
Notes by Eric Katz

TROPICAL GEOMETRY

GRIGORY MIKHALKIN

1. Introduction

1.1. Two applications. Let us begin with two examples of questions where trop-
ical geometry is useful.

Example 1.1. Can we represent an untied trefoil knot as a genus 1 curve of degree
5 in RP3?

Yes, by means of tropical geometry. It turns out that it can be be represented
by a rational degree 5 curve but not by curve of genus greater than 1 since such a
curve must sit on a quadric surface in RP3.
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Figure 1. Untied trefoil.

Example 1.2. Can we enumerate real and complex curves simultaneously by com-
binatorics? For example, there is a way to count curves in RP2 or CP2 through
3d− 1 + g points by using bipartite graphs.

1.2. Tropical Geometry. Tropical geometry is algebraic geometry over the tropi-
cal semi-field, (T, “+”, “·”). The semi-field’s underlying set is the half-open interval
[−∞,∞). The operations are given for a, b ∈ T by

“a+ b” = max(a, b) “a · b” = a+ b.

The semi-field has the properties of a field except that additive inverses do not
exist. Moreover, every element is an idempotent, “a+ a” = a so there is no way to
adjoin inverses. In some sense algebra becomes harder, geometry becomes easier.

By the way, tropical geometry is named in honor of a Brazilian computer scien-
tist, Imre Simon.

Two observations make tropical geometry easy. First, the tropical semiring T

naturally has a Euclidean topology like R and C. Second, the geometric structures
are piecewise linear structures, and so tropical geometry reduces to a combination
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2 MIKHALKIN

of combinatorics and linear algebra. The underlying geometric structure is known
as an integer affine structure. Unfortunately, the underlying space will not be a
manifold but rather a polyhedral complex. The tropical algebraic data will enrich
the polyhedral complex with an integer affine structure.

In many cases, tropical objects are limits of classical objects (usually algebraic
varieties) under certain degenerations. As an example, let us consider the classical
objects of holomorphic curves in CPN , that is maps f : Sg → CPN from a Riemann
surface to CPN that satisfy that Cauchy-Riemann equations. The corresponding
tropical objects are piecewise-linear graphs in RN whose edges are weighted by
integers that satisfy the following conditions: the edges have rational slopes; and the
balancing condition described below is satisfied at vertices. These provide finitely
many easily checked conditions. We should note that it is much more subtle to
determine whether a tropical object is a limit of a classical object. We will describe
some sufficient conditions in certain cases later.

The degeneration arises as follows. Look at the torus (C∗)N ⊂ CPN . There is a
map

Log : (C∗)N → RN

(z1, . . . , zN) → (log |z1|, . . . , log |zN |).

If V = f(Sg) is the image of the holomorphic map, the set Log(V ) ⊂ RN is called
the amoeba of V .
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Figure 2. [22] The amoeba of the line {x+ y + 1 = 0} ⊂ (C∗)2.

We may include Log in a family of maps,

Logt : (z1, . . . , zN ) 7→ (logt |z1|, . . . , logt |zn|)

As t 7→ ∞, the amoeba will be dilated and the Hausdorff limit limt→∞ Logt(V ) is
a union of rays at the origin. This limit contains homological information about
the behavior near the ends but little else. Instead, consider a family of curves
Vt ⊂ (C∗)N parameterized by t. The limit limt→∞ Logt(V ) is a piecewise-linear
object called a tropical curve.

Notice that when we apply Log, we lose information about the argument of points
in V . We can therefore strengthen the correspondence between classical and tropical
curves by including some information on phases in the tropical picture. These will
give us phase-tropical curves. Using these data, under certain conditions, we may
lift the tropical curve back to the classical curves.
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(0, 0

Figure 3. The limit of the amoeba of the line {x+ y + 1 = 0} ⊂ (C∗)2.

1.3. Organization. The plan for the lectures is to do the following:

(1) Define tropical manifolds which will serve ambient spaces and on which we
will discuss hypersurfaces, cycles, morphisms, and tropical equivalence.

(2) Outline the patchworking and non-Archimedian approaches to tropical ge-
ometry.

(3) Treat tropical curves in detail and provide the analogs of the Abel-Jacobi
map and the Riemann-Roch theorem.

(4) Introduce phase-tropical curves and state the approximation theorem.

update list

1.4. Ingredients in Tropical Geometry. Here is a list of various influences on
tropical geometry. This list is not exhaustive.

(1) Topological side - Viro’s patchworking [28], Amoebas of Gelfand-Kapranov-
Zelevinsky [16], non-Archimedean amoebas [11]

(2) Mirror Symmetry after Kontsevich-Soibelmann [18, 19] and Fukaya-Oh [12].
(3) Rigid analytic geometry after Berkovich [6]
(4) Study of valuations after Bergman [5] and Bieri and Groves [7]
(5) Toric Geometry following Khovanskii [17] and Fulton and Sturmfels [13]
(6) (p, q)-webs in physics by Aharony, Hanany and Kol [1].

The words “tropical” and “geometry” were put together in March of 2002 in Alta,
Utah by Mikhalkin and Sturmfels. Initial interest was stimulated by a suggestion of
Kontsevich that tropical varieties could be used to address enumerative questions.

1.5. These notes. These notes are based on a series of lectures given by the author
at the University of Texas in February and March 2008. The notes are by Eric Katz.
Several figures are from other papers of the author. Some figures are by Brian Katz.
The note-taker takes responsibility for the other figures and for any inaccuracies in
the notes.

The note-taker recommends as resources the following papers and books: [24,
21, 26, 23, 22, 20].

