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Wavelet examples

Haar

Scaling function ¢(x) Mother wavelet ¢(x)
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Scaling function ¢(x) Mother wavelet v(x)
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Scaling function ¢(x) Mother wavelet ¢ (x)
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Scaling function ¢(x) Mother wavelet ¢ (x)
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Wavelet based image compression

@ Wavelets successful in image compression. Eg: JPEG 2000
standard (Daubechies (9,7) biorthogonal wavelets), FBI fingerprint
database, ...

@ Consider image as a function and use 2D wavelets.
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LL HL HL
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LH HH LH HH
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{a} S5ingle Level Decomposition {b) Two Level Decomposition {c]) Three Level Decomposition

@ Compress by thresholding + coding + quantization.
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Wavelet based image compression
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Time Frequency Representation of Signals

Given a discrete signal f(n), n=0,1,....

Time representation — total localization in time

f(n)=>_f(k)s(n— k)
k

Basis functions
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Time Frequency Representation of Signals

Given a discrete signal f(n), n=0,1,....

f(n) = _f(k)3(n - k)
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Time representation — total localization in time
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Time Frequency Representation of Signals

Given a discrete signal f(n), n=0,1,....

Fourier representation — total localization in frequency

f(n) = (j)exp(inj2r/N)
J

Basis functions
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Time Frequency Representation of Signals

Given a discrete signal f(n), n=0,1,....

Fourier representation — total localization in frequency

Frequency

f(n) = 3" F(j)exp(inj2x/N)
J

Time
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Time Frequency Representation of Signals

Given a discrete signal f(n), n=0,1,....

Wavelet representation — localization in time and frequency

f(n) = wix(n/2m)

j7k

Basis functions
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Time Frequency Representation of Signals

Given a discrete signal f(n), n=0,1,....

Wavelet representation — localization in time and frequency

Frequency

f(n) = wjkijk(n/2m)

J:k
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Time Frequency Representation of Signals

Given a discrete signal f(n), n=0,1,....

Wavelet representation — localization in time and frequency
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Time Frequency Representation of Signals
Example

Time representation — total localization in time
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Time Frequency Representation of Signals
Example

Fourier representation — total localization in frequency
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Time Frequency Representation of Signals
Example

Wavelet representation — localization in time and frequency
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Wavelets — some contributors

@ Strémberg — first continuous wavelet

@ Morlet, Grossman — "wavelet"

@ Meyer, Mallat, Coifman — multiresolution analysis

@ Daubechies — compactly supported wavelets

@ Beylkin, Cohen, Dahmen, DeVore — PDE methods using wavelets
@ Sweldens — lifting, second generation wavelets

...and many, many more.
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