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Goal 

Propose a coupling interface method to solve 
the above elliptic interface problems.

Three applications: 
Computing electrostatic potential for 
Macromolecule in solvent 
Simulation of Tumor growth
Computing surface plasmon mode at nano scale 
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Elliptic Interface Problems

ε and u are discontinuous, 

f is singular across Γ



Dielectric coefficients 

Vacuum: 1
Air :1-2
Silicon: 12-13
Water: 80
Metal: 

ε

610−



Elliptic irregular domain problems

Poisson equation 

Dirichlet or Neumann boundary condition

can be quite general and complex.

in u fΔ = Ω

Ω



Biomolecule in solvent: 
Poisson-Boltzmann Equation

N. Baker, M. Holst, and F. Wang, Adaptive multilevel finite element solution of the Poisson-Boltzmann 
equation II: refinement at solvent accessible surfaces in biomolecular systems. J. Comput. Chem., 21 
(2000), pp. 1343-1352. (Paper at Wiley)

http://cam.ucsd.edu/~mholst/pubs/dist/BHW99.pdf
http://cam.ucsd.edu/~mholst/pubs/dist/BHW99.pdf
http://cam.ucsd.edu/~mholst/pubs/dist/BHW99.pdf


Biomolecule in solvent
Poisson-Boltzmann model

Macromolecule: 50 A
Hydrogen layer: 1.5 – 3A
Molecule surface: thin
Dielectric constants:

2 inside molecule
80 in water 



Tumor growth simulation (free boundary)
(Lowengrub et al)

pressure :
nutrient :

p
Γ



T=6 T=6 T=3

T=6 T=6

Initial condition: R=2.

Bifurcation of tumor growth
T=6

(growth rate/adhersive force), A(apoptosis)G



Surface plasmons
Surface plasmons are surface electromagnetic 
waves that propagate parallel along a 
metal/dielectric (or metal/vacuum) interface. 
E field excites electron motion on metal surface
Fields decay exponentially from the interface: 
surface evanescent waves.  

http://en.wikipedia.org/wiki/Dielectric


Surface plasmon

Macroscopic Maxwell Equation

0

2

0 )(
1)(

μμ

ωωω
ω

εωε
τ

=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
−=

i
p0

0

t

t

D
B
E B
H D

∇⋅ =⎧
⎪∇⋅ =⎪
⎨∇× = −⎪
⎪∇× =⎩

D E
B H

ε
μ

=
=

[ ]
[ ] 0

0
condition Interface

=⋅
=⋅

tH
tE



Plasma frequency

Quoted from Ordal et al., Applied Optics, 1985, Volume 24, pp.4493~4499



Optical communication frequency

A goal of nanotechnology: fabrication of nanoscale photonic circuits
operating at optical frequencies.  Faster and Smaller devices.

Quoted from Jorg Saxler 2003
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Quadratic Eigenvalue problem for k: 
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Interior: Interface conditions:

Boundary conditions:

2 2kω εμΛ = −



Surface Plasmon:

EM wave are confined on surface.



Elliptic Interface Problems

ε and u are discontinuous, 

f is singular across Γ



Three classes of approaches

Boundary integral approach

Finite element approach:

Finite Difference approach:
Body-fitting approach 
Fixed underlying grid: more flexible for moving 
interface problems



Regular Grid Methods for Solving Elliptic 
Interface Problems

Regularization approach (Tornberg-Engquist, 2003)
Harmonic Averaging (Tikhonov-Samarskii, 1962)
Immersed Boundary Method (IB Method) (Peskin, 1974)
Phase field method

Dimension un-splitting approach
Immersed Interface Method (IIM) (LeVeque-Li, 1994)
Maximum Principle Preserving IIM (MIIM) (Li-Ito, 2001)
Fast iterative IIM (FIIM) (Li, 1998)

Dimension splitting approach
Ghost Fluid Method (Fedkiw et al., 1999, Liu et al. 2000)
Decomposed Immersed Interface Method (DIIM) (Berthelsen, 2004)
Matched Interface and Boundary Method (MIB) (YC Zhou et al., 2006)
Coupling interface method (CIM) (Chern and Shu 2007)



Coupling Interface Method (CIM)

CIM
CIM1 (first order)
CIM2 (2nd order)
Hybrid CIM (CIM1 + CIM2) 
for complex interface 
problems

Augmented CIM
Auxiliary variables on 
interfaces



Numerical Issues for dealing with interface 
problems

Accuracy: second-order in maximum norm.