2. Tropical Polynomials

Let T = [−∞,∞) be the underlying space of the tropical semi-field. Let Tn =
[−∞,∞)n be its Cartesian power.

Definition 2.1. A tropical polynomial is a finite sum

“
∑

aJx
J”
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for multi-indexes J = (j1, . . . , jn) ∈ Zn, aJ ∈ T where

xJ = “xj1
1 . . . xjn

n ”

Note that “” will be used to denote tropical operations while the classical oper-
ations will not be in quotes. Observe that

“
∑

aJx
J” = max(aJ + j1x1 + · · · + jnxn).

The Laurent polynomial “x−1′′ is not defined at −∞ since “(−∞)−1′′ /∈ T. The
Laurent polynomials that are defined on all of Tn are those for which ji ≥ 0, in
other words, tropical polynomials. A tropical polynomial is convex on (T∗)n = Rn.

Definition 2.2. For U ⊂ Tn, let F be the pre-sheaf where F(U) is the set of
all functions on U that are restrictions of Laurent polynomials defined on U . The
structure sheaf, O is the sheafification of F . Elements of F(U) are called regular
functions.

Note that regular functions are convex. We also consider rational functions
which are locally the difference of regular functions. If a rational function fails to
be convex near a point, then it is certainly not regular there.

One can define spaces with tropical structures by locally modeling them on Tn

and considering the semi-ringed space given by the sheaf of regular functions.

3. Integer Affine Structures

The space Tn is a manifold with corners. We can use Tn to model tropical spaces
and give them an integer affine structure as an alternative to the semi-ringed space
structure.

Definition 3.1. An integer affine linear transformation Φ : Rn → Rm is a function
that can be expressed as the composition of a Z-linear transformation R

n → R
m

followed by an arbitrary translation in Rm.

Definition 3.2. An integer affine structure on a smooth n-dimensional manifold
M is an open covering {Uα} of M with charts φα : Uα → Rn such that the transition
maps φβ ◦φ−1

α are the restriction of integer affine transformations Φβα : Rn → Rn.

Observe the lattice spanned by ∂
∂x1

, . . . , ∂
∂xn

in TpU is preserved by integer affine
transformations. In fact, an integer affine structure on a manifold is equivalent to
a consistent family of lattices in the tangent spaces of points of M . This family of
lattices can be obtained from the regular functions on U .

3.1. Integer affine structures on the torus. Let us consider a family of ex-
amples corresponding to abelian varieties. Let Λ ∼= ZN be a full-rank lattice in
RN . Let RN have the standard integer affine structure coming from the lattice

∂
∂x1

, . . . , ∂
∂xn

. This integer affine structure is preserved by translations by elements

of Λ and therefore descends to the quotient RN/Λ.
For two different choices Λ,Λ′, the quotients RN/Λ, RN/Λ′ may be different as

integer affine manifolds. Consider the the standard square lattice Λ in R2 and some
generic lattice Λ′. A curve C ⊂ RN/Λ is said to have rational slope if it is tangent
to an integer vector, say ~v at every point. Any such curve C lifts to a line in some
integer vector direction in R2. Since t~v ∈ Λ for some t ∈ R+ such curves close up
in R

2/Λ while they do not in R
2/Λ′.



TROPICAL GEOMETRY TEXAS RTG LECTURES 5

3.2. Projective space. The fundamental example of a manifold with corners lo-
cally modeled on Tn is tropical projective space.

Definition 3.3. Tropical projective space TPN = TN \ {(−∞)N}/ ∼ where ∼ is
the relation defined by

(x0, . . . , xN ) ∼ “λ · (x0, . . . , xN )”, λ ∈ T
∗.

For example, TP
1 is covered by two charts Ui = {xi 6= −∞} for i = 0, 1.

The map f0 : (x0, x1) 7→ x1 − x0 provides a chart from U0 to T, while the map
f1 : (x0, x1) 7→ x0 − x1 provides a chart from U1 to T. The transition map is
x 7→ −x or equivalently x 7→ “ 1

x
”. As a topological space, TP1 is isomorphic to the

closed interval, but its integer affine structure makes it looks like [−∞,∞].
Analogously, TPN is topologically a closed simplex, but geometrically, its interior

is RN .

3.3. Some geometry. A tropical line in TP2 is the set where the max of a function
“ax0 + bx1 + cx2” (for a, b, c ∈ T) is achieved twice.

Theorem 3.4. TP2 satisfies the Fano plane axiom. Pick four points (p1, p2, p3, p4)
in tropical general position. Draw all tropical lines through all pairs of points. Pairs
of such lines intersect in the four given points plus three additional points. Those
three points are collinear.

This theorem does not hold classically except over fields of characteristic 2. We
give an example of a Fano configuration. We let three of the four points be the
vertices of the TP2. The fourth point is chosen generically in the interior. The lines
between the pairs of the points turn out to be the edges of the simplex together
with the three lines

The three intersection points are collinear.

3.4. Manifolds of Finite Type. Now, we would like to impose some additional
conditions on tropical manifolds. We ask that our integer affine manifolds X to be
Hausdorff and of finite-type.

Definition 3.5. An integer affine manifold X is said to be finite type if there are
finitely many charts φα : Uα → Tn such that ∪Uα = X and each chart Uα is
extendable in the following sense: there exists an open set Vα ⊇ Uα and ψα : Vα →

Tn such that φ(Uα) ⊆ ψα(Vα).
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Example 3.6. The open interval (0, 1) with the standard integer affine structure
is not of finite type, but R is. Here the two ends are modeled on the open end of
[−∞,∞).

