1. Overview on the geometric Satake theorem: 9/1/17

This overview was given by David Ben-Zvi.

This semester, we’re studying the geometric Satake theorem, one of the most important results in geometric representation theory, and even a central result in the geometric Langlands program.

This theorem involves some potentially unfamiliar words; we’ll define them in the course of this seminar.

Theorem 1.1 (Geometric Satake). Let G be a reductive group over a field k. Then, there is a category of $G(\mathcal{O})$-equivariant perverse sheaves on the affine Grassmannian of G, $G(K)/G(\mathcal{O})$, symmetric monoidal under convolution, together with a fiber functor $\mathcal{H}^\bullet(-)$, and this is equivalent to $(\text{Rep}_{G^\vee}^{fd}, \otimes)$ (where G^\vee is the Langlands dual group) as symmetric monoidal categories, with the fiber functor the forgetful map to Vect_k.

By Rep^{fd} we mean the full subcategory of finite-dimensional representations. K will be some local field, and \mathcal{O} is its ring of integers. For example, if $k = \mathbb{C}$, $K = \mathbb{C}((t))$ and $\mathcal{O} = \mathbb{C}[[t]]$, and over \mathbb{F}_p, you have $K = \mathbb{F}_p((t))$ and $\mathcal{O} = \mathbb{F}_p[[t]]$.

Okay, first what’s a reductive group? For $k = \mathbb{C}$, these are complexifications of compact groups. For example: GL_n, SL_n, PGL_n, SU_n, Sp_n, and E_7.

Now this theorem is saying that we start with one reductive group and get another, G^\vee. This relationship is such that if $G = T$ is a torus, i.e. $(\mathbb{C}^\times)^k$, its Langlands dual is the dual torus T^\vee: if T is the quotient of \mathbb{C}^n by a lattice, T^\vee is the quotient of $(\mathbb{C}^n)^*$ by the dual lattice.

1 You can let k be a ring R, the coefficients. The algebraic geometry we do will still be over \mathbb{C}, though; the representations you get end up also being representations over the ring R.

2 In particular, they will never be \mathbb{Q}_p and \mathbb{Z}_p. However, the geometric Satake theorem is a living piece of mathematics, and only in the past year Peter Scholze proved a version of this for the p-adics.
Theorem 1.1 is a kind of Fourier transform, a quite fancy one. For example, if $G = \text{GL}_1$, the affine Grassmannian is a (scheme which behaves more or less like) \mathbb{Z}: $\text{GL}_1(\mathbb{C}((t))) = \mathbb{C}((t))^\times$ and $\text{GL}_1(\mathbb{C}[[t]])$ is the group of power series with nonzero constant term. When you mod these out, the leading term of the Laurent series becomes the only important thing, in a sense. The next ingredient is the equivariant perverse sheaves, but ends up being vector bundles over Gr in this case, so we get (modulo some reducedness which doesn’t come into play here) the category of graded vector spaces. In this case, Theorem 1.1 says the category of graded vector spaces is equivalent to the category of representations of \mathbb{G}_m, just like the Fourier transform exchanges functions on \mathbb{Z} with representations of S^1.

You can interpret the geometric Satake theorem as the source of the Langlands dual group: it admits a definition in terms of tori and root data, but it feels somewhat ad hoc, and one is left wondering: where did it all come from? Instead, by the Tannakian perspective on representation theory, Theorem 1.1 is telling us that the category of \mathbb{G}_m-equivariant sheaves with its fiber functor is canonically the category of representations of a group, and in fact gives us enough information to reconstruct the group! So the geometric Satake theorem is a bridge from G to G^\vee, and is one of the only bridges.

Example 1.2. Langlands duality is often somewhat surprising: G and G^\vee don’t look like each other, and it’s not clear how to obtain one from the other. Of course, $(G^\vee)^\vee \cong G$.

$$
\begin{align*}
\text{GL}_n & \longleftrightarrow \text{GL}_n \\
\text{SL}_n & \longleftrightarrow \text{PGL}_n \\
\text{SO}_{2n+1} & \longleftrightarrow \text{Sp}_{2n} \\
\text{SO}_{2n} & \longleftrightarrow \text{SO}_{2n}.
\end{align*}
$$

You can also use the geometric Satake theorem to explain some things which at first appear to not be geometric. For example, $H^*(\mathbb{C}P^n) \cong \mathbb{Z}[x]/(x^n + 1)$ with $|x| = 2$ is acted on by SL_2 by raising and lowering operators, which comes out of complex geometry, but this does not arise from an SL_2-action on $\mathbb{C}P^n$ itself. More generally, SL_k acts on $H^*(\text{Gr}_k(\mathbb{C}^n))$ in a similar way, and is similarly mysterious.

But Theorem 1.1 identifies it with an equivariant perverse sheaf for the action of PGL_k on a Grassmannian, and the action of PGL_k on a Grassmannian is more evident. So we’ve obtained either new interesting representations, or geometric models for representations of your group, and solved the mysteries of this representation.

It also flows the other direction: if you take a reductive group over R, you recover information about $\text{Rep}_{G^\vee,R}$, the category of representations over R. This is an active topic of research, and people including Geordie Williamson have used it to uncover interesting consequences in modular representation theory.

Of course, the geometric Satake theorem is also entangled with the geometric Langlands conjectures in interesting ways.

We’re going to first discuss affine Grassmannians, then perverse sheaves (which generalize cohomology of smooth projective varieties, and could be an entire seminar unto themselves), then their convolution (the fact that it’s symmetric monoidal is very deep, and related to commutativity of Hecke algebras). Finally, we’ll talk about Tannakian reconstruction, a beautiful abstract story that allows us to extract G^\vee from the theorem.

Here’s a very provisional schedule:

- First, a few lectures on the affine Grassmannian: Rustam (next week), and then Richard H. (the week after).
- Then, perverse sheaves (and also intersection cohomology): Arun, Sebastian, and Yan.
- Then, convolution and its commutativity: Richard W. and Vaibhav.
- Then, Tannakian reconstruction: Isabelle and Nicky.
- Finally, putting it together into a proof of the geometric Satake correspondence: Rok and probably also someone else.

There’s a lot of further topics and cool applications if anyone is interested after that.

2. BRUHAT-TITS TREES: 9/1/17

In the second part of the first meeting, Tom Gannon spoke about trees (à la Serre).
Throughout this lecture, let K be a complete field (with respect to some norm), together with a discrete valuation $v: K^\times \to \mathbb{Z}$\footnote{Recall that a discrete valuation is a surjective group homomorphism $K^\times \to \mathbb{Z}$. You can think of it as measuring how many times a uniformizer π divides a given field element.}. Let \mathcal{O}_K denote its ring of integers, which is a local ring, and \mathfrak{m} denote its unique maximal ideal. Let π be a uniformizer, i.e. a generator of $p\mathcal{O}_K$. We’ll let $q := |\mathcal{O}_K/\mathfrak{m}|$, and assume that q is finite, so that the residue field $\mathcal{O}_K/\mathfrak{m} \cong \mathbb{F}_q$.

Though we didn’t define $v(0)$, we think of it as ∞: the valuation values how many times you can divide an element by π, and for 0 you can do this infinitely often.

Let K be a field with a discrete valuation $v: K^\times \to \mathbb{Z}$ and $c \in (0,1)$ be fixed. Then, the map $||\cdot||_c: K \to [0,\infty)$ with $|x|_c := c^v(x)$ is a norm, and moreover is non-Archimedian, satisfying a stronger form of the triangle inequality:

$$|x + y|_c \leq \max\{|x|_c, |y|_c\}.$$\footnote{You can think of this as a coordinate on the curve.}

Proposition 2.1. With notation as above, the set $\{x \in K \mid |x| \leq 1\}$ is a ring, and in fact a discrete valuation ring; its unique maximal ideal is $\{x \in K \mid |x|_c < 1\}$.

