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Outline

e Step and Flash Imprint Lithography, the base
model and the goal of the modeling process

e The first approach: hp-adaptive Quasicontinuum
Method (QCM), its success and its limitations

e Our method: Combining adaptivity with QCM and
Numerical Homogenization
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Step and Flash Imprint Lithography (SFIL)
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An electron microscope Step and Flash Imprint Lithography: A New Approach to High-resolution
. . p Patterning — Willson Research Group, The University of Texas at Austin,
11mage of patterns in SFIL in Proceedings of SPIE/Emerging Lithographic Technologies 111 — 1999.
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The SFIL Process

The etch barrier constituents
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SFIL — The Goal and the Challenges

Analyze the mechanical behavior of the polymerized etch
barrier solution forming the 3D relief patterns in SFIL

—— Slump due to volume change
—— Changes in side angle

—— Volume change

KAP 5.8 kV K1ISBK 288 nm

l Surface roughness

Achieving this goal using just the base model is challenging due to

e Large number of DOFSs, on the order of millions

e Geometric and material nonlinearity

e Fast variation in material properties

e Multiple scales — of the goal and that of the material
e Nonconvexity

e Stochasticity
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The Base Model — Polymerization
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J. E. Meiring, Mesoscale Simulation of the Photoresist Process and Hydrogel Biosensor Array Platform Indexed
by Shape, PhD thesis, The University of Texas at Austin, 2005.
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The Base Model — Lattice Topology

The output of the Monte Carlo polymerization model is

e A topological distribution of bonds and molecules
but unknown geometry

e Monomers form the vertices of the cubical lattice

e Monomers interact via central pair potentials
e Bonds along 18 directions to nearest neighbors
e Covalent bonds forming the polymer backbone

e Weaker Lennard-Jones bonds where covalent
bonds are absent

A few “cells” in 2D
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The Base Model — Molecular Statics

Let o := {{{z*} V11 ;Vjo_l 31 be the set of all

molecular positions (DOFSs) for a cube and

J(z) = % > 2 E([la"m - aVH|])

xlmnwxijk
_ E E fwk 1jk g
ik e Equilibrium i
('L,J k,p)

E is a bond potential function and f denotes the
set of forces. Equilibrium configuration is found by
minimizing J as a function of .

21 x 101 x 21 lattice

P. T. Bauman, Adaptive Multiscale Modeling of Polymeric Materials Using Goal-Oriented Error Estimation, Arlequin
Coupling, and Goals Algorithms, PhD thesis, The University of Texas at Austin, 2008.
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The Base Model — Trust-Region Iterations
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The Research Goal

Devise an efficient numerical method for solving
large-scale nonlinear lattice-based problems
with fine-scale material features

(by combining homogenization and mesh-adaptivity)
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Generalizing Quasicontinuum Method to hp meshes

The Quasicontinuum Method! is a We have generalized the scheme to
dimensional reduction technique 2 that | use higher order polynomial
constrains element-interior DOF's by interpolation to constrain interior
linearly interpolating the corner DOFs. | (edge/face/volume) DOFs3.

Pj+1 =2

Element 5 Element 7 4+ 1

Element 5 Element 7 + 1
hj =3 hjt1 =2 hj =2

hjt1 =4

1. R. E.Miller and E. B. Tadmor, The Quasicontinuum Method: Overview, applications, and current directions,
Journal of Computer-Aided Design, v. 9, 2002.

2. C. Wozniak and M. Kleiber, Nonlinear Mechanics of Structures, Kluwer Academic Publishers, 1991

3. C. Jhurani and L. Demkowicz, Dimensional reduction for a lattice-like mass-spring polymer model using

hp-adaptivity, Computer Methods in Material Science, v. 6, 2000.
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Interpolation — Etfective Stitfness and Load

Consider an abstract finite-dimensional minimization problem.

: _ L7 T
min J(v) where J(v):= 3V Kv—v"f

Let A : R™ — R¥ be a global interpolation operator. We minimize in range(A).

min J(Av)

vERM

This can be written as

1
min —ov° (A" KA) v —o' (AL f).