4. Hypersurfaces Associated to Regular Functions

In this section, we develop the theory analogous to the theory of principal divi-
sors.

Let U ⊂ X be a subset of a tropical manifolds. Let f : U → T be a tropically
regular function, that is the restriction of a Laurent polynomial to U ⊂ Tn so that
it is everywhere defined.

Definition 4.1. The tropical hypersurface Vf associated to f is the set of points
x ∈ U where “ 1

f
” is not locally regular.

Lemma 4.2. Vf is the locus where f is strictly convex.

Proof. The condition that “ 1
f
” is not locally regular is equivalent to −f not locally

being the restriction of a tropical polynomial. But −f is the minimum of some of
linear functions with integer slope hence concave. Since tropical polynomials are
convex, so for −f to be the restriction of a tropical polynomial, it must be linear. It
follows that “ 1

f
” not being regular is equivalent to f not being linear, hence being

strictly convex. �

Example 4.3. The hypersurface of “1+3x+3x2+2y+3xy′′ in T2 is the following
graph in the plane

(−2,−1)

(−1, 0)
(0, 0)

Vf is a polyhedral complex in U ⊂ Tn. That is, it is a union of convex polyhedra
of dimension n− 1 such that the intersection of any two of them is a common face.
Moreover every facet is contained in a hyperplane with rational slope. We see this
by writing f as the maximum of some monomials,

f = max(aJ + J · x).

This function is strictly convex when the maximum is achieved by two different
terms. The locus where this happens is cut out by linear equations and linear
inequalities. Each facet comes of Vf comes with a natural weight by a positive
integer. A facet F is defined by a set of monomials, {aJk

+ Jk · x} which are
maximized on F . The slopes Jk lie along a line in Z

n. The weight, w(F ) is the
lattice length of this line. Alternatively, we may define the weight as

w(F ) = max | gcd(Jk1
− Jk2

)|

where the maximum ranges over pairs (k1, k2) and Jk1
− Jk2

is considered as an
n-tuple of integers.
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In the case n = 2, the tropical curve Vf satisfies the following balancing condition.
Let p be a vertex of Vf and e1, . . . , el be the edges containing p. Let v1, . . . , vl be
the primitive integer vectors along e1, . . . , el pointing away from p. (Here primitive
means the greatest common divisor of the components is 1). Then,

∑

w(ei)vi = 0.

For general n, the hypersurface Vf satisfies the balancing condition. For any
n − 2-dimensional face E of Vf , let F1, . . . , Fl be the facets containing E. Let
λ : Rn → R2 be the projection along E. Then C = λ(∪Fi) is a one- dimensional
integral polyhedral complex in R2. Give the edges in C the weights coming form
Vf . Then C is balanced.

5. Balanced Cycles and Tropical Intersection Theory

We may formulate the balancing condition abstractly. We recommend [24] and
[2] for details. Let us first do this for 1-dimensional integral polyhedral complexes
in Rn. A balanced 1-dimensional weighted integral polyhedral complex is a graph
in Rn whose edges are (possibly half-infinite) line segments with rational slope,
weighted by integers. It is balanced if for every vertex p,

∑

w(ei)vi = 0 where ei

are the edges adjacent to p, and vi is a primitive integer vector along ei pointing
away from p.

We may extend this to k-dimensional weighted integral polyhedral complexes by
saying that such a complex is balanced if for every codimension 1 face, E adjacent
to facets F1, . . . , Fl, and projection λ : Rn → Rn−k along E, λ(∪Fi) is balanced.
We call such complexes k-cycles. If all weights are positive, they are said to be
effective.

Cycles can be deformed by parallel translations of linear subspaces as long as
the combinatorics of adjacency is preserved as in Figure 4. The slopes cannot be
deformed. If F is a top-dimensional cell in a cycle Z, then F lies in an affine

Figure 4. Deformation of a Tropical Cycle

subspace with integral slope. If we translate this subspace to contain the origin,
it contains a lattice ΛF . Two cycles Z,Z ′ of complementary dimensions k, k′,
k+k′ = n are said to intersect tropically transversely if for every point of intersection
p ∈ Z ∩Z ′ belongs to the relative interior of top-dimensional cells F, F ′ of Z,Z ′ so
that F, F ′ lie in transverse subspaces. The multiplicity mp of such an intersection
is the product of the weights with a particular lattice index and is defined to be

mp = wZ(F )wZ (F ′)[Zn : ΛF + Λ′
F ].
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The intersection number is the sum of the lattice indices

Z · Z ′ =
∑

p∈Z∩Z′

mp.

This intersection number is stable under deformations of Z and Z ′ [13, 27]. In
fact, the balancing condition can be reformulated as saying that: Z is balanced if
and only if its intersection number with a complementary rational subspace L is
invariant under translations of L.

L t

Z

Figure 5. Family of Lines intersecting a cycle
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(−1,0)

(1,−1)

(1,1)

(0,−1)

Figure 6. Invariance of Intersection Number

Example 5.1. Consider the intersection of the tropical zero locus of “x + y + 1”
with a rational line in the direction (1,−1). If the divisor intersects the line in two
points, the intersection number is

∣

∣

∣

∣
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−1 0
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∣
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∣

∣

∣

∣
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∣

∣

∣
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while if it intersects in a single point, the intersection number is
∣

∣

∣

∣

−1 1
1 1

∣

∣

∣

∣

= 2.

