
Project High Frequency Methods Instructor: Tanushev

Consider the wave equation in 2 spacial dimensions, x = (x1, x2)

utt − ux1x1 − ux2x2 = 0 ,

with initial data

u|t=0 = e−100|x|2eik(−x1+x
2
2)

ut|t=0 =
[
ik

√
1 + 4x2

2

]
e−100|x|2eik(−x1+x

2
2) ,

so that the waves propagate in the positive x1 direction.

1. Derive the Eikonal and transport equations for solutions of the form,

u = A(t, x)eikφ(t,x) .

2. Write a function in some programming language (Matlab would be the
easiest using ode45) to solve the ODEs that define the bicharacteristics
for the Eikonal equation. In the notation from class, the bicharacteristics
are

(T (s), X(s), τ(s), ξ(s)) ,

where X = (X1, X2) and ξ = (ξ1, ξ2).

Your code should take as inputs, t, X(0) = (y1, y2) and ξ(0) = (η1, η2)
and return (T (s0), X(s0), τ(s0), ξ(s0)) for s0 such that T (s0) = t. You can
use the analytic solution to find this s0.

Note: You do not need to numerically integrate the τ equation, since
τ2 = |ξ|2 for all s. Choose the root for τ which gives you propagation in
the positive x1 direction.

3. Enlarge your ODE system to also compute φ and its second derivatives on
the bicharacteristic originating from (0, y1, y2, η1, η2). You will need initial
conditions for φ and all second derivatives involving x1 and x2. Remember
that you can get derivatives involving t using derivatives of the Eikonal
equation directly. Also, compute the amplitude on this bicharacteristic (it
will need an initial value as well).

4. Consider a representation of the initial data as follows,

A(x)eikφ(x) ≈ k

2π

∫
Ω

A(y)eik(T
y
2 [φ](x)+i|x−y|2/2)dy ,

where,

A(x) = e−100|x|2

φ(x) = −x1 + x2
2 ,
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and T y2 [φ](x) is the second order Taylor polynomial of φ about the point
y as a function of x. The domain Ω is the square [−0.2, 0.2]2.

Now, looking at T y2 [φ](x)+ i|x−y|2/2) as the entire initial phase and A(y)
as the amplitude, decide what you need to send as input to your code from
the previous part, so that you can calculate the phase, its derivatives, and
the amplitude at a given time t for the characteristics originating from
(y1, y2) at t = 0.

5. For a fixed y, fixed t, and the appropriate initial conditions from the pre-
vious part, calculate φ, its first and second derivatives and the amplitude
at s0 (this is the same s0 as before). Then form

ψ(t, x; y) = φ(s0) +∇xφ(s0) · (x− y) +
1
2
(x− y) ·Hxφ(s0)(x− y)

A(t, x; y) = A(s0) ,

where ∇xφ = (φx1 , φx2) and Hxφ is the 2 × 2 Hessian matrix of φ con-
taining its x derivatives.

Finally, compute the wave field for one Gaussian beam for k = 104,

v(t, x; y) =
k

2π
A(t, x; y)eikψ(t,x;y) .

Computationally, you will need to evaluate v(t, x; y) on some grid: fix a
value for t and y (say something like t = .25, y = (0, 0), but you should
be able to vary these values later) and create a mesh for (x1, x2) (say on
the rectangle [−0.2, 1.2]× [−0.2, 0.2]), then evaluate v(t, x; y) on this grid.

6. Finally, loop over your code in the last part to compute

u(t, x) =
∫

Ω

v(t, x; y)dy .

As with x, you will need a grid on Ω to calculate this integral. Test
your code by computing u(t, x) at t = 0 and comparing the result to the
initial condition for u. Make several plots showing u (its real, and absolute
values) at t = 0, 0.25, 0.50, 0.75, 1.00. You may find it useful to look at the
article “Superpositions and higher order Gaussian beams” available at

http://www.intlpress.com/CMS/2008/issue6-2/

and more specifically, sections 3.1 and 3.4.

2


