

0.650 0.650

0.625 0.625
0.600 26, 0.600
0.575 0.575
0.550 0.550
0.525 0.525
0.500 0.500
0.47520 0.475
0.450 0.450
0.425 0.425
0.400 0.400
nz7s1h — 05375
0.550 . 0.550

0.325 ] 0.325
0.300 ] 0.300
02754 () — 0275
0.250 - 0.250

0225 0225
0200 0200

0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40

Fine 40 x 40 Fully upscaled to 5 x 5
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A Quarter Five-spot Oil Reservoir Waterflood—3

FINE SCALE SATURATION Saturati UPSCALED SATURATION
Example1: 40 X440 at time 200 days

Water saturation contours at 200 days

1.000
0.875
0.850
nassd0
0.800
0.875
0.850
0.825
0.80035
0.775
0.750
0.725
n7oo30
0.5675
0.650
0.625
0.600 25,
0.575
0.550
0.525
0.500
0.47520
0.450
0.425
0.400
057515
0.350
0.325
0.300
0.275
0.250 10
0.225
0.200

Example1:40X40 to 5X5 at time 200 days

0 5

10

0
I B UL L | I B
15 20 25 30 35 40 0 5 10 15 20 25 30 35 40

Fine 40 x 40 Fully upscaled to 5 x 5
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08925
0800
0875
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A Quarter Five-spot Oil Reservoir Waterflood—4

Water saturation contours at 500 days

Saturation
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A Quarter Five-spot Oil Reservoir Waterflood—b5

Water saturation contours at 1000 days

Saturation
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A Quarter Five-spot Oil Reservoir Waterflood—©6

Water saturation contours at 100 days
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Example1: 40 X440 at time 100 days
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A Quarter Five-spot Oil Reservoir Waterflood—7

Water saturation contours at 500 days

Saturation
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A Quarter Five-spot Oil Reservoir Waterflood—S8

Water saturation contours at 100 days

UPSCALED SATURATION
Example1: 40X40 to 5X5 at time 100 days
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A Quarter Five-spot Oil Reservoir Waterflood—9

Water saturation contours at 500 days

UPSCALED SATURATION
Example1: 40X40 to 5X5 at time 500 days

COARSE SCALE SATURATION
Example 1: 40X40 to 5X5 at time 500 days
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Conclusions—1

Natural porous media is highly heterogeneous, so standard finite
element (or other) approximation is inaccurate, since it fails to
resolve all the relevant scales adequately on the coarse grids we are

forced to use.
Multiscale finite element basis functions can partially resolve the fine

scales on coarse grids.
. The Variational Multiscale Method is a framework that formally
separates coarse and subgrid parts of the velocity and pressure

spaces to obtain

e conservation of mass on coarse and subgrid scales (physics),
e locality of the subgrid operators (numerics).

. The fine scales introduce antidiffusion into the system, and so
cannot be modeled in any simple way.
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Conclusions—2

5. The method achieves optimal order accuracy and accuracy with
respect to the scale of heterogeneity e.

u p
Polynomial BDM1 H? /€2 H3/e?
Multiscale BDM1 | H2 + \/e/H | H3 + (e¢/H)1/2+1/d

6. The method parallelizes naturally, and so is very efficient.

7. The numerical examples show that the methods can capture
significant detail on coarse grids.

8. The variational multiscale method allows us to solve the main
components of the flow for very large problems on very coarse grids,
even though we under-resolve the fine scales themselves.
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