Simplicity: easy to derive and program.

Stability: nice stencil coefficients for linear solvers.

Robustness: capable to handle complex interfaces.

Speed: linear computational complexity



CIM outline

1d: CIM1, CIM2
2d: CIM2
2d: Augmented CIM
d dimension
Hybrid CIM
Numerical validation



CIM1: one dimension



CIM2: One dimension

Quadratic approximation and match two grid 
data on each side

Match two jump conditions



CIM2: One dimension



CIM2: 2 dimensions

Coupling Interface Method

Stencil at a normal on-front points (bullet)  (8 points stencil)



CIM2    Case 1:

Coupling Interface Method



CIM2   (Case 1):

Dimension splitting approach

Decomposition of jump condition

One side interpolation

Coupling Interface Method



CIM2   (Case 1):

Bounded by 1 and ε+/ε-.

Coupling Interface Method



CIM2  (Case 2):

Coupling Interface Method



Dimension splitting approach

Decomposition of jump conditions

One-side interpolation

CIM2  (Case 2):

Ω
-

Ω+

Coupling Interface Method

The second order derivatives are coupled by jump conditions



CIM2  (Case 2): results a coupling matrix

Theorem: det(M) is positive when 
local curvature is zero or h is small

Coupling Interface Method



Augmented CIM



Augmented CIM

Auxiliary interfacial variables are distributed 
on the interface almost uniformly.

The jump information at the intersections of 
grid line and interface is expressed in terms 
of interfacial variables at nearby interfacial 
grid.



Apply 1-d method in x- and y-directions

( ) ( )
R

RP
R

RP
RP yx

Eyy
x
Exx

x
E

x
E

⎥
⎦

⎤
⎢
⎣

⎡
∂∂

∂
−+⎥

⎦

⎤
⎢
⎣

⎡
∂
∂

−+⎥⎦
⎤

⎢⎣
⎡

∂
∂

=⎥⎦
⎤

⎢⎣
⎡

∂
∂ 2

2

2

εεεε

2

, , , 1: 2,2

2

, , , , 1: 22

( ,[ ] )

( ,[ ] )

i j i j x i i j x P

i j i j y i j j y Q

E L E u
x
E L E u

y

ε

ε

− +

− +

∂
=

∂
∂

=
∂

( ) ( )
2 2

2Q R P R
RQ R R

E E E Ey y x x
y x y x y

ε ε ε ε
⎡ ⎤ ⎡ ⎤⎡ ⎤∂ ∂ ∂ ∂⎡ ⎤= + − + −⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥∂ ∂ ∂ ∂ ∂⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦



Resulting scheme



CIM1: d dimensions

Dimension splitting approach

Decomposition of jump conditions

One-side interpolation



CIM2: d dimensions

Dimension splitting approach

Decomposition of jump conditions

One-side interpolation



CIM2: d dimensions, coupling matrix



Complex interface problems
Classification of grid

Interior points (bullet) 
(contral finite difference)

Nearest neighbors are in 
the same side

On-front points (circle 
and box)

Normal (circle) (CIM2).
Exceptional (box) (CIM1).