That it’s a discrete valuation ring means the unique maximal ideal is principal. This ring is called the associated ring of integers of K. Let’s pick a specific value of c, which is $1/q$.

Example 2.2 (2-adic rationals). The 2-adic rationals, \mathbb{Q}_2, form a complete field with a discrete valuation. One way to think about this is that there’s a norm on \mathbb{Q} given by how many 2s you can factor out; completing it with respect to that norm defines \mathbb{Q}_2.

There’s also a lower-brow way to think of this, as Laurent series in 2: an element of \mathbb{Q}_2 is something like

$$2^{-4} + 2^{-3} + 2^{-1} + 2 + 2^3 + 2^5 + \cdots .$$

Equality is termwise, and addition and multiplication are like those of Laurent series. The coefficients are mod 2, so if you consider p-adics for $p > 2$, you have more options. In this case, the valuation is the smallest N such that the N-coefficient is nonzero.

There’s also an algebraic interpretation of \mathbb{Z}_2 and \mathbb{Q}_2.

Example 2.3. Another example if $K = \mathbb{F}_p((t))$ with $\mathcal{O}_K = \mathbb{F}_p[[t]]$. The valuation is the minimal power of t that appears with a nonzero coefficient, like for \mathbb{Q}_2.

Now we’ll discuss the Bruhat-Tits tree for $\text{SL}_2(K)$. There’s not a lot of motivation, except that this stuff is awesome.

The tree will be a set of vertices and edges; its vertices will be a set of lattices in K^2.

Definition 2.4. A lattice in K^2 is an \mathcal{O}_K-submodule Λ of K^2 such that $\Lambda \otimes_{\mathcal{O}_K} K = K^2$.

Concretely, these are subsets of K^2 of the form $\mathcal{O}_K \cdot v_1 + \mathcal{O}_K \cdot v_2$, where $\{v_1, v_2\}$ is a basis for K^2. These correspond to the usual lattices in \mathbb{R}^2.

Since $\text{GL}_2(K)$ acts on the set of bases of K^2, it acts on the set of lattices. The stabilizer of each lattice is $\text{GL}_2(\mathcal{O}_K)$, and therefore the space of lattices is naturally isomorphic to $\text{GL}_2(K)/\text{GL}_2(\mathcal{O}_K)$. Hey, that space appeared in the statement of the geometric Satake isomorphism!

Theorem 2.5 (Principal divisor theorem). Let L_1 and L_2 be lattices. Then, there’s a basis $\{e, f\}$ for L_1 and $m, n \in \mathbb{Z}$ such that $\{\pi^m e, \pi^n f\}$ is a basis for L_2.

The proof is linear algebra, spiced up somewhat by the fact that it’s over discrete valuation rings. It’s also the only place where we assume the residue field is finite.

Remark. If you consider GL_1 instead of GL_2, you get the statement we discussed before, that $\text{GL}_1(K)/\text{GL}_1(\mathcal{O}_K)$ is the integers (and therefore representations of \mathbb{G}_m are equivalent to graded vector spaces).

Example. Now, say that two lattices L_1 and L_2 are equivalent if $L_1 = \pi^\ell L_2$ for some ℓ. The space of equivalence classes is $\text{PGL}_2(K)/\text{PGL}_2(\mathcal{O}_K)$. We define the vertices of the Bruhat-Tits tree to be this set.

Now we should talk edges. Let v and w be two vertices, and L_1 and L_2 be lattice representatives for v and w, respectively. By Theorem 2.5 there are m and n carrying a basis for L_1 to a basis for L_2, and we
add an edge iff $|m - n| = 1$. Equivalently, we add an edge if there’s a rescaling of L_1 called L'_1 such that $L_2 \ni L'_1 \supseteq \pi L_2$.

Call this graph G. We’ll eventually show it’s a tree.

Proposition 2.6. G is a connected graph.

Proof. Let L_1 and L_2 be lattices. Then, there are $e, f \in L_1$ and $m, n \in \mathbb{Z}$ such that $\{e, f\}$ is a basis for L_1 and $\{\pi^m e, \pi^m f\}$ is a basis for L_2. Without loss of generality, assume $m \geq n$. Then, there’s an edge from L_2 to $\mathcal{O}_K \cdot \pi^{-n}e + \mathcal{O}_K \cdot f$. Continuing in this way, we must eventually reach L_1. □

A string of points produced by this method is called an apartment. More generally, any path of vertices which is finite or half-infinite is called a chain. A simple chain is one where you never step forward and then back (or vice versa).

Remark. These lattices satisfy a Noetherian-esque property: if you have an infinite chain of vertices $w_0 - w_1 - \cdots$, then there exist representative lattices L_i for w_i such that for all i, $L_i \ni L_{i+1} \supseteq \pi L_i$. □

Proposition 2.7. For any simple chain C, there’s a $g \in \text{GL}_2(K)$ such that $g \cdot C$ is the chain $\mathcal{O}_K \cdot e_1 + \mathcal{O}_K \cdot e_2 \supseteq \mathcal{O}_K \cdot \pi e_1 + \mathcal{O}_K \cdot \pi^2 e_2 \supseteq \mathcal{O}_K \cdot \pi^3 e_1 + \mathcal{O}_K \cdot \pi^4 e_2 \supseteq \cdots$, where $\{e_1, e_2\}$ is the standard basis for K^2.

Corollary 2.8. G is actually a tree.

Proof. Assume C is a simple chain that’s a cycle in G. Then, Proposition 2.7 preserves connectivity, but replaces it with something which could not possibly be a cycle. □

Proof sketch of Proposition 2.7. Let the starting chain be $C = L_0 \ni L_1 \ni L_2 \ni \cdots$. We know there’s a $g \in \text{GL}_2(K)$ such that g_0L_0 is the starting vertex $\mathcal{O}_K \cdot e_1 + \mathcal{O}_K \cdot e_2$. So g_0 is our candidate. But we don’t know whether g_0L_1 is the same as $\mathcal{O}_K \cdot \pi e_1 + \mathcal{O}_K \cdot \pi e_2$, but there’s a g_1 in the stabilizer of g_0L_0 that moves it to $\mathcal{O}_K \cdot \pi e_1 + \mathcal{O}_K \cdot \pi e_2$. Then, inductively, one can assume there exists an element in the stabilizer of the first i that brings the next element of the chain into position, and so on. This inductive argument is a little delicate, and uses the fact that the residue field is finite.

You may have to do this infinitely many times, which is actually fine: you can conjugate the g_i such that

$$g_i = \begin{pmatrix} 1 & x_i \\ 0 & 1 \end{pmatrix}$$

for $x_i \in \mathfrak{m}^i$; then, the infinite product is

$$\begin{pmatrix} 1 & \sum x_i \\ 0 & 1 \end{pmatrix},$$

and, using the local topology of K, you can show this sum converges. □

If you act by $\text{SL}_2(K)$ (through the inclusion in $\text{GL}_2(K)$), the parity of $m - n$ is preserved, so you can decompose the tree into a bipartite tree. From the geometric Satake perspective, this says that the affine Grassmannian for $\text{PGL}_2(K)$ has two connected components.