This is illustrated in Figure 6
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We may also define projection π of a k-cycle Z along a linear subspace L of
complementary dimension in such a way that the image, π(Z) is a k-dimensional
linear subspace L′ orthogonal to L and such that the multiplicity of π(Z) as a
one-celled tropical variety is Z · L.

One can similar define the intersection of more than 2 cycles and intersections
when the dimensions are not complementary.

In Rn, in the case that an intersection is not transverse, one can define it as a
limit of perturbations making it transverse. This is the stable intersections in [27].
Here, for two cycles A,B in a manifold X , the intersection A · B will a union of
faces of the expected dimension in A∩B with certain multiplicities. There may be
situations where cycles have negative self-intersections.

There is a tropical analog of Bezout’s theorem. A cycle Zk ⊂ TPn is said to be of
degree d ∈ Z if d is the intersection number with an (n− k)-dimensional projective
subspace. Recall that a projective (n−k)-space is a translate of the (n−k)-skeleton
of the normal fan to a face of a standard n-simplex. For example, we may take our
subspace to be a coordinate subspace in TPn.

Theorem 5.2 (Bezout’s Theorem). If Z1, . . . , Zl are cycles of degrees d1, . . . , dl

whose codimensions sum to n, then Z1 · Z2 · · · · · Zl = d1d2 . . . dl.

Figure 7. A tropical line intersecting a tropical conic

Bezout’s theorem is illustrated in Figure 7 where it is shown that a line and a
conic intersect in two points. If f is a tropical polynomial of degree d, then Vf is a

cycle in Tn and Vf is a cycle of degree d in TPn.
Let us explore the case of hyperplanes in detail. Hyperplanes are given by

tropical linear forms
“a0 + a1x1 + · · · + anxn”.

In the case where no ai is −∞, we may change coordinates by yi = xi + ai and
scale to get

”0 + y1 + · · · + yn”.

In that case, the tropical hyperplane is just a translate of a standard hyperplane.
In TP2, the hyperplane “0 + x1 + x2” looks like

(0, 0)
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It may even degenerate to any of the following lines and their translates

It may even coincide with the coordinate axes with the boundary lines of TP2.

6. Patchworking

Tropical curves in the plane were described both as limit of amoebas of curves
in the complex plane and as the tropical divisor of a tropical polynomial in two
variables. We outline the proof of the slightly more general fact that every tropical
hypersurface is a limit of amoebas of complex hypersurfaces. The proof uses the
patchworking technique of Viro [28].

Let f = “
∑

aJx
J” be a tropical polynomial. Let Ft =

∑

taJxJ be the corre-
sponding family of classical polynomials. Near any point x ∈ Rn, the behavior of
Logt(V (Ft)) is determined by the dominating monomials of f . We make this clear
in the following example.

Example 6.1. Let

f(x, y) = “0 + x+ y + (−1)xy” = max(0, x, y, x+ y − 1)

be a tropical polynomial. Then Ft = 1 + x+ y + t−1xy is the corresponding family

y

0

x

x+y−1

(1,1)

(0,0)

Figure 8. Near (0, 0), this tropical curve looks like a line.

of classical hypersurfaces. When t → ∞, 1 + x + y dominates, so the curve looks
like a tropical line as in Figure 8 This happens when x, y are small as in 0 < r ≤
|x|, |y| < R.

Now consider the following change-of-coordinates,

x̃ =
x

t
, ỹ =

y

t
.

The equation becomes

0 = 1 + tx̃+ tỹ + tx̃ỹ

and its zero-locus is the same as

0 =
1

t
+ x̃+ ỹ + x̃ỹ.
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As t→ ∞, this becomes 0 = x̃+ ỹ + x̃ỹ. If we write x = 1
x̃
, y = 1

ỹ
, we get the line

1 + x+ y = 0.

This is the shape of the tropical variety near (1, 1). For t large, Log(V (Ft)) looks
like a thickening of the tropical variety.

7. non-Archimedean amoebas

The above patchworking argument can be formalized in algebra in terms of non-
Archimedean amoebas, as originally done by Kapranov [11]. We begin with a field
K with a valuation

val : K → R ∪ {−∞} = T

satisfying

val(ab) = val(a) + val(b)

val(a+ b) ≤ max(v(a), v(b)).

We may define a non-Archimedean absolute value by ‖z‖ = eval(z).
The field K = C{{tR}} of generalized power series with real exponents is an

example of such a field. This field consists of formal series of the form

z =
∑

j∈J

ajt
j

where J ⊂ R is a wel-ordered set and aj ∈ C∗. We define valuation by val(z) =
−min(J).

For F =
∑

J ajx
J a polynomial with aJ ∈ K, the corresponding tropical poly-

nomial is f = “
∑

J val(aJ )xJ”.

Theorem 7.1 (Kapranov). If VF ⊂ (K∗)n is the zero-locus of a polynomial over
K then the valuation val(VF ) ⊂ Rn depends only on the valuation of the coefficients
of F . In fact, val(VF ) is the tropical hypersurface defined by the tropical polynomial
f .

The non-Archimedean point of view allows one to talk about the phase for a
tropical hypersurface. For z =

∑

j∈J ajt
j ∈ K∗, define the leading coefficient

lc(z) = aj where j = min(J). So we have in addition to a map val : K∗ → T∗, a

map Arg : K∗ → S1 given by Arg(z) = lc(z)
| lc(z)| . Therefore, one can look at the image

of VF under the map (val,Arg) to (T∗)n × (S1)n = (C∗)n. Under certain genericity
conditions on the coefficients, the whole image depends only on the valuations and
arguments of the coefficients of F .