Classification of grids for complex 
interface (number of grids)

Interior grids:  
Normal on-fronts (CIM2):
Exceptional (CIM1):  

The resulting scheme is still 2nd order

( )dO h−

1( )dO h −

(1)O



Numerical Validation

Stability of CIM2 in 1d
Orientation error of CIM2 in 2d
Convergence tests of CIM1
Comparison results (CIM2)
Complex interfaces results (Hybrid CIM)



Stability Issue of CIM2 in 1-d
Let ( , ) be the resulting matrix.A Nα

Insensitive to the location of the interface in a cell.



Orientation error from CIM2 is small

Insensitive to the orientation of the interface.



Convergence tests for CIM1: interfaces



Convergence of CIM1 (2) (order 1.3)
log log  plot of error versus N−



Example 5 (for CIM2)

1000,10,1=b



Example 5, figures



Example 5 (for CIM2)



Example 5 (CIM2)



Example 5 (CIM2)



Comparison results

Second order for u and its gradients in 
maximum norm for CIM2

Insensitive to the contrast of epsilon

Less absolute error despite of using  smaller
size of stencil

Linear computational complexity



Hybrid CIM



Number of exceptional points 
O(1) in general



Convergence of hybrid CIM (order 1.8)



Hybrid CIM

Capable to handle complex interface 
problems in three dimensions

Produce less absolute error than FIIM.

Second order accuracy due to number of 
exceptional points is O(1) in most
applications.



Some applications

Find electrostatic potential for macromolecule 
in solvent

Tumor growth simulation

Finding dispersion relation for surface 
plasmonic wave propagation



Biomolecule in solvent: 
Poisson-Boltzmann Equation

N. Baker, M. Holst, and F. Wang, Adaptive multilevel finite element solution of the Poisson-Boltzmann 
equation II: refinement at solvent accessible surfaces in biomolecular systems. J. Comput. Chem., 21 
(2000), pp. 1343-1352. (Paper at Wiley)
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 :ondistributiion  negative
 :ondistributiion  positive

http://cam.ucsd.edu/~mholst/pubs/dist/BHW99.pdf
http://cam.ucsd.edu/~mholst/pubs/dist/BHW99.pdf
http://cam.ucsd.edu/~mholst/pubs/dist/BHW99.pdf


Poisson-Boltzmann equation

=K



Numerical procedure

Construction of molecular surface (by MSMS)
Treatment of singular charges

Nonlinear iteration by damped Newton’s 
method for the perturbed equation
Coupling interface method to solve elliptic 
interface problem
Algebraic multigrid for solving linear systems



Construction of molecular surface: MSMS



Treatment of Singularity



Damped Newton’s method

Ref. Holst



Numerical Validation—Artificial molecule



Numerical Validation



Hydrophobic protein (PDB ID: 1 crn) 



Hydrophilic protein (PDB ID: 1DGN)



Summary of computing 
Poisson-Boltzmann equation

Ingredients: CIM + AMG + damped Newton’s 
iteration
Second order accuracy for potential and 
electric field for molecules with smooth 
surfaces
3-4  Newton’s iterations only



Tumor growth Simulation

Lowengrub et al.



Tumor growth model (1)

2

Assume the tumor depends on only one kind of  nutrient .
The governing equation of  is 

,

where ( ) .
: the diffusion coeficient. 
( ) :  blood-tissue transfer.
:  nutrient con
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Cell evolution

P cells

(proliferating)

D cells
(dead)

Q cells
(quiescent)

Birth

Apoptosis

starvation

Cell death

Degrade

recovery



Tumor growth model (2)

 Then the governing equations 
for P, Q and D are
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Reaction diffusion model for cell populations



Tumor growth model (3)

Momentum equation: Darcy’s law

Boundary condition:
p vα−∇ =

r

p γκ=

 is the mean curvature of the interfaceκ

Free boundary problem



Quasi-steady approximation

Assume Q = 0 (sufficient nutrient available)
D is digested very fast 1>>RK

0,0,1 ≈=≈ DQP

( ) ( ) ( ) PKKDKPKv ABRB ][ σσσ −≈−=⋅∇



Quasi-steady approximation
for tumor growth

pressure  theis 
nutient  theis 

p
σ



Dimensionless formulation 
(Lowengrub et al)



Numerical procedure

Level set method for interface propagation
WENO5 + RK3 for interface propagation
Least square method for velocity extension
Coupling interface method for elliptic 
problems on arbitrary domain



Numerical Validation (1)



Numerical Validation (2)



Numerical Validation (3)



T=6 T=6 T=3

T=6 T=6

Initial condition: R=2.