Another fun fact is that $\text{PSL}_2(\mathcal{O}_K)$ acts on the tree by graph automorphisms, and the double coset space $\text{PSL}_2(\mathcal{O}_K) \backslash \text{PSL}_2(K) / \text{PSL}_2(\mathcal{O}_K)$ is in bijection with the positive integers — well actually, the highest weights, or the irreducible representations of SL_2. This already looks Langlandsy, and more of the story appears: you can define Hecke operators on the tree: for each $n \in \mathbb{N}$, let

$$T_n f(v) = \frac{1}{n} \sum_{|w - v| = n} f(w).$$

That is, the Hecke operator acts on the space of functions on the tree averages over things that are distance n away.

5There’s enough uniqueness in the proof for this to be well-defined, even if m and n aren’t unique.

6For example, the basic steps of salsa define chains, but not a simple chain; the basic steps of waltz, which return to the same point but after more than one step, are a simple chain.

7One way to think of this is that $\text{GL}_2(K)$ is filtered by the discrete valuation; g_0 is the first piece, $g_1 g_0$ is the second piece, and so forth.
Theorem 2.9 ((Classical) Satake theorem). These Hecke operators T_n commute, and generate an algebra isomorphic to the representation ring of SL_2.

The geometric Satake theorem is a categorified analogue of this theorem. Indeed, the Bruhat-Tits tree appears in the story of the geometric Satake theorem as well, helping us understand the geometry of the affine Grassmannian in the case $G = \text{PGL}_2$.

3. An introduction to the affine Grassmannian: 9/8/17

"That’s an affine Grassmannian you’ve got there. Shame if something happened to it."

Today Rustam spoke about the affine Grassmannian, beginning with the uniformization of G-bundles as motivation from the topological case, then move to the algebraic world.

Uniformization of G-bundles, topological setting. Let Σ be a compact, connected, oriented (real) surface and G be a connected topological group. Let $x \in \Sigma$ and D be a small disc around it. Let $D^0 := D \setminus x$.

Definition 3.1. The loop groups of G are:

- the **positive loop group** $L^\text{top, +} (G)$, the continuous maps $f : D \to G$, under pointwise multiplication;
- the **loop group** $L^\text{top} (G)$, the continuous maps $f : D^0 \to G$, and
- $L_X(G) := \{ f : X \setminus x \to G \}$.

There’s a restriction map $L^\text{top, +} (G) \to L^\text{top} (G)$.

Proposition 3.2. There’s a bijection of sets

$$L_X(G)/L^\text{top} (G)/L^\text{top, +} (G) \cong \text{Bun}_G(X).$$

The idea is that $X \setminus x$ is homotopic to a graph, and since isomorphism classes of principal bundles are classified by maps to BG, and BG is simply connected because G is connected. Hence all principal G-bundles on $X \setminus x$ are trivial, so it matters crucially how we put x back in, and then quotient by redundant data.

Uniformization of G-bundles, algebraic setting. Now, let X be smooth, connected, projective curve over \mathbb{C} and G be a semisimple algebraic group. Let $x \in X$ be a \mathbb{C}-point and $D_x := \text{Spec}(\mathcal{O}_{X,x}) = \text{Spec}(\mathbb{C}[[t]])$ be the formal disc around x, so $x \in D_x \hookrightarrow X$. Hence, the punctured disc $D_x \setminus x = \text{Spec} \mathbb{C}(t)$.

Definition 3.3. The loop groups of G are given by the following functors of points:

- The **positive loop group** $L^+(G)(R) := \text{Hom}(D_R, G)$.
- The **loop group** is $L(G)(R) := \text{Hom}(D_x \setminus x, G)$.
- $L_X(G) := \text{Hom}(X_R \setminus x \to G)$.

Hence $L(G)(\mathbb{C}) = G(\mathbb{C}(t)))$ and $L^+(G)(\mathbb{C}) = G(\mathbb{C}[[t]])$.

8Two of them are not representable as schemes; $L^+(G)$ is a scheme, and $L(G)$ is an ind-scheme but not a formal scheme. An *ind-scheme* is a filtered colimit of schemes, where all maps are closed embeddings, e.g. A^∞ or \mathbb{P}^∞. $A^\infty = \text{Spec} \mathbb{C}[x_1, x_2, \ldots]$ is also a scheme.
Theorem 3.4 (Beauville-Laszlo). There’s an equivalence of stacks

\[L_X G \backslash L G / L^+ G \cong \text{Bun}_G(X). \]

This is a hard proof: it doesn’t follow from the usual descent arguments. Semisimplicity is crucial, and means that you can’t apply this to GL.

Let \(\mathcal{O}_K := \mathbb{C}[[t]], \) which corresponds to the disc, and \(K := \mathbb{C}((t)), \) which corresponds to the punctured disc. Recall that the affine Grassmannian is \(\text{Gr}_G := L(G)/L^+(G) = G(K)/G(\mathcal{O}_K) \).

If \(G = \text{GL}_n, \) this is the same as the set of (full-rank) lattices on \(K^n: G(K) \) acts transitively on all lattices, and the stabilizer is \(G(\mathcal{O}_K) \). For other groups, there’s a similar description in terms of lattices.

This definition of the Grassmannian characterizes it as a set. Our first goal will be to give it a topology, at least in the case where \(G = \text{GL}_n. \)

The first tool we’ll use is a valuation: if \(\vec{v}_1, \ldots, \vec{v}_n \) is a basis for a lattice \(\Lambda, \) then \(\det(\vec{v}_1, \ldots, \vec{v}_n) \in K^\times. \)

This is not an invariant of \(\Lambda, \) but can be made into one.

Definition 3.5. Let \(\Lambda \) be a lattice. Its valuation \(v(\Lambda) \in \mathbb{N} \) is the minimum \(n \) such that \(t^n \) is the determinant of a basis of \(\Lambda. \)

For the trivial lattice \(\Lambda^0 := (\mathcal{O}_K)^n, n = 2. \) Also, if you do this for \(G = \text{GL}_1, \) the affine Grassmannian is literally \(\mathbb{Z}; \) you can think of the valuation as a kind of determinant map from \(\text{GL}_n \to \text{GL}_1, \) and hence to \(\text{Gr}_{\text{GL}_1} = \mathbb{Z}. \)

Our next tool will be to compare lattices with the standard lattice.

Lemma 3.6. For all lattices \(\Lambda, \) there’s an \(a \in \mathbb{N} \) such that

\[t^a \Lambda^0 \subseteq \Lambda \subseteq t^{-a} \Lambda^0. \]

This will allow us to get the ind-structure.

Definition 3.8. Let \(\text{Gr}_n^{\ell,a} \) be the set of lattices \(\Lambda \in \text{Gr}_n^{\ell,a} \) such that \(v(\Lambda) = \ell \) and \((3.7) \) is satisfied.

Then \(\text{Gr}_n^{\ell,a} \to \text{Gr}_n^{\ell,b} \) if \(b \geq a, \) and

\[\text{Gr}_n^{\ell,a} = \bigcup_{t,a} \text{Gr}_n^{\ell,a}. \]

Let \(J_{a,n} \) denote the space of \((na - k)\)-dimensional subspaces of \(t^{-a} \Lambda^0 / t^a \Lambda^0 \cong \mathbb{C}^{2an}. \) Then, \(\text{Gr}_n^{\ell,a} \) embeds into \(J_{a,n} \) by taking the quotient by \(t^a \Lambda^0, \) and \(J_{a,n} \) is a Grassmannian! By the Plücker embedding, it’s a projective variety.

Definition 3.9. An ind-projective ind-variety is an ind-scheme \(X = \text{colim} X_i \) such that each \(X_i \) is projective variety.