8. Local multiplicities

Any effective tropical cycle can be given a local multiplicity at any point.

Definition 8.1. Let Z is a k-dimensional tropical cycle with all weights positive.
For any integral basis of the ambient Zn, e1, . . . , en, consider the set of vectors
{e1, . . . , en,−(e1 + · · · + en)}. By considering the union of the positive spans of
each (n−k)-tuple of these vectors, we get an integral polyhedral complex. By giving
each cone multiplicity 1, we get an (n − k)-cycle W . The local multiplicity is the
minimum of the intersection number W · Z taken over all bases.
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Example 8.2. Here are some examples of cycle of local multiplicities, 1, 2, and
3 respectively. The cycles are in bold. One can compute that they intersect the
un-bolded line in the appropriate multiplicity.

[ −2

1
] [ 1

1
]

[ 1

−2
]

A cycle of local multiplicity 1 is locally irreducible.

9. Cycles of multiplicity 1

Let us consider fans that are cycles of multiplicity 1. By combining results
of Ardila-Klivans [3] and of Mikhalkin and Sturmfels-Ziegler, these correspond to
matroids.

Definition 9.1. A matroid is a finite set E together with a rank function on the
power set 2E, rk : 2E → Z≥0. The rank function satisfies the following properties:

(1) If A ⊂ E, then rk(A) ≤ |A|,
(2) If A ⊂ B, then rk(A) ≤ rk(B),
(3) rk(A ∪B) + rk(A ∩B) = rk(A) + rk(B).

A matroid abstracts the notion of linear dependence. The fundamental example
of a matroid is if E is a set of vectors in a linear space, and

rk(v1, . . . , vk) = dim(span(v1, . . . , vk)).

However, not all matroids arise in this fashion. Those that do not are called non-
realizable.

Here is an example of a non-realizable matroid. Consider the Fano configuration
(where the circle is to be considered a line).

Let E be the seven points of the configuration. Define the rank function as follows:
rk(A) = |A| for |A| = 1, 2; rk(A) = 3 for |A| ≥ 4 or for A consisting of 3 non-
collinear points; and rk(A) = 2 for A consisting of 3 collinear points. This matroid
is realizable as coming from a vector configuration only over fields of characteristic
2.

Definition 9.2. A flat of the matroid is a subset of E whose rank increases when
any element is added to it.
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One should think of a flat as the set of all vectors vi that lie in a subspace
V ⊂ Rn.

Given a subspace V ⊂ Rn, one may associated a matroid as follows. Let
e1, . . . , en be a basis for the dual (Rn)∗. The inclusion i : V →֒ Rn induces a
surjection i∗ : (Rn)∗ → V ∗. For a subset A = {i1, . . . , ik} ⊂ E = {1, . . . , n}, let
rk(A) = dim(span(i∗ei1 , . . . , i

∗eik
)). Equivalently, if we set FA to be the coordinate

subspace given by xi1 = · · · = xik
, rk(A) is the codimension of V ∩FA in V . One may

produce the tropical variety associated to V with just the data of the matroid giving
a cycle of multiplicity 1. For each flat A, form the vector

∑

i∈A ei. A flag of flats is
an inclusion A1 ⊂ A2 ⊂ · · · ⊂ Ak such that rk(A1) < rk(A2) < · · · < rk(Ak)). Each
flag of flats gives a cone given by the positive span of the corresponding vectors.
The union of such cones is the tropical variety of V .

We may also go from a cycle Z of multiplicity 1 to a matroid. Pick an in-
tegral basis for Rn coming from the case where multiplicity is minimized. Let
E = {e1, . . . , en}. Any subset of E corresponds to a face FA of TPn. The rank is
defined by rk(E) = dim(Z) − dim(Z ∩ FA).

Sincere there are non-relatizable matroids, there are effective cycles not realizable
as the limit of amoebas of classical varieties.

10. Tropical Manifolds

We would like to introduce a notion of a tropical manifold. The analytic notion
of a complex manifold is that a local neighborhood is isomorphic to an open set
in Cn. In tropical geometry, we locally have a Euclidean topology, but we would
like to see a Zariski topology. We will describe tropical manifolds as semi-ringed
spaces, so it will suffice to give a local description.

Let U ⊂ Tn be an open set. Let f : U → T. be a regular function.

Example 10.1. Let us consider the function f : T → T given by

f(x) = “ax2 + bx+ c” = max(2x+ a, x+ b, c).

The set-theoretical graph as pictured in Figure 9 is not a tropical variety. Instead,
we should consider the tropical graph Γf = V“y+f(x)” ⊂ U ×T as pictured in Figure
10. Note that we must put a “+” in the definition since “−” does not make sense.
The tropical graph always contains the set-theoretical graph.

Figure 9. Set theoretic graph of f .

Define the principal open set Df = Γf ∩ (U × R). We have a map Γf → U
given by projection. One should think of this Df has an open set in a sort of
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c

x+b

2x+a

Figure 10. Tropical graph of f .

Grothendieck topology. The map Γf → U is said to be a tropical modification with
center Vf .

Example 10.2. Consider the function f : T → T given by f(x) = x + a. This
function has tropical zero-locus set at x = a. Considering the analogous object over
C, we may take the complement of z = a or alternatively, take the graph of 1

f
.

In the tropical world, we may consider Df . This is analogous to passing to the
principal open set in the complex case.

The definition of a tropical manifold is inductive on dimension. A zero-dimensional
tropical manifold is a point with multiplicity 1.