TERM 2
L

Effective stifflness Effective
matrix load
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Goal-driven hp-adaptivity Results in 1D
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A 2D Linear Test Problem and Adaptivity
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hp-adaptivity — Iteration 1

hp mesh
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hp-adaptivity — Iteration 2

. ol
, |
§ ol
5 5 T
; Sl
| ) 6l
. oL

o P °
Polynomial e zl;‘spﬁfjmdejc’ e
degree
hp mesh Current solution

18/53



hp-adaptivity — Iteration 3
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hp-adaptivity — Iteration 4
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hp-adaptivity — Iteration 5
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hp-adaptivity — Iteration 6
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hp-adaptivity — Limitations
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Homogenization — A Classical Example

A bar with variable
stiffness or area

Consider the linear second order ODE

F
(a(z)u'(z))" =0, =z € (0,1), =
with boundary conditions u(0) = 0 and a(1)u’(1) = F.
(\)fl l):OT In=4 1
Assume periodic material properties. )0
a(zx) := 1+ asin(27mnx) tof |
0.5
where |C¥| < 1 and n € N. 0.0 o_) 0.'; 0.6 0.8 .‘-.1.0
(x) f = 0.75 and n = 4 and
0 0. us(x) = x/\ 1 - @®
. )
1 F
1 — F d — 1.5¢f A
u(l) /0 1 4+ asin(27ns) ’ V1-—a? Lol ///

The effective “a”, defined here as F/u(1), is v/1 — a2. of =
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Homogenization — Interpolate & Minimize?

Energy functional for the previous ODE is

1

J(u) := 5/0 a(z)u' (x)*dx — Fu(l).

The exact solution can be found by solving

min J(u) such that «(0) = 0.

u
We try an approximate solution of the form uy(x) := cz. ) for @ = 075 and n = 4 and
2.0; Unx) = e x
1 1.5¢
1 5
min - [ a(x)c*dxr — Fe. o
c 2 Js
€= FfO diB = F and €ﬁectwe “a” 18 F/u( ) 1. 00 02 04 06 05 10

— The relative error is unbounded as a — 1.
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Homogenization — A Discrete 1D Problem

Rapidly changing
spring constants

_ _ k;={10,1,10,1,...,10,1}
kl k‘z k"l,—l—]. kN F 10; *—o o o L . ] * o
- e ==\ - 5
6t
L0 L1 Li—1 Lq Li+1 LN A
il *—e *—o *—o o

For N springs in 1D connected in series and pulled on
end-points, matching the end-point displacements leads
to averaging of the inverse stiffnesses. Exact and effoctive

displacements for

%;={10,1,10,1,...,10,1}

N
. Z 1 |
ko “— ki | A
Instead, if we linearly interpolate and minimize energy, | '
we get the wrong effective stiffness. S T

1 N
Foff =~z > b
1=1
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Homogenization — Effects of Interpolation

Problems with minimizing in a subspace (via simple interpolation)

e Not suitable for fast variations in material properties
e Effects of fine-scale ignored
e Interpolation averages the stiffness and not the solution

e It gives meaningful results even if a spring constant tends to zero
(or if ‘a(z)’ is zero in a region for the continuous problems)
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Homogenization — A Literature Review

Classical Homogenization — Effective equations in periodic/random media

Numerical Homogenization — Upscaling — Subgrid modeling — Multiscale FEM

e Variational multiscale method and projections — Hughes et al.

e Wavelets to compute effective homogenized operators — Dorobantu,
Engquist et al.

e Numerical upscaling for two-phase flow in porous media — Arbogast

e Solve local problems to get operator-dependent basis functions — Hou et
al.

e Operator-dependent interpolation for multigrid methods — Knapek

e Estimate effective stiffness matrix at quadrature points (heterogeneous
multiscale methods) — E and Engquist
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Homogenization — Change of Focus

We change our focus to get locally best effective material properties

Classical homogenization approach

. Homogenize A global coarse-scale
Fine-scale problem >
problem
Discretize Discretize
Y Homogenize Y
Local coarse-scale R :
> Solution

problems

Our approach
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Homogenization — A Schematic

Homogenization for
a specific coarse mesh
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Homogenization — The Linearized Problem

Fine-scale Homogenized
Element Element
N =18 M =38

o K ¢ RV*N symmetric. o K € RMXM gummetric.

e K has a non-trivial null-space. e K has a non-trivial null-space.

o u fcRY. e U, f € RM.

e f is self-equilibrated. o ]?is self-equilibrated.

e f is sum of internal load and o ]?is sum of internal load and
unknown interaction with the unknown interaction with the
rest of the lattice. rest of the coarse mesh.