Remark. In schemes, there’s a significant difference between limits and colimits. Limits of affine schemes always exist, because colimits of rings do. For example, \(\mathbb{A}^\infty = \text{Spec } \mathbb{C}[x_1, x_2, \ldots] \cong \varprojlim \mathcal{O}_K / t^n \mathcal{O}_K. \) But ind-schemes are not always schemes. For example, \(K, \) the functor \(R \mapsto R((t)), \) is the colimit of \(K_{>\mathbb{N}} \cong \mathbb{A}^\infty. \)

This is the case where you’re only allowed to have finitely many coordinates. Said another way, the positive part of the Laurent series in the affine Grassmannian is fine, albeit infinite-dimensional; the negative tails produce the ind-ness.

For a concrete example, \(\text{Gr}_{\text{GL}_1} \cong \mathbb{Z}, \) and this is an infinite disjoint union of points, a nice ind-projective ind-variety. You might try to realize it as \(\text{Spec } \) of an infinite direct product of \(\mathbb{C}, \) but these are not isomorphic! The correspondence between coproducts of schemes and products of rings only works fully at the finite level.

Theorem 3.10. The affine Grassmannian \(\text{Gr}_{\text{GL}_n} \) is an ind-projective ind-variety.

9The name comes from the affine Weyl group because it has translations in it; the affine Grassmannian is not affine in any usual sense. For this reason, it’s sometimes referred to as the infinite Grassmannian or the loop Grassmannian.

10These are just like lattices in \(\mathbb{R}; \) a lattice \(\Lambda \) is an \(\mathcal{O}_K \)-submodule of \(K^n \) such that \(\Lambda \otimes_{\mathcal{O}_K} K = L^n. \)
The idea is to use the $J_{a,n}$.

There’s an important stratification of the affine Grassmannian: using Gauss-Jordan elimination, the orbits of $GL_n(\mathcal{O}_K)$ on Gr_{GL_n} are identified with coweights $C^\times \to T$ (where T is a maximal torus for our group). The set of coweights is often denoted $X_\bullet(T)$. Specifically,

$$
(3.11) \quad GL_n(K) = \prod_{\lambda = (a_1, \ldots, a_n) \in \mathbb{Z}} GL_n(\mathcal{O}_K) \left(\begin{array}{cc} t^{a_1} & \cdot \cdot \cdot \\ \cdot & \cdot \\ \cdot & \cdot \cdot \cdot \\ a_n \end{array} \right) GL_n(\mathcal{O}_K).
$$

The idea: using row reduction, you can get rid of everything except for powers of t (since you’re only using Taylor series, not Laurent series). There’s a similar perspective for other groups G, for which one might write

$$
(3.12) \quad G(K) = \prod_{\lambda \in X_\bullet(T)_+} G(\mathcal{O}_K)t^\lambda G(\mathcal{O}_K).
$$

One can identify $X_\bullet(T)_+ \cong X_\bullet(T)/W$, where W is the Weyl group for G.

This decomposition is really nice: the orbits are all projective varieties. There’s a nice Morse-theoretic approach to all this.

The decomposition (3.12) is sort of a “set-theoretic Satake theorem”: the Langlands dual is a little implicit, but tells us that finite-dimensional irreducible representations of G^\vee are indexing this decomposition of the affine Grassmannian. For $G = GL_n$, which is Langlands self-dual, (3.11) can also be interpreted as indexed by the representations of GL_n.

The algebrao-geometric approach to the affine Grassmannian. The affine Grassmannian admits a functor-of-points definition, as the functor $Gr : \text{Alg}_C \to \text{Set}$ sending a C-algebra R to the set of finitely-generated projective $R[[t]]$-submodules Λ of $R((t))^n$ such that

$$
\Lambda \otimes_{R[[t]]} R((t)) = R((t))^n.
$$

Theorem 3.13. This is represented by an ind-projective ind-scheme.

This scheme is isomorphic to the one described in Theorem 3.10. You’d prove Theorem 3.13 by finding a cover by subfunctors that are represented by projective varieties and whose colimit is Gr again.

We also get a functor-of-points approach to the orbit decomposition (3.11): $Gr_{GL_n}(R)$ is the set of (Σ, β) where Σ is a vector bundle on \mathbb{D}_T and $\beta : \Sigma|_{\mathbb{D}_R} \to \mathbb{C}^n$ is an isomorphism with the trivial bundle. If $Y \subset X$, let $\text{Bun}_G(X,Y)$ denote the set of principal G-bundles on X together with data of a trivialization on Y, then we can replace vector bundles with principal G-bundles to obtain a more general description:

$$
Gr_G(R) = \text{Bun}_G(\mathbb{D}_R, \mathbb{D}_R^n).
$$

Remark. Unlike in algebraic topology, defining principal G-bundles is tricky: if you try things which are Zariski-locally G-torsors, you get the wrong thing. Keeping in mind that it should always be possible to form an associated vector bundle from a principal G-bundle and a G-representation, followed by some messing around with Grothendieck topologies, leads to the right notion.

For general G, Gr_G is an ind-projective ind-scheme; the proof idea is to embed $G \hookrightarrow GL_n$.

The R-points of $L(G)$ are pairs $(\Sigma, \beta) \in \text{Bun}_G(\mathbb{D}_R, \mathbb{D}_R^n)$ together with a trivialization $\varepsilon : \Sigma \to G$ on all of \mathbb{D}_R. Forgetting ε defines the quotient map to Gr_G; if you think about it, you’ll find that this is actually the quotient by $L^\perp(G)$.

Back to topology. There’s a topological version of this story — in topology, the Grassmannian arises in a very different way. Let G be a complex Lie group and K be its maximal compact subgroup, so K is homotopic to G.

Let ΩK denote the (based) loop space of K, the space of basepoint-preserving, continuous maps $S^1 \to K$[extsuperscript{12}]. Then, there’s a model for the affine Grassmannian Gr_G that’s homotopic to ΩK.

[extsuperscript{11}] $X_\bullet(T)_+$ is the set of dominant weights: given a chamber C, the set of weights that pair positively with the elements of that chamber.

[extsuperscript{12}] See Pressley-Segal for details.
Another way to think of this is to let $LK = \text{Map}(S^1, K)$ be the free loop space. Then, $\Omega K = LK/K$, and this is like taking the quotient of $L(G)/L^+(G)$.

Now, we want this to be a moduli space of something. Well, $\Omega K \simeq \Omega^2 BK$, where BK is the homotopy type such that $\text{Map}(X, BK)$ is naturally $\text{Bun}_K(X)$ (as a set). This is representable, which is a theorem.

Two-fold loops in Y are identified with maps from a disc into Y such that (a small neighborhood of) the boundary maps to the basepoint. Hence $\Omega K \simeq \Omega^2 BK$ is the set of K-bundles on $C = \mathbb{R}^2$ that are pointed, in that there’s extra data of a trivialization on $C \setminus \mathbb{D}$, where \mathbb{D} is a small disc. This is precisely what we said the affine Grassmannian was: G-bundles trivialized at a point. So the algebraic geometry and the homotopy theory are the same – since $BK \simeq BG$, you could also take the set of G-bundles on a disc trivialized at a point.

The fact that ΩK is a 2-fold loop space means that it’s a homotopical kind of abelian group, which is key – it means the affine Grassmannian is in some sense an abelian group. For example, for $G = \text{GL}_1$, $\Omega^2 BS^1 = \mathbb{Z}$, which is a group. This groupiness (E_2-structure) will be crucial to the geometric Satake theorem.

The description of the affine Grassmannian as based loops on a compact Lie groups is what enabled Bott and others to attack it with Morse theory.

4. Geometry of the Affine Grassmannian: 9/15/17

“Now I have a blank page, which is where I wrote the examples.”