Bifurcation of tumor growth

T=6

(growth rate/adhersive force), A(apoptosis)G



Surface plasmons
Surface plasmons are surface 
electromagnetic waves that propagate 
parallel along a metal/dielectric (or 
metal/vacuum) interface. 
E field excites electron motion on metal 
surface

http://en.wikipedia.org/wiki/Dielectric


Drude model

0)( =⋅∇ Eε



Plasma frequency

Quoted from Ordal et al., Applied Optics, 1985, Volume 24, pp.4493~4499

=γ



Drude model for gold

Quoted from Jorg Saxler 2003

Drude model is good approximation for 1410<pω



Optical communication frequency

A goal of nanotechnology: fabrication of nanoscale photonic circuits
operating at optical frequencies.  Faster and Smaller devices.

Quoted from Jorg Saxler 2003

13

6

10

,10)(

=

−=

ω

ωεm



Wave propagation in metal

pω

Region of attenuation Region of propagation

0.5 1.5 2.01.0

1.0

-1.0

( )ε ω

p

ω
ω

is the frequency of collective oscillations of the electron gas.

Drude model
for permittivity

( ) 2

2

1
ω
ω

ωε p−=

D = εE



Maxwell equation in matter

Macroscopic Maxwell Equation
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Dispersion relation: Bulk case
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Dispersion relation: 1 interface case



Dispersion relation: Slab -1



Slab-2
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Surface plasmons

From Wikipedia, the free encyclopedia

The excitation of surface plasmons by light is denoted as a 
surface plasmon resonance (SPR) for planar surfaces or 
localized surface plasmon resonance (LSPR) for 
nanometer-sized metallic structures.
Since the wave is on the boundary of the metal and the 
external medium (air or water for example), these oscillations 
are very sensitive to any change of this boundary, such as the 
adsorption of molecules to the metal surface. 

This phenomenon is the basis of many standard tools for 
measuring adsorption of material onto planar metal (typically 
gold and silver) surfaces or onto the surface of metal 
nanoparticles. It is behind many color based biosensor
applications and different lab-on-a-chip sensors.

http://en.wikipedia.org/wiki/Plasmon
http://en.wikipedia.org/wiki/Plasmon
http://en.wikipedia.org/wiki/Adsorption
http://en.wikipedia.org/wiki/Nanoparticle
http://en.wikipedia.org/wiki/Biosensor
http://en.wikipedia.org/wiki/Lab-on-a-chip


Surface plasmon



Wave propagation in periodic nano
structure

x
y

z

x y

z

Metal-dielectric materials



Surface Plasmon

EM wave are confined on surface.



Goal: study band structure

Signal propagation via surface plasmonic
waves
Energy absorbing problem 

( )k k ω=



Waveguide: homogeneous in z direction
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Reduced equations for
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Interface Conditions
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Boundary Condition
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Bloch Boundary Condition: 
Suppose the domain is [ ] [ ]0,0, L L×



Quadratic Eigenvalue problem for k: 
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Interior: Interface conditions:

Boundary conditions:

2 2kω εμΛ = −



Ingredients of Numerical method

Interfacial operator: to reduce interface 
condition to a quadratic eigenvalue problem

Augmented Coupling interface method: 
to discretize the equation under Cartesian 
grid and interface condition under uniform 
interfacial grids.



Interfacial operator:
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Interfacial VariablesInterfacial operator

To form a quadratic eigenvalue problem for k.