Local fine scale equation: Local coarse scale equation:
Ku=f. Ki — f What should
K be?

Let A € RV*M be the bilinear interpolation operator.
Approximate fine scale solution = Au. R
Restriction of fine scale load to the coarse scale = AL f =: f.
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Homogenization — A Definition of the Error

Fine-scale Homogenized
="
Element Element
Ku=f Ku=ATf
— u=KTf+ug. — u=KIATf + .

Thus, up to a constant, the error in the local solution for a local load f is

e = u— Au
— Ktf—AKIATf
- (KT _ AI?TAT) f

We want to choose K such that e is small.

“7” denotes the Moore-Penrose pseudoinverse.
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A Brief Digression — Pseudoinverses

e Also called generalized inverses

e Studied by Fredholm, Hilbert, and many others for integral and differential
operators.

e Introduced by E. H. Moore for matrices in 1920 using projections.
Trivia: E. H. Moore was R. L. Moore’s advisor (no relation).

e Rediscovered by Roger Penrose in 1955 using an “axiomatic” approach.

Hence we have many ways of defining/introducing pseudoinverses.

e Via least squares type minimization problems (more intuitive)
e Via an axiomatic approach (Penrose equations)

Moore-Penrose pseudoinverse

e exist for singular and rectangular matrices, and
e reduce to regular inverses for invertible matrices.
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Moore-Penrose Pseudoinverse — Definitions

We can introduce Moore-Penrose pseudoinverse by least-squares problems. Let
Y € RMXN and X € RV*M | Then

. 1 2
Y = argmin H argIiin ||y x — Ip|1% HF

There are simpler formulas for full rank rectangular matrices.

Books on Linear Algebra typically define YT using the Singular Value Decom-
position (SVD) of Y. Let ULV be the SVD of Y. Then

YT =vxiu?

where
> = diag(1/01,1/09,...,1/0,,0,...,0)

and r is the rank of Y.

Later we will see two different methods for computing Moore-Penrose pseudoin-
verse that exploit sparsity.
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Homogenization — Error as a Number

AN

e(K) = (KT ~ A[?TAT) f
The problem of finding a unique K by minimizing e([? ), in any norm, is ill-posed
simply because K enters the equation by its action on a single vector A* f. So

we try “regularization”.

For ¢ > 0, f # 0, and Kt symmetric, B € RV*N symmetric positive definite,
let the error £ to be minimized be defined as

. 1 )2 € 2 )
E(RT) = H(KT _AKTA )fHB + 2 ‘KT _AKTA HFB 1112
— —~ _/ — ~— J
Error in local solution Difference of local fine-scale and
for a local load f interpolated “compliance” matrices

Here ||X||?;,B ;= trace(X ! BX). This is a B—weighted Frobenius norm.

Note that e is a highly nonlinear function of K. & , however, is a quadratic
function of entries of K.
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Homogenization — A QP Formulation

We denote KT by X now. Given K € RNXN K symmetric, A € RV*M_
BesSY, , feRY —{0}, and € > 0, solve the linear equality constrained
convex quadratic problem

min & (X).

X=X7

Using a Lagrange multiplier matrix A to impose the symmetry we get

UXV —-W = AT — A, where -
U = A'BA
Vo= AT(ffT +ellfll3 DA -
W= ATBKY(FT 4 ellfIEDA [ S8
C = VU
D = Viw4+whHv1 ~

Eliminating A and using X = X’ shows that X solves the Lyapunov equation

CX +xCct =D.
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Homogenization — Other QP Formulations