Last time, we spent some time defining the affine Grassmannian and thinking about it from a functor-of-points perspective. Today we want to focus on its geometry, and how we’re going to think about it; this will be more useful than being vaguely afraid that it’s some terrifying infinite-dimensional space.

Hecke operators. We saw in Tom’s talk that there are Hecke operators which act on the Bruhat-Tits tree, and that they commute. Hecke operators exist in much greater generality, but are usually a hair more complicated.

Fix a curve C and reductive group G; then,

$$\mathcal{Hecke} := \{(c, P_1 \overset{G}{\to} C, P_2 \overset{G}{\to} C, \beta : P_1|_{C\setminus c} \overset{\simeq}{\to} P_2|_{C\setminus c})\}.$$

That is, \mathcal{Hecke} is the pairs of principal G-bundles and isomorphisms between them away from a point.

There is a correspondence

$$\xymatrix{ & \mathcal{Hecke} \ar[dl] \ar[dr] & \\
C \times \text{Bun}_G(C) & & \text{Bun}_G(C),}
$$

by forgetting (P_2, β), resp. (c, P_1, β). Let G denote the trivial principal G-bundle; then, for any $c \in C$, the point $(c, G) \in C \times \text{Bun}_G(C)$. Using this, we can define the affine Grassmannian, and \mathcal{Hecke} contains Gr_G in a way compatible with the forgetful map $\mathcal{Hecke} \to C \times \text{Bun}_G(C)$.

If you wanted to do this with nontrivial principal G-bundles, you would obtain some kind of twisted version of the affine Grassmannian. Twisted means sheaves, so one might imagine that some class of sheaves on Gr_G act on some class of sheaves on Bun_G. This is true, and important: we’ll learn about perverse sheaves this semester, and they will act on \mathcal{D}-modules on Bun_G. In this sense, geometric Satake acts on geometric Langlands.

There is a classical perspective on this. Instead of \mathcal{Hecke}, we consider the space of data (c, E, ℓ), where $c \in C$, $E \to C$ is a rank-n vector bundle, and ℓ is a line in $E|_c$. This fibers over $C \times \text{Bun}_n(C)$ (where Bun_n is the moduli space of vector bundles), and the fiber is \mathbb{P}^{n-1}, which is contained in the affine Grassmannian. You can think of this \mathbb{P}^{n-1} as all of the modifications you can make to your vector bundle in a neighborhood of a point when you remove that point, and the Hecke-like operators act as averaging, like for the Bruhat-Tits tree. These are called elementary modifications in algebraic geometry.

Some (not too hard) combinatorics. This is a lot of data, but it will all be useful soon.

Let G be a reductive group, B be a Borel subgroup, and T be a maximal torus, such that $T \subset B \subset G$.

Example 4.1. If you chose $G = \text{GL}_n$, then one can let B be the subgroup of upper triangular matrices and T be the subgroup of diagonal matrices.
Let Φ denote the set of roots of (G, T), with respect to the adjoint action of T on \mathfrak{g}. That is, G acts on its Lie algebra \mathfrak{g} by conjugation, and the action of $t \in G$ on $x \in \mathfrak{g}$ is denoted $x \mapsto \text{Ad}_t(x)$. Under this action, \mathfrak{g} decomposes as a direct sum

$$\mathfrak{g} = \mathfrak{t} \oplus \bigoplus_{\alpha \in \Phi} \mathfrak{g}_\alpha.$$

Here, \mathfrak{t} is called the zero-weight space. Concretely, we realize Φ as a subset of \mathfrak{t}^\ast.

The choice of torus and Borel subgroup defines for us a decomposition $\mathfrak{g} = \mathfrak{b} \oplus \mathfrak{n}$, where \mathfrak{n} is the Lie algebra of the normalizer of the maximal torus.

Definition 4.2. We introduce the following notation.
- Let $\Phi^+ \subset \Phi$ be the positive roots, i.e. those in $\mathfrak{b} := \text{Lie}(B)$.
- $\Phi_s \subset \Phi^+$ will denote the simple roots, those which are not sums of other positive roots in a nontrivial way.
- Let $X^*(T) := \text{Hom}(T, \mathbb{G}_m)$, the character lattice, which contains Φ.
- Let $X_*(T) := \text{Hom}(\mathbb{G}_m, T)$, the cocharacter lattice, which contains Φ^\vee, the coroots (see below).

For each root α, there exists a coroot $\alpha^\vee \in X_*(T)$ satisfying

$$\alpha \cdot \alpha^\vee = z^2,$$

where $\alpha \cdot \lambda(z) := z^{\langle \alpha, \lambda \rangle}$.

Definition 4.3. More notation:
- Let $Q := \mathbb{Z}\Phi$ be the root lattice.
- Let $Q^\vee := \mathbb{Z}\Phi^\vee$, the coroot lattice.

There’s a partial order on Q^\vee, extending to $X_*(T)$, where $0 \leq \lambda$ iff λ is a nonnegative combination of positive coroots.

Definition 4.4. The dominant cocharacters are

$$X_*(T)_+ := \{ \lambda \in X_*(T) \mid \langle \lambda, \alpha \rangle \geq 0 \text{ for all } \alpha \in \Phi^+ \}.$$

Finally, and most mysteriously, let

$$\rho := \frac{1}{2} \sum_{\alpha \in \Phi^+} \alpha,$$

which defines a function $X_*(T) \to \frac{1}{2}\mathbb{Z}$. The appearance of ρ is a subtle and mysterious aspect of the representation theory of compact Lie groups or algebraic groups; David has a MathOverflow post with a good explanation.\(^{14}\)

Okay, now for some examples.

Example 4.5. Let $G = \text{SL}_2(\mathbb{C})$. We can then choose

\begin{align*}
B &= \left\{ \begin{pmatrix} \lambda & \mu \\ 0 & \lambda^{-1} \end{pmatrix} \right\} \\
T &= \left\{ \begin{pmatrix} \lambda & 0 \\ 0 & \lambda^{-1} \end{pmatrix} \right\}.
\end{align*}

The roots are $\Phi = \{ \pm 2 \}$ corresponding to the functions

$$\pm \alpha: \begin{pmatrix} \lambda \\ \lambda^{-1} \end{pmatrix} \mapsto \lambda^{\pm 2}.$$

The character lattice is hence $Q = 2\mathbb{Z} \subset \mathbb{Z} \cong X^*(T)$, where n is sent to the n^{th} power map.

The coroots are $\{ \pm 1 \}$, corresponding with the functions

$$\pm \alpha^\vee: \lambda \mapsto \begin{pmatrix} \lambda^{\pm 1} \\ \lambda^{\mp 1} \end{pmatrix}.$$

\(^{13}\)TODO: this might be wrong; double-check.\(^{14}\)There are many perspectives on ρ: spin structures on the flag manifold, Serre duality, the Weyl character formula, and more.
In this case, \(X_*(T) \cong \mathbb{Z} \) (\(n \) sends \(\lambda \mapsto (\lambda^n_{\lambda \rightarrow -n}) \)), and the cocharacter lattice \(Q^\vee \) is all of \(X_*(T) \), even though the character lattice isn’t all of \(X^*(T)! \)

In this case, the dominant cocharacters are \(X_*(T)_+ \cong \mathbb{Z}_{\geq 0} \), with the partial order sent to the usual order. In this case, \(\rho = (1/2) \cdot 2 = 1 \).

Example 4.7. Now consider \(G = \text{PGL}_2(\mathbb{C}) := \text{SL}_2(\mathbb{C})/\mu_2 \), where \(\mu_2 := \{ \pm 1 \} \) is the square roots of unity. We can choose \(B \) and \(T \) to be basically the same as in \([4.6]\). In this case, we obtain a dual-looking setup (which is not a coincidence).

