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Lecture II: Higher Category Theory (1/22/2009)

Recall that we want to extend a TQFT to include data about manifolds of dimension
n, n− 1 and n− 2, etc.. In order to include this extra data it is natural to put this
into a higher categorical framework.

Definition 1. A category (or 1-category) C consists of

1. A collection of objects, Obj(C)

2. for every X, Y ∈ Obj(C), a set HomC(X, Y )

3. A composition law HomC(X, Y )× HomC(Y, Z)→ HomC(X,Z)

4. An associativity requirement and units

Then we can naively try to extend this to a structure such that we have morphisms
between morphisms:

Definition 2. A strict 2-category C consists of

1. A collection of objects, Obj(C)

2. for every X, Y ∈ Obj(C), a category HomC(X, Y )

3. A functor composition law HomC(X, Y )× HomC(Y, Z)→ HomC(X,Z)

∗These notes are by no means a substitute for the lectures, found at
http://www.ma.utexas.edu/users/plowrey/dev/rtg/perspectives.html
†Scribes: Braxton Collier, Parker Lowrey, Michael B. Williams.
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4. Associativity (on the nose): H ◦ (G ◦ F ) = (H ◦ G) ◦ F as elements in
Fun(HomC(X, Y )× HomC(Y, Z),HomC(X,Z)) and units

Example 1. Example of a 1-category Given X, a topological space, and a point x0 ∈
X, we can form the fundamental group π1(X, x0). If we do not choose a base point,
we can form a category π≤1(X) with Obj(π≤1(X)) = {x|x ∈ X} and given two points
x0, x1, we define Hom(x0, x1) = {{paths between x0 and x1}/homotopy of paths}.
Composition is given by concatenation of paths. You can check the details to see
that this is indeed a category.

Now, this example understands aspects of the zero and first homotopy groups of
X. If we wanted to form something that captures higher homotopy groups, we can
use higher category theory.

Definition 3 (sketch). The fundamental 2-groupoid π≤2(X) is a 2-category defined
roughly as:

• Obj(π≤2(X)) = points of X.

• Morph(π≤2(X)) =paths in X.

• 2-Morph(π≤2(X)) = {{homotopies of paths}/homotopies of homotopies of paths}.

Is this a strict 2-category? Yes. But it is not as straightforward as one would
think: concatenation of paths is only associative up to homotopy. In particular, if we
define a path as a map from the unit interval, and composition through the following:
A path p : [0, 1] → X such that p(0) = x, p(1) = y. Suppose given another path
q : [0.1]→ X with q(0) = y and q(1) = z. Define

q ◦ p : [0, 1]→ X :=

{
p(2t) 0 ≤ t ≤ 1

2

q(2t− 1) 1
2
< t ≤ 1

then this is associative up to homotopy, not on the nose. We could get around this
in two ways. First we could redefine a path as a map of from intervals of any length.
Then composition would be strict, and this would form a strict 2-category. Or we
could redefine a 2-category in an equivalent manner. In particular, if we define

Definition 4. A non-strict 2-category, or bicategory, is defined by the same data as
above for the strict 2-category, except for associativity we only require H ◦ (G ◦F ) ∼=
(H ◦G)◦F where the congruence is by a specified natural isomorphism (part of data)
that has some sort of coherence property.
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It turns out that strict 2-categories and bicategories are equivalent i.e. we can
“strictify” a bicategory.

We will now define this for a general n:

Definition 5. A strict n-category C consists of

1. A collection of objects, Obj(C)

2. for every X, Y ∈ Obj(C), a n− 1 category HomC(X, Y )

3. A composition law HomC(X, Y )×HomC(Y, Z)→ HomC(X,Z) of n−1 functors

4. associativity (with units) on the nose

This is a precise definition through recursion. Also have a parallel idea of non-
strict n-category. It is easier to think of these through examples (to many coherence
diagrams to write down):

Example 2. Fundamental n-groupoid π≤nX for a topological space X is defined by
the following data:

1. Obj(π≤nX) = points of X.

2. for 0 < i < n, i-morphisms are i-fold homotopies of paths.