Let B := (KT — AX AT). We had defined the regularization form of error as

1 2 € 2 2
EX)=3IEfllg + 5 IEIzsllfll-
2 2

Using this will give the same X as the penalty formulation

min Ep(X) = EX) where £

1 2 1 5 >
min, 6 5 — LyBAR + LB 1712

The penalty formulation above imposes (one of the) constraints
approximately. Imposing that constraint exactly, we get

1
min Eg(X) = 5 HEH%B such that X = X? and A'BEf =0.
This gets rid of the parameter €, but leads to a saddle-point problem
with Kronecker product structure and more unknowns (the Lagrange

multipliers). We will work with the regularization/penalty formulation.
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Homogenization — A Special Case

If f =0, or it is unknown, or we want to treat all loads equally, the
definition of the error £ should be

1 112
E(X) = ) HKT —AXA HF,B'
For B = Identity, it can be proved that £ is minimum at
X = ATKT(ATHT,

Thus

AN

K =Xx'=(AtKtAT))"

Compare this with the K that is obtained without resolving the

fine scales. There R
K =ATKA.
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Homogenization — A Sanity Check

i o fs —fifafa i —f
I R I [ | T
— VN —e— U/ —e—)/—e Homogemze‘ — ) —e

k|7

If we load only on the end-points, use B = I, and ¢ — 0, we get

10 k1 ko ks

k= .
O kiky + 12 k1ks + 9 koks

Classical effective spring constant is

k1koks

k= :
kiko + k1ks + koks

The discrepancy exists because the displacements of the inner points are
ignored in the classical case. It is possible to match the classical value by
choosing a B that uses only the end-points.
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Homogenization — Computational Aspects

e Solution of Lyapunov Equation on the coarse scale
— Bartels-Stewart algorithm using real Schur CX +XCT =D

decomposition of C
— Implemented in SLICOT — a LAPACK-Ilike
systems and control library

e Computation of Moore-Penrose pseudoinverse l ;
— Of a large sparse fine-scale element stiffness matrices K (ATK f (AT)T)
x SVD very expensive
x Use Tikhonov regularization and a sparse direct solver
for symmetric matrices (we use CHOLMOD)
x Or use the knowledge of the null-space of K to
transform the problem to a linear non-singular
“practically sparse” system of equations

— Of a dense full-rank rectangular interpolation matrix A ( AT Kt ( AT)T)T

x Use QR decomposition on normal equations

— For recovering the dense element stiffness matrix 1ot 0 ATV T
after solving the Lyapunov Equation for X (A KT(A7) )

*x Cleanup spurious non-zero singular values and use SVD
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Moore-Penrose Pseudoinverse — No SVD — 1

For a given vector f and a sparse Y that is known to be not full-rank, we want
to compute Y7 f without computing the SVD of Y.

If we regularize a least squares problem, it can be proved that

VI =1lm(YTY +6)7 YT = lim YT (YYT +61)7 L.
§—0 0—0

The limit definitions work well if even if 0 is finite but small enough, like
107 ||Y||>. We can then compute z = YT f by solving

Y'Y + 6D =Y"f

for x using a sparse direct solver. The relative error in ‘ ‘YT f ] ‘ , 1s of order 10~ 7.
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Moore-Penrose Pseudoinverse — No SVD — 2

When a matrix comes from physical problems, we typically know its null-space
a priori. For example, rigid body motion in elasticity.

This knowledge can be used to avoid the SVD and reduce computation of pseu-
doinverse to solving a linear system of algebraic equations (by direct or iterative
methods).

Let Y € RV*N be a symmetric matrix with a rank deficiency p (0 < p < n).
Let R € R™*P be an orthonormal basis for the null-space of Y. We have

Y= (I —-RR")(Y +RR")"'= (Y +RR")"'(I - RR").
Thus, computing = = YT f means solving
(Y + RR")x = (I — RRY)f

for x. If Y is sparse, this can be done by iterative methods for sparse symmetric
matrices without forming the dense Y + RR”.
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Goal-oriented hp-adaptivity

Exact primal Find u** cup +V :Buf*,v) = L) YvoeV
Approx. primal Find v € up + V" : Bu"P,v") = L") WP ¢ VP
Exact adjoint  Find w®* e V : Ble,wE*) = G(e) VeecV
Approx. adjoint Find w"? € VhP : B(e"P,wh?) = G(e"P) VehP c VP

Then, error in goal G(uf*) — G(u"?) = B(uf* — u?, wEX — whp).