- The character lattice is \(Q \cong \mathbb{Z} \), and this is all of
 \[
 X^*(T) = \left\{ \left[\begin{array}{cc} \lambda & 0 \\ \lambda^{-1} & 1 \end{array} \right] \mapsto \lambda^{2n} \right\}_{n \in \mathbb{Z}}.
 \]

- The cocharacter lattice is \(Q^\vee \cong 2\mathbb{Z} \) inside
 \[
 X_*(T) = \left\{ \lambda \mapsto \left[\begin{array}{cc} \lambda^{n/2} & 0 \\ \lambda^{-n/2} & 1 \end{array} \right] \right\}_{n \in \mathbb{Z}}.
 \]

Applications to geometry of the affine Grassmannian. As before, fix \(K := \mathbb{C}((t)) \) and \(\mathcal{O}_K := \mathbb{C}[[t]] \).

Let \(\lambda : \mathbb{G}_m \to T \) be a cocharacter for \(G \), which determines a map \(K^\times \to T((t)) \subset G(\mathcal{O}_K) \) sending \(t \mapsto t^\lambda \).

Let \(L_\lambda := t^\lambda \cdot G(\mathcal{O}_K) \in \text{Gr}_G \) (since this is \(G(K)/G(\mathcal{O}_K) \)), and define \(\text{Gr}_\lambda := G(\mathcal{O}_K) \cdot L_\lambda \). This \(\text{Gr}_\lambda \) is called a *Schubert cell*. Last time, in \([3.11]\) and \([3.12]\), we saw a decomposition of \(\text{Gr}_G \) into a disjoint union; this is actually as Schubert cells:

\[
\text{Gr}_G = \bigsqcup_{\lambda \in X_*(T)_+} \text{Gr}_\lambda.
\]

Let
\[
\text{Gr}_{\leq \mu} := \bigcup_{\lambda \in X_*(T)_+} \text{Gr}_\lambda,
\]

which is called a *(spherical) Schubert variety* containing \(\text{Gr}_\mu \) as an open subvariety.

Proposition 4.8. \(\text{Gr}_\mu \) is a smooth, quasiprojective\(^\dagger\) variety of dimension \((2\rho, \mu)\).

So \(\rho \) makes its first surprise appearance (as the sum of all the positive roots).

Proof. Let
\[
P_\mu^\alpha := G(\mathcal{O}_K) \cap (t^\mu G(\mathcal{O}_K)t^{-\mu}),
\]

which is the stabilizer for \(G(\mathcal{O}_K) \) acting on \(\text{Gr}_G \): \(\text{Gr}_\mu \cong G(\mathcal{O}_K)/P_\mu^\alpha \). Thus \(\text{Gr}_\mu \) is a homogeneous space for a group in characteristic 0, so it’s quasiprojective. Smoothness comes from the map
\[
G(\mathcal{O}_K)/P_\mu^\alpha \longrightarrow G(K)/G(\mathcal{O}_K)
\]

sending \(g \mapsto g^\mu \), so it remains to calculate its dimension.

We have an identification
\[
T_{L_\mu} \text{Gr}_\mu \cong \mathfrak{g}(\mathcal{O}_L)/(\mathcal{O}(\mathcal{O}_K) \cap \text{Ad}_{t^\mu}(\mathfrak{g}(\mathcal{O}_K))),
\]

and we have the root decomposition
\[
\mathfrak{g}(\mathcal{O}_K) = \text{fr}(\mathcal{O}_K) \oplus \bigoplus_{\alpha \in \Phi^+} (\mathfrak{g}_\alpha(\mathcal{O}_K) \oplus \mathfrak{g}_{-\alpha}(\mathcal{O}_K)).
\]

For \(t \), which is abelian, the adjoint action is trivial, and for \(x_\alpha \in \mathfrak{g}_\alpha \),
\[
\text{Ad}_{t^\mu}(x_\alpha) = t^{(\alpha, \mu)} x_\alpha.
\]

Therefore we can calculate
\[
\text{Ad}_{t^\mu} \mathfrak{g}(\mathcal{O}_K) = t(\mathcal{O}_K) \oplus \bigoplus_{\alpha \in \Phi^+} t^{(\alpha, \mu)} \mathfrak{g}_\alpha(\mathcal{O}_K) \oplus t^{-(\alpha, \mu)} \mathfrak{g}_{-\alpha}(\mathcal{O}_K).
\]

\(\dagger\)This means it’s an open subvariety of a projective variety.
Hence
\[(4.10)\quad g(\mathcal{O}_K) \cap \text{Ad}_{t^\mu}(g(\mathcal{O}_K)) = \mathfrak{t}(0) \oplus \bigoplus_{\alpha \in \Phi^+} (g_\alpha(\mathcal{O}_K) \oplus g_{-\alpha}(\mathcal{O}_K)).\]
Therefore
\[(4.11)\quad g(\mathcal{O}_K)/(g(\mathcal{O}_K) \cap \text{Ad}_{t^\mu} g(\mathcal{O}_K)) \cong \bigoplus_{\alpha \in \Phi^+} g_\alpha(\mathcal{O}_K)/t^{\langle \alpha, \mu \rangle} g_\alpha(\mathcal{O}_K).\]
Since \(\dim(g_\alpha) = 1\), the dimension of \((4.11)\) is
\[
\sum_{\alpha \in \Phi^+} \langle \alpha, \mu \rangle = 2 \rho, \mu). \quad \Box
\]

Bam, geometry.

We also know its closure, which is a projective variety, though far from smooth, except in very special and very interesting cases.

Proposition 4.12. The Zariski closure of \(G_\mu\) is \(G_{\leq \mu}\), which in particular is a projective variety.

Proof sketch. Suppose \(\lambda \geq \mu\), so that there exists a positive coroot \(\alpha^\vee\) such that \(\mu - \alpha^\vee\) is dominant and \(\lambda \leq \mu - \alpha^\vee \leq \mu\). This means it suffices to prove that \(t^{\mu - \alpha^\vee} \in G_{\lambda}\). To do this, construct a curve \(X \subset G_{\leq \mu}\) such that \(t^{\mu - \alpha^\vee} \in X\) and \(X \cdot \{t^{\mu - \alpha^\vee}\} \subset G_{\mu}\). \(\square\)

Example 4.13. Let \(G = \text{SL}_2\). For any \(m \in \mathbb{Z}\),
\[t^\lambda_m = \left[\begin{array}{cc} t^m & 0 \\ 0 & 1 \end{array} \right] \in \text{PGL}_2(K).\]
Let \(K_m := \text{Ad}_{t^\lambda_m}(\text{SL}_2(\mathcal{O}_K)) \subset \text{SL}_2(K)\). The idea is that we want to use copies of \(\text{SL}_2(\mathcal{O}_K)\) to move things around in \(\text{SL}_2(K)\).

Let \(\{e, h, f\}\) be the standard triple of generators in \(\mathfrak{sl}_2\), so if \(t_m\) is the Lie algebra of \(K_m\), \(t_m = \text{span}_K \{t^m e, h, t^{-m} f\}\).

Consider the point
\[\sigma_m := \left[\begin{array}{cc} 0 & -t^m \\ t^m & 0 \end{array} \right] \in K_m\]
and
\[L^{>0}\text{SL}_2 := \ker(ev; \text{SL}_2(\mathcal{O}_K) \rightarrow \text{SL}_2(\mathbb{C})).\]
Let \(K^{-1} := \text{Ad}_{t^\lambda_m}(L^{>0}\text{SL}_2)\).
One can show that \(K_m/K_{m-1} \cong \text{SL}_2(\mathbb{C})\), so if \(i_\alpha: \text{SL}_2(\mathbb{C}) \rightarrow G\) is the canonical homomorphism induced by \(\alpha \in \Phi\), the Lie algebra of its image is \(g_\alpha \oplus g_{-\alpha} \oplus [g_\alpha, g_{-\alpha}]\).