Definition 10.3. A n-dimensional smooth tropical manifold is a semi-ringed space
(X,O) that is of finite-type and such that any point x ∈ X has a neighborhood U
such that there is a finite sequence

U = U1
τ1 // U2

τ2 // . . . // Tn

where each τi is a tropical modification with smooth center.

Remark 10.4. Each such neighborhood U is contained in some TN as a tropical
cycle. Moreover, these tropical cycles turn out to be as a complete intersections of
the equations of the form “y + f(x)” and so are always approximated by complex
amoebas by patchworking. In addition, the local multiplicity is always 1.

11. Smooth Tropical Curves

Let us examine tropical curves which are one-dimensional tropical manifolds.
They will be graphs of a certain type. We first consider the case of local behavior
modeled on T. The integral affine structure on a tropical curve near a point modeled
on T just consists of a vector field (up to sign change) along the curve. Moreover,
the transition functions on this point of a curve are just translations of T which
are isometries. Therefore, the integral affine structure near a point of the curve
modeled on a point of T is equivalent to a metric on the underlying graph.

There are two types of points on T, those in T∗ and −∞. A 1-valent vertex must
map to −∞. Any neighborhood of this point must have infinite length, so 1-valent
vertices should be thought to be infinitely far away.

Now, let us consider modifications of tropical curves. A tropical modification
at −∞ does not change anything. In fact, the only functions on T whose tropical
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hypersurface is −∞ are of the form “ax”. The tropical graph of such a function
is a line and hence is isomorphic to T. A tropical modification at a point of T∗ is
given by V“y+x+a”. This gives us a trivalent vertex as in Figure 11.

Figure 11. Tropical equivalence creates a trivalent vertex

Now let us consider a modification with the vertex of Γ = V“y+x+a”. The zero-
locus of a function f on Γ must be supported at the vertex with multiplicity 1 This
function must satisfy

(df) · vx + (df) · vy + (df) · vxy = 1

where vx, vy, vxy are primitive integer vectors along the three rays of Γ. Let f =
“0 + x+ y”. The restriction is 0 along two legs of the tropical line and linear with
slope 1 on the third leg. After modification, we get a 4-valent vertex in R3 with
rays along the directions (−1, 0, 0), (0,−1, 0), (0, 0,−1), (1, 1, 1). We may continue
to modify to get n-valent vertices in Rn−1. In fact, all n-valent vertices that arise
in this fashion are isomorphic.

It follows that a tropical curves can be viewed as metric graphs with leaves of
infinite length and no 2-valent vertices. If Γ is a tropical curve, its genus is its first
Betti number, g = b1(Γ). This turns out to be the dimension of the space of regular
1-forms on Γ.

12. Tropical point configurations

Proposition 12.1. Any three distinct points on TP1 are equivalent to any other
three distinct points (where equivalence is generated by a sequence of tropical mod-
ifications).

Proof. Recall that TP
1 is metrically isomorphic to [−∞,∞]. Once can find a se-

quence of tropical modifications that take any three given points to −∞, 0,∞. �

In fact, any four generic points (so that no triple lie on the same line) are
tropically equivalent in TP

2. In fact, we can use tropical modifications to put the
four points at [0 : −∞ : −∞], [−∞ : 0 : −∞], [−∞ : −∞ : 0], [0 : 0 : 0]. In this
configuration, we have already seen that the Fano plane axiom is satisfied. Thus it
holds in general.

Four points in TP1 do have moduli. In fact, they have an invariant which is
the cross ratio which is unchanged by tropical modification. Suppose the point
p1, p2, p3, p4 are ordered on TP1. The cross-ration is defined as follows: connect p1

to p3 by a segment; connect p2 to p4. The cross-ratio is the length of the intersection
as in Figure 12.

p1
p

2
p

3
p4

Figure 12. Computing a Tropical Cross-Ratio.
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13. Moduli of Tropical Curves

Tropical curves are metric graphs without bivalent vertices such that each leaf
has infinite length. The genus of a curve is its first Betti number. We only wish
to study curves up to tropical modification. If g > 0, we may contract all leaves to
find a compact model. If g = 0, the graph is a tree which is tropically equivalent
to a point. If g = 1, the curve is topologically a circle and the only invariant is the
length of the circle. If g = 2, there are three combinatorial types.

a cb a c a b c

In two of the combinatorial types, there are three lengths a, b, c that can be varied.
In the remaining, there are only two lengths. All genus 2 curves are hyperelliptic.
They pictured curves have involutions give by reflection in a horizontal line.

In genus 3, not every curve is hyperelliptic, but they are all trigonal, that is, they
have a degree 3 mapping to TP1. Not that these models can only be embedded into
Rn after a tropical modification. Here are two different embeddings of the same
genus 1 curve.

One can verify that each curve is cubic by computing its intersection number with
a line.

Familiar facts about classical curves are also true for tropical curves. Any genus
1 curve can (after modification) be embedded into the plane as a tropical cubic
while any non-hyperelliptic genus 3 curve can be presented as a quartic in P3.

We would like to define a moduli space Mg,n of genus g tropical curves with
n marked points. Such a curve has n labeled infinite leaves. A 3-valent genus g
curve with n leaves has 3g − 3 + n internal edges which must be assigned a length.
Therefore, we expect Mg,n to have dimension 3g− 3 + n. It has the structure of a
polyhedral complex, moreover, it is a tropical manifold.