C.C.Chang et.al. in 2005 (PRB 72, 205112)



Augmented CIM

Auxiliary interfacial variables are distributed 
on the interface almost uniformly.

The jump information at the intersections of 
grid line and interface is expressed in terms 
of interfacial variables at nearby interfacial 
grid.



Variables setup



Apply 1-d method in x- and y-directions
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Resulting scheme



Equations for interfacial variable



Approximation



Approximation



Resulting linear combination



Numerical Validation:
1D test: parallel slab
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Convergence result-1: 1d method, 2nd order
TM Mode. ω = 0.2, ω τ = 0
width of metal / width of unit cell = 0.5

Insensitive to the relative location      of the interface in a cell α



Convergent order: 1d method, 2nd order

y = –2.1500x + 7.9918

Least square fit for errors from NxN runs, 
N=40,60,80,…,360



Convergence Result-2: 
1d method, 2nd order, 
different width of metal with damping

TM Mode. ω = 0.2, ω τ = 0.003, α = 0.5



Numerical Validation:
2d  test: layer structure

Computational parameters of layer structure
The metal layer is located at the center of the unit cell and 
the width of metal layer is 0.4a. 
Target frequency is 0.7. There is no damping effect. 
Periodic boundary condition (kx = ky = 0) is applied at the 
cell boundary. 
N = 40, 80, 100, 120, 140, 160, 320, 400, 500, 600. 

The exact solution is k = 1.888.



Converge result for layer structure using 
2d method



Study of frequency band

Study signal propagation via plasmonic
crystal wave guide

Energy absorbing problem via plasmonic
crystal



Study of frequency band: parallel slab



Dispersion relation with different metal ratio



Dispersion relation with different metal ratio



Negative group velocity

For metal ratio > 0.5, the dispersion relation 
has negative group velocity.  This means that 
energy can propagate in reverse direction.



Skin depth: k larger, skin thinner 



Damping effect for SPP
k larger, damp faster
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Damping effect

The band lines closer to light line can travel 
longer
For surface plasmon, the larger k, the faster 
the waves decay



Study of frequency band: parallel square

More SPP bands



Damping effect 

Waves corresponding to bands closer to light line survive longer.



Computational parameters of eigenmodes 
of box

The box is located at the center of the unit 
cell and the metal is inside the box. Length of 
box/length of unit cell = 0.4. Target frequency 
is 0.7. There is no damping effect. Periodic 
boundary condition (kx = ky = 0) is applied at 
the cell boundary. N = 400.



Upper(k=0.7000), Lower(k=0.7001), 
Eigenmodes of box



Upper(k=0.7008), Lower(k=0.7161), 
Eigenmodes of box



Study of frequency band: wavy slab



Damping effect for wavy structure





Signal propagation via plasmonic wave

As k increases, group velocity becomes 
slower, skin thickness becomes thinner, 
propagation length becomes shorter
Transmission of signal via plasmonic wave is 
a trade-off problem between thinner 
thickness, faster group velocity and longer 
propagation length
Wavy structure provides more frequency for 
signal propagation



Energy absorbing problem

Standing waves are concerned
Curvature in wavy structure provides more 
frequency bands near k = 0 
Wavy structure can absorb energy from wider 
range of frequency bands



Conclusions

Augmented coupling interface method: 2nd order
Interfacial operator: reduce the problem to a standard 
quadratic eigenvalue problem
Coupling interface method: 

Cartesian grid in interior region
Interfacial grid on interface
Dimension-by-dimension approach
Dimensional coupling through solving coupling equation for 
second order derivatives 

Wavy structure provides more frequency bands for 
signal propagation and energy absorption 



Summary

Propose coupling interface method for 
solving elliptic interface problems

CIM1, CIM2
Augmented CIM

Applications
Macromolecule in solvent
Tumor growth simulation
Computing dispersion relation for surface plasmon
at THz frequency ranges.



Thank you for your attention!
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