Now, let \(m = \langle \mu, \alpha \rangle - 1\). Let
\[C_{\mu, \alpha} := (L_{1^\alpha})(K_m) \cdot L_\mu.\]
This is a homogeneous space for \(\text{SL}_2(\mathbb{C})\), hence must be a \(\mathbb{P}^1\), and this is the curve we were looking for (and punted on in the proof of Proposition 4.12).

Exercise 4.14. Show that if \(B\) is the subgroup of upper triangular matrices inside \(\text{SL}_2(\mathbb{C})\), \(\text{SL}_2(\mathbb{C})/B \cong \mathbb{P}^1\).

Therefore one can make a balloon decomposition of the entire space as a sequence of \(\mathbb{P}^1\) “balloons,” akin to a Morse decomposition of a manifold. There’s a great paper of Goresky-MacPherson which shows how incredibly useful this is.

Parity of Schubert cells. The Schubert cells have a natural even-odd parity directly analogous to the parity in the Bruhat-Tits tree for \(\text{SL}_2\), defined by the map \(p: X_*(T) \rightarrow \mathbb{Z}/2\) sending
\[\mu \mapsto (-1)^{2\mu(\rho, \mu)}.\]
If \(\mu\) is a coroot, so that \(\langle \rho, \mu \rangle \in \mathbb{Z}\), this defines a map \(X_*(T)/Q^\vee \rightarrow \mathbb{Z}/2\). But \(X_*(T)/Q\) is something we’ve seen before: \(\pi_1(G)\)\(^{16}\) This is because \(\pi_1(G) \cong \pi_0(G_{\text{red}})\), because \(\pi_1(G) = \pi_0(LG)\), and \(G_{\text{red}} = LGL^+ G\) and \(L^+ G\) is connected.

\(^{16}\)There are various notions of the fundamental group in algebraic geometry, but we’re over \(\mathbb{C}\), so they coincide here. One concrete definition is the fundamental group of \(G(\mathbb{C})\) in the complex topology.
Therefore we have a map $p: \pi_0(\text{Gr}_G) \to \mathbb{Z}/2$, which decomposes Gr_G into even and odd pieces Gr_G^+ and Gr_G^-. We say Gr_μ is even, resp. odd, if it’s in Gr_G^+, resp. Gr_G^-. By (4.8), Gr_μ is even (resp. odd) iff $\dim \text{Gr}_\mu$ is even (resp. odd). This means the parity map doesn’t depend on the choice of B or T, which is nice.

Schubert cells and partial flag varieties. For $\mu \in X_+(T)$, let P_μ be the parabolic subgroup of G corresponding to μ. That is, P_μ is generated by the root subgroups $U_\alpha \subset G$ (isomorphic to SL_2) for $\alpha \in \Phi$ satisfying $\langle \alpha, \mu \rangle \leq 0$.

Let $ev: G(\mathcal{O}_K) \to G$ send $g(t) \mapsto g(0)$ again.

Proposition 4.15. There is a natural projection $p_\mu: \text{Gr}_\mu \cong G(\mathcal{O}_K)/(G(\mathcal{O}_K) \cap (t^\mu G(\mathcal{O}_K)t^{-\mu})) \to G/P_\mu$ whose fibers are affine spaces.

The quotient G/P_μ is called a partial flag variety, and generalizes the flag variety G/B, the variety of full flags, filtrations $0 \subsetneq V_1 \subsetneq V_2 \subsetneq \cdots \subsetneq V_n = V$ such that $\dim V_i = i$. But we could just as well take partial flags $0 \subsetneq V_1 \subsetneq V_2 \subsetneq V_n = V$, and this is GL_n over the subgroup of upper triangular matrices. Hence these can and should be called partial flag varieties.

Proof of Proposition 4.15. Recall (4.9) and (4.10), the formulas for $\text{Ad}_{t^\mu} g(\mathcal{O}_K)$ and $g(\mathcal{O}_K) \cap \text{Ad}_{t^\mu} g(\mathcal{O}_K)$, respectively; evaluation defines a map

$$g(\mathcal{O}_K) \cap \text{Ad}_{t^\mu} g(\mathcal{O}_K) \xrightarrow{ev} t \oplus \bigoplus_{\langle \alpha, \mu \rangle \leq 0} g_\alpha,$$

and the latter space is the Lie algebra of P_μ. That is, we have a commutative diagram

$$\begin{array}{ccc}
G(\mathcal{O}_K) & \xrightarrow{ev} & G \\
\downarrow & & \downarrow \\
\mathcal{O}_K & \xrightarrow{ev_\mu} & P_\mu.
\end{array}$$

$\ker(ev) = L^{>0}G$, which is a pro-unipotent group (a limit of unipotent groups). This implies $\ker(ev)/\ker(ev_\mu)$ is a finite-dimensional unipotent group, and these are all affine spaces. \hfill \square

Example 4.16. Let $G = \text{PGL}_2(\mathbb{C})$, so as in Example 4.7, $X_+(T) = \mathbb{Z}$ and $Q^+ = 2\mathbb{Z}$ inside $X^+(T)$. The partial order is

$$\cdots \leq -2 \leq 0 \leq 2 \leq \cdots$$

$$\cdots \leq -3 \leq -1 \leq 1 \leq 3 \leq \cdots$$

and $X_+(T)_+ = \mathbb{Z}_{\geq 0}$.

Now let’s make some Schubert cells. The easiest is Gr_0:

$$\text{Gr}_0 = G(\mathcal{O}_K) \cdot 1 \cdot G(\mathcal{O}_K) = G(\mathcal{O}_K) = \text{pt}.$$

More excitingly,

$$\text{Gr}_1 = \text{Gr}_{\leq 1} = G(\mathcal{O}_K) \cdot \begin{pmatrix} t & \cdot \\ \cdot & t^{-1} \end{pmatrix} \cdot G(\mathcal{O}_K),$$

which is a \mathbb{P}^1. This is all of the modifications one can make in the neighborhood of something, like we saw for the Bruhat-Tits tree.

This demonstrates an interesting phenomenon: the following are equivalence (for any reductive G):

- Gr_μ is smooth.
- $\text{Gr}_\mu = \text{Gr}_\mu$.
- μ is such that $\langle \mu, \alpha \rangle \leq 1$, where $\alpha \in \Phi_+$ is a miniscule root.
Some groups don’t even have miniscule roots, so smoothness is generally very uncommon.

Though it’s complicated to write out at the board, the answer for Gr_2 is that $\text{Gr}_2 \cong \mathcal{O}(-n) \to \mathbb{P}^1$ for some n, which is indeed an affine bundle. If you think in terms of lattices, these are lattices containing some given lattice for Gr_1. Similarly, Gr_3 will be a fiber bundle over the total space for Gr_2, which is a variety you may have encountered before. (For general groups, everything is a little more complicated.)

As soon as we understand an orbit, we can calculate its cohomology, and these have natural SL_2-actions. The cohomology of Gr_1 is the irreducible 1-dimensional representation (the trivial one), and the cohomology of Gr_2 is the two-dimensional one. There’s plenty of excellent geometry here.

5. Perverse sheaves: 9/22/17

"I thought, I understood sheaves, so all I have to understand is one adjective! But it turns out perverse sheaves aren’t really sheaves, and they’re also not

Today, Sebastian spoke about perverse sheaves and intersection cohomology. Today is intended to be a less scary and more heuristic overview of why we want to consider perverse sheaves, with the technical details left to a future talk. Today, all sheaves are valued in \mathbb{Q}-vector spaces, and we assume all spaces are locally path-connected and locally simply connected, so that we can take universal covers of path-connected spaces.