3. n-morphisms are n-fold homotopies of paths, up to the equivalence relation of
(n+1)-fold homotopies of paths.

In particular, 1-morphisms are paths, 2-morphisms are homotopies of paths, etc.
This ”n-category” does not fit into the description above for n ≥ 3. In other words,
you cannot always strictify a non-strict n-category.

As an example of such behavior, for a groupoid C, and an object x ∈ C then
Hom(x, x) is a group. If we are in a 2-category, this is a category. But the re-
placement for the group structure is a monodial (tensor) category. If this is a strict
2-category, then we would in fact have a strict tensor category. If we are in a 3-
category then HomHomC(x,x)

(idx, idx) has 2 monodial structures, 1 coming from the
fact that HomC(x,x) is monodial, and the other as the set of morphisms to itself.
This implies that we have a braided monodial category. If our category is a strict
3-category then we have a symmetric monodial category.

Now, for π≤3(S
2), then Homπ≤3(S2)(idx, idx) is the category whose objects are

maps of S2 to S2. There are non-trivial automorphisms of these maps coming from
π3(S

2). This category has a braided monodial structure that is not symmetric (com-
ing from Hopf invariant).
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Definition 6. An n-groupoid is an n-category such that all morphisms 1 ≤ k ≤ n
are invertible (up to a higher invertible morphism).

Thesis 1. By taking a limit of our example for an n-fundamental groupoid of a
topological space we can define for a space X, π≤∞X. This is the characteristic/only
example of such an object. The construction X → π≤∞X determines a bijection
between {topological spaces} up to weak homotopy equivalence and ∞-groupoids up
to equivalence. This should be true of any reasonable definition of higher category
theory.

In other words, we should rig the definition so that this will be true i.e. we could
define an ∞-groupoid is a topological space, for which by ”topological space” we
mean anything we can do homotopy theory on. Even better, a Kan complex.

As an informal definition, an (∞, n) category is a higher category where all k-
morphisms are invertible for all k > n.

Example 3. (∞, 0)-category ⇐⇒∞-groupoid ⇐⇒ topological space

Let’s try to implement this into an inductive definition where rather than 0-
categories being sets, they are ∞-groupoids.

Definition 7. An (∞, n)-category C has the following data

1. A set (or class) of objects, Obj(C)

2. For each X, Y in Obj(X ), Hom(X, Y ) is a (∞, n− 1)-category

3. Composition is given by composition of n− 1 functors

4. Associativity (with units) (up to isomorphism)

This is not a precise definition yet, we would need to give the associativity.
Lets implement this for n = 1.

Example 4. For a (∞, 1)-cat C, then for X, Y ∈ C Hom(X, Y ) is a (∞, 0) category,
and thus, by above, equivalent to a topological space.

We can require ”strict” topological category and ”non-strict” topological cate-
gory, where the associativity is up to homotopy. These two ideas are the same, much
like n = 2 for normal 2-categories.

Different implementations give equivalent answers: quasi-categories, Segal cat-
egories, complete Segal spaces. They are all attempts to implement the definition
above.

4



What motivates this? First, it is probably easier to define (∞, n)-categories and
then specialize to regular n-categories. Second, it will help us out in these TQFT
problems.

Almost examples of TQFT’s (d = 2)

Example 5. The B-model Given A, an associative algebra over C, define Hoch∗(A) :=
Ext∗A⊗A(A,A). Now, if X = SpecA is an affine variety then we define Hoch∗(SpecA) :=
Hoch∗(A), this globalizes to non-affine cases.

Given a smooth n-dimensional variety Hoch2n(X) ∼= Hn(X,∧nTX. If X is
Calabi-Yau, then ∧nTX is trivial, thus we replace ∧nTX by ∧nT ∗X and take trace to
C. Serre duality the trace pairing is non-degenerate, and therefore that Hoch∗(X) is
a frobenious algebra (commutative in the category of Z2 graded vector spaces). By the
folk theorem, we have a TQFT whose value on the circle is Hochschild cohomology.

