
Short notes on Fourier Analysis
by Emanuel Indrei

1 The Fourier integral transform

Let f denote a real-or complex- valued function of a real variable x such that f(x) is defined over
R. The Fourier transform on f arises when considering linear integral transformations of the form

Tξf =
∫ +∞

−∞
f(x)K(x, ξ)dx (1)

for a ”nice” function K. Let’s call K the kernel of the transformation. In general there are many
choices for the kernel and each is useful in its own right. In our case, the goal is to choose a kernel
and the domain of the parameter ξ so that T transforms derivatives f ′ (let’s assume derivatives
exist) into products

Tξf
′ = ξTξf (2)

To this end, we assume henceforth that the functions K have derivatives in x and are bounded
on R whereas the functions f live in the set Cm0 of continuously differentiable functions with m
derivatives and the functions together with the derivatives decay to zero sufficiently fast so that (1)
converges. Ok, these are a lot of assumptions and the natural question is: can we weaken some of
these conditions? The answer is ”Yes!” but one would need to consider Lp spaces and the Lebesgue
integral to achieve this task.

Definition 1. The Fourier transform of a function f ∈ Cmo is given by Φξ(f(x)) =
∫ +∞
−∞ f(x)e−iξxdx.

One might wonder how we picked the kernel. Well, a quick integration by parts of (1) yields
K ′(x, ξ) = −ξK(x, ξ) and the exponential function satisfies this and all the other above mentioned
requirements. Moreover, repeated integration by parts yields the following theorem.

Theorem 1. If f ∈ Cm0 then Φξ(f (m)(x)) = (iξ)mΦξ(f(x)).

Now suppose we are given the Fourier transform of a function. In general, it is not obvious what
the function is so the question rises of how we can retrieve our function. The following theorem
answers this question.

Theorem 2. If f ∈ Cm0 , then for all real x we have f(x) = 1
2π

∫ +∞
−∞ Φξ(f(x))eiξxdξ = Φ−1

ξ (Φξ(f(x)).

Theorem 3. (Plancherel)
Let f ∈ Cm0 . Then

∫ +∞
−∞ |f(x)|2dx =

∫ +∞
−∞ |Φξ(f(x))|2dξ.

Now we list some basic properties of Φξ(f). Assume that c is a real constant.

Φξ(f(x− c)) = e−iξcΦξ(f(x)) (3)
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Φξ(f(−x)) = f(−ξ) (4)

Φξ(f(cx)) =
1
|c|

Φξ(
ξ

c
), c 6= 0 (5)

Φξ(eicxf(x)) = Φξ(ξ − c) (6)

2 Fourier series for functions on periodic intervals

Certain functions have the property of periodicity. A function f is said to be periodic with period
L if f(x) = f(x + L). Perhaps the most familiar functions with this property are the sine and
cosine functions. The next theorem gives us a nice way of thinking about periodic functions:

Theorem 4. (Dirichlet’s Condition)
i) f is periodic with period 2L over R
ii) f has at most, a finite number of local max and local min for −L ≤ x ≤ L
iii) f has at most a finite number of jump discontinuities over [−L,L]

then f(x) f(x+)+f(x−)
2 = a0

2 +
∞∑
n=1

[ancos(
nπx

L
) + bnsin(

nπx

L
)], where an = 1

L

∫ L
−L f(x)cos(nπxL )dx

and bn = 1
L

∫ L
−L f(x)sin(nπxL )dx.

By squaring the function f(x) in the above theorem and its Fourier series representation and
integrating both sides one can derive Parseval’s theorem. Note that this just the Plancherel version
for Fourier series.

Theorem 5. With f as above we have that 1
π

∫ π
−π[f(x)]2dx = 1

2a
2
0 +

∞∑
n=1

(a2
n + b2n).

In the more general case, suppose f is a function periodic in [−L
2 ,

L
2 ]. If one uses the complex form

for the sine and cosine function then the series looks like

f(x) =
∞∑
−∞

cne
i( 2πnx

L
) (7)

where the coefficients are given by the expression

cn =
1
L

∫ L
2

−L
2

f(x)e−i(
2πnx
L

)dx (8)
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