For mesh adaptivity, we use two grids — a coarse (c¢) and a fine (f) — with a
projection-based interpolation operator II¢ from fine to coarse!'?. The element-
wise estimates of error in energy and goal are

(LS e D SN [V
J
elements j
Gh) -G = | - [Jwf — T,
elements j

1. L. Demkowicz, Computing with hp-ADAPTIVE FINITE ELEMENTS: Volume I: One and Two
Dimensional Elliptic and Maxwell Problems, 2006.
2. L. Demkowicz et al., Computing with hp-ADAPTIVE FINITE ELEMENTS: Volume Il Frontiers: Three

Dimensional Elliptic and Maxwell Problems with Applications, 2007. /
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Homogenization — Goal-oriented Adaptivity

For the load £ and goal G defined on the fine scale, define the restricted load
and goal as

L(D) = LAD) V eV

G(®) = G(AD) ¥V veV.
Fine primal Findueup+V :Bu,v) = L(v) YweV
Fine adjoint Findw eV :Ble,w) = G(e) VeeV
Homogenized primal Find v € up + Vo B\(ﬂ, v) = Z(?J\) Vo eV
Homogenized adjoint Find @w € V :B(e,w) = G(e) VeeV

It can be shown that B(u, AW) = B(a@,@). Using this, the error in the goal
g(U) o g(a)a 18

B(u— At,w — A®) +  B(a, @) — B(AG, AD)

J/ A\ 7

v

Standard characterization Incompatible bilinear forms
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Mesh-adaptive Homogenization — Overview

Begin with a (fine) lattice, Create any compatible coarse mesh
B.C., initial solution guess partitions and restrict initial guess

!

Compute fine lattice gradient and Hessian
on each element for current solution guess

!

Nonlinearity Restrict the gradient to coarse mesh and
homogenize each partition independently

I

Assemble coarse mesh element
gradients and Hessians

!

Compute new solution guess on coarse mesh

Replace the current solution No
guess and prolongate to the <+— Reached minimum?
fine lattice

|

l Yes

Estimate error on the current coarse mesh

'

<

Adaptivity

Replace the current coarse
mesh and prolongate the
current solution to the new
coarse mesh

Subdivide the current
coarse mesh elements
with large error to
create a finer mesh

o

Estimate acceptable?

Yes
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Homogenization — Numerical Results

e oD n-&— N5 2 o« 2 o 2 oo 29

24—
G aw

"
b ot
", ar ar. A
N, 6. .
k, A f
i al (I al al

Equilibrium

20x 20 lattice with fixed

] 1.
spacing on bottom ( 3) The fine-scale solution

— bond stiffness 0.4, length 1.2
bond stiffness 1.0, length 1.0
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Homogenization — Error at Various Levels

X sy
. =t

Original, 882 DOF's

Percentage Error

8 DOFs

18 DOF's

Error due to homogenization

100.0% -
8 DOFs
16.7% Error
18 DOFs
0
10.0% | 7.4% Error
0. 93 : 50 DOFs
3.0% Error
1
1.0% T |
1 10 100

Degrees of Freedom

Error in
L? norm
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Homogenization — Recent 3D Results
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Software Packages Used

e BLAS, LAPACK, PETSc, TAO, and CHOLMOD
e hp[123]d

e SLICOT (Lyapunov equation solver)

e VTK (visualization), and

e Boost and MPICH.
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Ongoing Work
e Integrate homogenization and mesh-adaptivity including error estimation
e Solve problems on representative SFIL lattices
e Use multiple realizations to compute statistical quantities
e Experiment with different optimization algorithms

e Compare the run-times of solving the base-model and the homogenized
model

e Study technical aspects of homogenization

— the choice of the norm for local homogenization

— benefits of homogenizing for a given load when compared to homogenizing
for arbitrary loads

— program a suitable iterative solver to compute the Moore-Penrose pseu-
doinverse when the null-space is known

— compare the run-times of iterative solver and sparse direct solver for com-
puting the pseudoinverse.
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Thank You!

53/53