Example 6. Twisted K-theory of Freed-Hopkins-Teleman. G a compact Lie group,
l ∈ H4(BG,Z). We can use l to define a central extension S1 → L̃G → LG. Now

Rep(L̃G) has a tensor product given by fusion. The Grothendieck group has a ring
structure (determined by fusion product), called the Verlinde algebra. By F-H-T,

K(Rep(L̃G)) ∼= Kτ
G(G), where τ depends on l. This latter object is a frobenious

algebra over K-theory. This the value on S1 of a TQFT.

Example 7. String topology Let M be a compact manifold. Then H∗(LM ; C) has an
algebra structure (Chas-Sullivan). In fact, there are more operations on H∗(LM ; C)
coming from Riemann surfaces with boundary (the above product is from the pair of
pants). No trace though since the disc D2, thought of as a morphism from S1 to a
point, is not allowed. This is an example of what people call a noncompact TQFT.

All of these say TQFT � Homology. Can we lift this to the chain complex level?
Question: What should it mean to have a chain complex valued TQFT? In other

words, given a d− 1 dimensional closed manifold, and B : M →M , Z(M) is a chain
complex of vector spaces, and Z : Z(M) → Z(M) a chain morphism. Naively, in
this translation, if we had two bordisms B, B′ that are diffeomorphic, then we should
we have Z(B) = Z(B′). This requires to many choices and is too strong. Therefore,
we should only require them to be chain homotopic via a homotopy that depends on
a choice of diffeomorphism.

We will now try to axiomatize this. What do we want?

Closed (n− 1) manifolds  chain complexes
Bordisms  chain maps

Diffeomorphisms  chain homotopies
Isotopies  chain homotopies between chain homotopies
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and so on. In other words, Z should be a functor between (∞, 1) categories where the

domain category is C̃ob(n) has as objects, n − 1 manifolds. morphisms: bordisms.
2-morphisms: diffemorphisms. 3-morphisms: isotopies.

For the remainder, we will go over a more precise description of an (∞, 1)-
category. It will not be used in future lectures. We will model (∞, 1)-categories
by Complete Segal Spaces (Rezk).

Complete Segal Spaces

Let C be an (∞, 1) category. We don’t know what this means yet, but we know
what an (∞, 0) category is. Let’s build on this.

Step 1. Take C, throw out non-invertible morphisms to get a topological space
X0. This is an okay invariant of our category, but it loses some information. How
should we remember this information?

Step 2. Take Fun([1], C). We let X1 be the classifying space for the objects of
this category.

Step 3. To remember composition, we notice that a composable morphisms is a
functor [2]→ X . So, let X2 classify Fun([2], C).

...

Step n. Let Xn classify Fun([n], C).

Thesis 2. The collection of spaces {Xn}n≥0 remembers everything about C.

What structures exist on {Xn}n≥0? First note: every monotone map f : [m]→ [n]
induces a map f ∗ : Fun([n], C) → Fun([m], C) and therefore a map Xn → Xm. This
makes our collection into a simplicial space. This simplicial space satisfies the ”Segal
condition”: The diagram

Xn+m
//

��

Xn

��

Xm
// X0

is homotopy Cartesian.

Definition 8. A Segal space is a simplicial topological space satisfying the Segal
condition (above).
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Now, let X· be a Segal space. Can define its homotopy category, hX: Obj(hX) :
Points of X0. For x0, x1 ∈ Obj(hX), Hom(X, Y ) = π0({X} ×hX0

X1 ×hX0
{Y }). For

composition, we use the Segal condition.
In particular, φ ∈ X1 it decides a morphism in hX. We’ll say its invertible if this

morphism in hX is invertible.
If X• is a Segal space, let X̃1 be the subspace consisting of invertible elements.

Definition 9. X• is complete if X0 → X̃1 is a weak homotopy equivalence.

Thesis 3. Complete Segal space ⇔ (∞, 1)-category.
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