Let us work out the example of M0,4. It has curves of four combinatorial types

l

1

2

3

4
l

1

3

2

4
l

1

4

2

3

1

4

2

3

This shows that M0,4 consists of three rays corresponding to each of the three
combinatorial types together with a vertex corresponding to the fourth. M0,4 is
isomorphic to a tropical line. The following theorem is shown in [25]:

Theorem 13.1. M0,n is an effective cycle of local multiplicity 1.
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14. Embeddings of M0,n

Given a rational curve with n marked points, one has the cross ratio λijkl for
the four marked points i, j, k, l. By taking all unordered 4-uples of marked points,
one obtains an embedding M0,n → RN . This is studied by Gathmann, Kerber,
and Markwig in [15].

One has another embedding by Plücker coordinates. Let us first consider a metric
graph with finite-length leaves labeled by {1, . . . , n}. The Plücker coordinate pij is

the distance from end i to end j. This gives a point in R(n

2
). Now consider a point

of M0,n. The leaves have infinite length. We may quotient the leaf length from

R(n

2). Let Rn (thought of as changing the lengths of the n leaves) act on R(n

2) by
the action

(l1, . . . , ln) · (pij) = (pij + li + lj).

The image of Rnis n-dimensional. So the embedding by Plücker coordnates gives
a map

M0,n → R(n

2
)/Rn.

15. Abel-Jacobi theory

Here we discuss tropical Abel-Jacobi theory. This is covered in detail in [26].
The genus of a tropical curve can also be defined as

g = dimR Γ(Ω).

Here Ω is the sheaf of regular 1-forms on C. Given an embedding of C in Rn, they
are locally the restriction of a constant 1-form

∑

aidxi on Rn.
There are two tropical Abelian varieties naturally associated to a tropical curve

C. These are the Jacobian and the Picard variety, and they will prove to be
isomorphic. The Picard group can be defined as the group of degree 0 divisors
modulo linear equivalence. A divisor is a formal finite integer combination of points
on C. The degree of a divisor is the sum of its coefficients. Each rational function
f which is locally the difference of two convex functions with integral slopes defines
a principal divisor (f) by taking its hypersurface. That is one locally looks at f as
“ g

h

′′
and takes the formal difference of hypersurfaces. The principal divisors form a

subgroup. We define linear equivalence by saying D ∼ D′ if D+ (f) = D′ for some
rational f .

There is a combinatorial version of the Picard group on graphs coming out of the
study of the chip-firing game. It has been studied in [9] and [8]. One has a graph
togehter with a vertex designated as a bank. If one fires a vertex, it gives a chip to
each of its neighbors. One tries to find a configuration in which every vertex but
the bank is out of debt.

Classically the Jacobian of a smooth compact Rieman surface C is

J(C) = Γ(ΩC)∗/H1(C,Z).

Here Γ(ΩC)∗ is the dual to the space of regular 1-forms and H1(C,Z) ⊂ Γ(Ω)∗ by
taking γ ∈ H1(C,Z) to the functional

ω 7→

∫

γ

ω.

This definition carries over immediately to the tropical world. Here Γ(Ω)∗ ≡ Rg

and is given a tropical structure by declaring a 1-form to be integral if it takes
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integer values on primitive integer tangent vectors. H1(C) ≡ Zg so J(C) ≡ (S1)g

as topological spaces. A precise tropical Torelli theorem is proven in [10]. It shows
the extent to which a tropical curve is determined by its Jacobian.

Let p0 ∈ C. We define the Abel-Jacobi map µ : Divd(C) → J(C) as follows. If
D =

∑

aipi, for each i, pick a path γi from p0 to pi. Define the functional µ(D)
on Γ(Ω) by

ω 7→
∑

ai

∫

γi

ω.

The tropical Abel-Jacobi theorem states that the Picard group can be identified
with the Jacobian variety.:

Theorem 15.1. [26] Pic0(C) ≡ J(C).

By identifying the curve with Div1(C), we may embed C in J(C).

0

a b c

(0,0)

(a+b,b)

(b,b+c)

p

Figure 13. [26] µ(C) in the tropical Jacobian J(C).

All Jacobians are examples of principally polarized abelian varieties. Being po-
larized is a symmetry condition which implies that the Jacobian is of the form Rg/Λ
where the lattice Λ is given by a symmetric g × g-matrix.

16. Riemann-Roch Theory

We want to study degree d maps f : C → TP
1. Such a map is determined up to

translation by its poles and zeroes. A pair of divisors D0 = (p1)+ · · ·+ (pd), D∞ =

(q1) + · · · + (qd) ∈ SymdC are the zeroes and poles of a rational function if and
only if [D0] − [D∞] = 0 in Pic0(C).

Consider the map P : Symd × SymdC → Pic0 given by (D0, D∞) 7→ [D0] −
[D∞]. This is a map from a 2d-dimensional polyhedral complex to a g-dimensional
complex. Assuming transversality assumption, we expect the preimage, P−1(0) to
be 2d − g-dimensional. Therefore, the space of maps f : C → TP1 is 2d − g + 1-
dimensional. If we specify D∞, we expect P−1(0) ∩ (Symd ×{D∞}) to be d − g-
dimensional. This implies that the expected dimension of the space of f with
(f)−D∞ ≥ 0 to be (1 − g) + d-dimensional. This is the lower bound given by the
Riemann-Roch theorem. Precise statements and proofs are given in [26] and [14].
They rely on a chip-firing argument introduced by Baker and Norine in [4].
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17. Maps of Curves to TPn

Suppose we have a genus g tropical curve C and a map f : C → TP
1. Let us

compute the expected dimension of the space of deformations of the pair (C, f).
The curve C belongs to the (3g − 3)-dimensional moduli space Mg. The map is
expected to move in a 2d− g + 1-dimensional family. Therefore, we should expect
the space of pairs (C, f) to be (2d + 2g − 2)-dimensional. A similar analysis can
be applied to maps f : C → TPn by considering f to be an n-tuple of rational
functions. The space of such maps is at least d(n + 1) + (1 − g)(n − 3). The
dimension may be higher if conditions imposed by the map are not transverse.

