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1 Basic definitions

Fix a set €2 which we refer as the sample space or the set of outcomes. We define
for the sample space the following concepts:

Definition. The power set of €2 is defined as the set containing all the subsets

of O
PQ)={A: ACQ}.

Let F C P(R2) with the following properties:
(i) p € F.
(i) A€ F— A€ F.
(i1i) Let {A;} a countable family of elements of F, then
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The family F is called o-field and its elements are called events.

Definition. A probability function is a set function P : F — [0,1] with the
properties:
(i) P(Q) =1.

(11) For a mutually disjoint and countable family of events {A4;}

r(gs) -z

Since P(A;) > 0 this sum always exists.
A good way to think in a probability function is that it is a function that measures
the “size” of every event in F.

Definition. The triplet (2, F, P) is called probability space.

Examples.

(1) Fix g € R™ = . Consider the set function defined as

. 1 x9 € A
P(A) = { 0 otherwise.

The function P is a probability function in €.



(2) Take Q = [0,00) and let f(x) = exp(—x). Then, the set function defined by

P(A) = / f(s)ds
A
is a probability function in €.

1.1 Basic properties

The follow properties can be deduced from the properties (i) and (i) of the proba-
bility function. Let A, B € F, then

(i) 0< P(A) < 1.

(i1) P(¢) = 0.
(iii) P(A®) =1— P(A).
(iv) P(AUB)= P(A)+ P(B)— P(ANB).

1.2 Conditional probability

Let A, B € F, the probability of the event B given that the event A has occurred is
defined by the ratio

P(BNA)

- P(4)

The idea behind the definition of conditional probability is that the knowledge that
the event A has occurred converts this event into the new sample space. Thus, the
probability of any event B is referred to A using the intersection and then normal-
ized to it using the quotient.

P(B|A) :=

Definition. The event B is independent of A if
P(B|A) = P(B).
It turns out that if B is independent of A, then A is independent of B because

P(A
P(B

—
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P(A|B) = P(B|A) = P(A).
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Therefore, we can simply say that A and B are independent. Clearly, in this case
one has

P(BNA)=P(B)P(A).
2 Random variables

Let (Q,F,P) be a probability space, and assume that we can build a function
X : Q — R" with the property that for any A € Fgn

{w: X(w) e A} € F.



Here Fgn is a predetermined and sufficiently large o-field of R™ (for example all the
measurable sets of R™). Such a function is called continuous random variable. If
the range of X is contained in Z", we called it discrete random variable. Thus, a
discrete random variable is a particular case of a continuous random variable.

Example. Flip two coins. The sample space of this experiment is Q@ = {ht, th, tt, hh}.
All the following are different discrete random variables.

(1) X : Q — Z such that X (th) = X (ht) =1, X (tt) = 2, X(hh) = 3.
(2) X : Q — Z such that X (th) =0, X(ht) =1, X(tt) =2, X(hh) = 3.

(3) X : Q — 72 such that X (th) = (0,1), X(ht) = (1,0), X(tt) = (0,0), X (hh) =
(1,1).

Random variables allow us to make computations of the probability and statistic of
a particular experiment in the well-known spaces R™. Indeed, for any A € Frn we
define the probability of A as

P(A) = P{w: X(w) € A}).

2.1 Probability distribution and density
Let X be a random variable X : Q — R.

Definition. The probability distribution of X is the function defined as
F(z):=P{w: X(w) <z})=P(X <uz).

If F is differentiable, we can obtain the so called density distribution f(x) of X from
F' using differentiation. Thus, we have the relation

F(z) = / OO £(s)ds.

In the case of a discrete random variable X : 2 — Z, we adopt for convenience a
slightly different definition for the density distribution

f(z) = P(X = x),
which leads to the relation

F(a)= P(X <a) =Y f(u).

u<zx
Examples.

(1) X : Q — R is normally distributed with parameters (i, o) if

F(z) = (2m0) Y2 exp (_%) .



(2) X :9Q—{1,2,--- ,n} is binomially distributed with parameter 0 < p <1 if

n _
f(x) = ( . >px(1 _p)n T
We explain the binomial distribution in the following way. Assume we have an
experiment that has two outcomes: false = 0 and true = 1. We run the experiment
n times knowing that every run is independent of the previous ones. Thus, a possible
outcome or realization of our experiment would be

000101100111 ---0010110111110

n times

Assume that the probability of getting a false outcome is p, and thus, the probability
of getting a true outcome is 1 — p. Since the runs are independent, the probability
of one realization is p®(1 — p)"~*, where z is the number of false outcomes in the
realization. Now, the number of possible realizations having x false outcomes is

( Z ), then, we deduce that the probability of having x false outcomes in n runs

(" )ra-sr-.

If we define the random variable X as the number of false outcomes of this experi-
ment after n runs, we conclude that X is binomially distributed.

is precisely

2.2 Join distributions and independent random variables

Let X; with ¢ =1,2,...,n be random variables with X; : ; — R . In order to fully
describe the interaction of these random variables, we put them together in a single
random vector X : x{2; — R" with a uniquely defined probability function

P: XQi — [0, 1]
In this setting, we define the join probability distribution of X by

F(z)=P (ﬂ{Xi < g:i}) :

i=1

where x; is the i-entry of z. Similarly to the 1-dimensional case, we define the join
density distribution as the function f : R™ — [0, c0) such that

F(z)= /ﬂ{ . f(s)ds.

More generally, we have
P(A) = P(X € A) = / F(s)ds.
A

The functions F' and f comprise all the statistics of the random variables X;’s (in-
cluding their interactions). In fact, the individual statistics of the X;’s can be easily



found from the join probability function by means of averaging. Thus, we have the
following

Definition. The marginal distributions of X are the functions

Ix,(z;) = /Rn_l f(z;,5)ds.

The marginal distributions are nothing else than the density distributions of each
particular Xj.

Definition. Let X and Y be random variables. These random variables are
called independent if

f(z,y) = fx(z)fy(y).

3 Expected value

Let X be a random variable. Then

Definition.

(i) The ezpected or mean value is defined as the average

E[X] ::/Rs f(s)ds.

The notation px = E[X] is commonly used.
(i) The variance is defined as the average
Var(X) = BIX = ux ) = [ (5= )? Fls)ds
The notation 0% = E[(X — ux)?] is commonly used. The ox stands for the
standard deviation of X.
The following are simple properties that hold for the expected value and variance
(1) E[cX] = cE[X] for c € R.
(2) E[X +Y] = E[X]|+ E[Y] for any two random variables X and Y.
(3) 0% = EIX?] - 4.
(4) Var(cX) = Var(X) for c € R.

The following are properties that hold for any two independent random variables
X and Y

(1) E[XY] = E[X]E[Y].
(2) Var(X +Y)=Var(X -Y) =Var(X) + Var(Y).



An important theorem that confirms that the outcome of a random variable is
unlikely to be far from its mean value in terms of the variance scale is the

Theorem 3.1. (Chebyshev’s inequality) Let X be a random wvariable with mean
value {1 and variance o2, then

1
P(X = > ko) < 7.
Proof. Let f the probability density of X, then

P(IX = i > ko) = /{ T
s—p|>ko

B—uvz
= /{Is—u|>k0} < ko Jeds

1 ) 1
< oz | Is = ulr(s)s = 5.