Definition 17.1. A curve h : C → TP
n is called regular if the space of deforma-

tions of the pair (C, f) is exactly d(n+1)+(1−g)(n−3). It is called superabundant
otherwise.

See [23] for more details.

Example 17.2. Let h : C → TP2 → TP3 be given by composing the embedding
of a plane cubic by a linear embedding L of TP2 in TP3. Suppose that the tropical
hypersurface of L intersects the cubic in the three points marked points.

Since the cycle in the cubic is planar, the condition that the cycle closes up
imposes two conditions rather than three. The dimension of the deformation space
is therefore higher than expected.

18. Phase tropical curves

We introduce phase tropical curves for 3-valent curves. The general theory [20]
is only slightly more complicated. A tropical curve can be viewed as a pair of pants
decomposition of a Riemann surface. Each vertex together with its adjacent edges
form a tripod which may be viewed as a pair of pants. The tropical curves tells
one how to glue the pairs of pants. We may also include data specifying how the
legs and waist of the pants glue together. This is the twist parameter and is the
imaginary part of the Fenchel-Nielsen coordinates.

We take as our model for our pair of pants the line H cut out by z + w + 1 =
0 in (C∗)2. There are three punctures in this line corresponding to the missing
coordinate axes in P2. This gives us three boundary circles. They will be denoted
by Bv(e) where e is the edge of the tripod corresponding to the boundary circle.
The image of H under the argument map

Arg : (C∗)2 → (S1)2
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is the alga below:

0 2π

2π

The three boundary circles of the alga correspond to the boundary circle of H . The
boundary circles may be parameterized by

φ 7→ (θj +
pj

qj
φ).

The vector ~s = lcm(q1, . . . , qn)(p1

q1

, . . . , pn

qn
) ∈ Zn is called the boundary slope of s.

Definition 18.1. A phase-tropical structure ρ on a tropical curve C is a choice of
line H(v) ⊂ (C∗)2 for each vertex v together with an orientation-reversing isometry
of boundary circles ρe : Bv(e) → Bv′(e) for each edge e connecting vertices v, v′.

Definition 18.2. A multiplicatively affine-linear morphism is a map

A : (C∗)n → (C∗)m

given by

(z1, . . . , zn) 7→ (b1z
a11

1 . . . za1n

n , . . . , bmz
am1

1 . . . zamn

n )

for bi ∈ C∗, aij ∈ Z.

A descends to a map on real tori

α : (S1)n → (S1)m

given by

(ζ1, . . . , ζm) 7→ (Arg(b1)+ a11ζ1 + · · ·+ a1nζn, . . . ,Arg(bm) + am1ζ1 + · · ·+ amnζn).

We may write A|Bv(e) for the restriction of α to the boundary circle corresponding
to Bv(e) in the alga.

Definition 18.3. For a line H(v) ⊂ (C∗)n, and a boundary circle Be(v), σ(e),
the phase of e is the image of Bv(e) under the composition of A with the natural
quotient:

(S1)2 → (S1)n → (S1)n/〈~s(e)〉

where ~s(e) is the boundary slope. Note that σ(e) is a point.

Definition 18.4. A phase-tropical morphism Φ : (C, ρ) → (C∗)n is a tropical
morphism C → Rn together with for every vertex v, an affine linear morphism
Av : (C∗)2 → (C∗)n that restrists to Φv : H(v) → (C∗)n. For e adjacent to v, let
Φv,e = Φv|Bv(e). In e connects vertices v, v′, we require the condition that

Arg ◦Φv = Arg Φv′ ◦ ρe : Bv(e) → (S1)n.
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One obtains a choice of phases from a phase tropical morphism. Let Φv : H(v) →
(C∗)n. Let e1, e2, e3 be the edges adjacent to v. The slope vectors ~s(e1), ~s(e2), ~s(e3)
must be coplanar in Zn. Suppose the slope vectors are non-collinear. Let Sv be the
two dimensional subgroup of (S1)n = Rn/(2πZ)n that contains the slope vectors.
Once we choose an orientation, we may canonically identify Gv = Sv/~s(ej) with
S1 = R1/(2πZ).

Definition 18.5. We say the phase function σ are compatible at v if

σ(e1) + σ(e2) + σ(e3) = µ(v)π

in Gv where µ(v) = |~s(e1) ∧ ~s(e2)|.

It turns out that a phase-tropical morphism defines a compatible phase-function
σ on the flags of C.

We have the following approximation theorem:

Theorem 18.6. Any phase-tropical morphism h : C → R
n based on a regular

tropical cure can be approximated by holomorphic maps Ht : Vt → (C∗)n.

Corollary 18.7. Any regular tropical curve h : C → Rn is a limit of holomorphic
amoebas.

We may use these results to represent curves in space as real algebraic curves.
Superabundant curves may not be approximable. An example can be derived

from our superabundant cubic. Wiggle the marked points so that they do not lie on
a tropical line. Then one has a genus 1 spatial cubic. Classical algebraic geometry
says that such a curve must be planar.

This approximation theorem is an ingredient of a theorem lets one count classical
curves through so many points by considering tropical curves through that many
points. Using the technology of phase tropical curves, one can also count real curves
and get Welschinger invariants.
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