To begin, let’s recall a definition.

Definition 5.1.

- A **locally constant sheaf** \mathcal{L} on a space X is a sheaf such that X such that for every $x \in X$, there’s a neighborhood U of x such that $\mathcal{L}(U) \cong \mathcal{L}_x$.

- A **local system** is a locally constant sheaf with finite-dimensional stalks.

Example 5.2.

1. Let V be a vector space. Then, the constant sheaf \underline{V}_X is a locally constant sheaf, and if V is finite-dimensional, is a local system.

2. The orientation sheaf O_X, defined by $O_X(U) := H_n(U; \mathbb{Q})^*$, is a locally constant sheaf, and a local system on nice spaces.

Given a locally constant sheaf \mathcal{L} and an $x_0 \in X$, there’s a **monodromy representation** of $\pi_1(X, x_0)$ on \mathcal{L}_{x_0}: given a loop ℓ from x_0 to itself, consider an open cover \mathcal{U} of a neighborhood of ℓ, such that we get a chain of transition maps $\mathcal{L}(U_0) \to \mathcal{L}(U_1) \to \cdots \to \mathcal{L}(U_m) \to \mathcal{L}(U_0)$; the composition of these is the automorphism we assign to ℓ, which is called its monodromy, and one can check this defines a group homomorphism $\pi_1(X, x_0) \to \text{GL}(\mathcal{L}_{x_0})$.

Remark. Really, this defines a functor from the category of local systems on X, as a full subcategory of $\text{Sh}(X, \mathbb{Q})$, to the category of finite-dimensional representations of $\pi_1(X, x_0)$, and this functor is an equivalence of categories!

One can also ask about extensions of local systems: if $U \subset X$ is open, where X is a smooth manifold, and \mathcal{L} is a local system on U, can we extend it to X? Is such an extension unique?

Using the equivalence of categories mentioned above, we can find a few easy-to-understand criteria.

1. If ℓ is a loop in U that’s contractible in X, the monodromy around ℓ of \mathcal{L} must be trivial.

2. We need U to be “big enough,” in that $\pi_1(U)$ surjects onto $\pi_1(X)$. This is automatic if $X \setminus U$ has codimension at least 2.

This is great, but what if X is singular? For concreteness, take a stratified space X, and let U be the smooth locus. If you try to extend a local system \mathcal{L} on U to X, you end up with something new—a perverse sheaf. Though these are quite technical to define, you can define an analogue of sheaf cohomology for perverse sheaves, which is good.

A perverse sheaf is, more or less, a collection of local systems on the individual strata, where the behavior on when you pass between strata depends on how severe the singularities are. The slogan is, “perverse sheaves are the singular version of local systems.” For a short overview, check out http://www.ams.org/notices/201005/rtx100500632p.pdf.

Remark. The extension of a constant sheaf in this setting is in general not constant!
You also get different perverse sheaves for spaces which are homotopic but not homeomorphic, which is unusual for things we’re used to taking cohomology of.

Let $P(X)$ denote the category of perverse sheaves on X. Let’s discuss some of its formal properties:

- $P(X)$ is an abelian category, a full subcategory of $D(X)$, the derived category of X (which itself is a full subcategory of the category of sheaves on X).
- $D(X)$ has a t-structure, and its heart $D(X)^0$ is exactly $P(X)$.
- There’s a duality endomorphism on $D(X)$, and $P(X)$ is stable under this duality. This is Verdier duality, an extension of Poincaré duality.
- Though $P(X)$ is not in general semisimple,¹⁷ it’s still nice: there are finitely many simple objects, which are intersection cohomology complexes, and any object can be obtained as a sequence of extensions of simple objects. One says that $P(X)$ has finite length.

So one of the puzzles of perverse sheaves is that they have really nice formal properties, but the definition is a mess. Frequently, one takes them as a black box satisfying the formal properties.

Definition 5.3. A stratified pseudomanifold is a space X together with a filtration $X ⊃ X_0 ⊃ X_1 ⊃ ⋯ ⊃ X_n = \emptyset$, such that each $X_i ⊂ X$ is closed and

- the k-stratum $S_k := X_k \setminus X_{k-1}$ is a topological $(n-k)$-manifold,
- $S_1 = \emptyset$,
- if $Σ = X_1 = X_2$ (the singular locus), then $S_0 = X \setminus Σ$ is dense in X,
- and one more technical consideration called local normal triviality.

The Whitney stratification of a complex variety makes it into a stratified pseudomanifold.

We want to compute (co)homology, which means we need a version of chains for these spaces.

Definition 5.4. A geometric chain in S_0 means a singular chain $ξ$ in X whose support $|ξ|$ in S_0 is closed in S_0.

These are less important than what you call cycles, though.

Definition 5.5.

- A perversity is a map $p: \{2, 3, \ldots, n\} → \mathbb{Z}$.
- Given an $i ∈ \mathbb{Z}$ and a perversity p, a $Z ⊆ X$ is (p, i)-allowable if $\dim Z ≤ i$ and for all strata $S_α ⊂ X$,
 \[
 \dim(S_α \cap Z) ≤ i − \text{codim } S_α + p(α).
 \]

This is a generalization of transversality: how can a 1-chain intersect the singular locus in a reasonably transverse manner?

Definition 5.6. A geometric i-chain $ξ$ in S_0 with coefficients in L is p-allowable if

- $|ξ| ⊂ X$ is (p, i)-allowable, and
- $|∂ξ|$ is $(p, i-1)$-allowable.

The space of p-allowable chains is denoted $IPC_i(X, L)$, and these define a complex

\[
\cdots → IPC_{i+1}(X, L) → IPC_i(X, L) → IPC_{i-1}(X, L) → \cdots
\]

called the intersection complex. The homology of this complex is denoted $IPH_i(X, L)$, and is called the intersection cohomology.

Example 5.7. Take two spheres and identify their north poles together, then their south poles together. This space X, the (unreduced) suspension of $S^1 \amalg S^1$, is a stratified pseudomanifold with singular locus $\{N, S\}$, the (identified) north and south poles. Let a be a meridian in the first sphere and b be a meridian in the second sphere.

Let $L = \mathbb{Q}$ be the constant sheaf. Its (usual) homology is:

- $H_2(X)$ is generated by $[Σa]$ and $[Σb]$ \[¹⁸\]
- $H_1(X)$ is generated by $Σa − Σb$.
- $H_0(X)$ is generated by $[a] − [b]$.

¹⁷It will be for the affine Grassmannian!
¹⁸In this example, $Σ$ denotes unreduced suspension.
Remark. Every stratified pseudomanifold

Definition 5.8. An \(n \)-dimensional stratified pseudomanifold is \textit{normal} if for any \(x \in \Sigma \) there’s a neighborhood \(U \) of \(x \) such that \(U \setminus \Sigma \) is connected.

Remark. Every stratified pseudomanifold \(X \) has a \textit{normalization} \(\pi : \tilde{X} \to X \) such that \(\tilde{X} \) is normal, \(\pi|_{\pi^{-1}(S_0)} \) is one-to-one, and \(\pi|_{\pi^{-1}(\Sigma)} \) is \(n \)-to-1, where \(n \) is the number of connected components of \(U \setminus \Sigma \).

The normalization map defines a map of chain complexes \(C_\ast(\tilde{X}) \to C_\ast(X) \), such that if \(t : \alpha \mapsto \alpha - 2 \), we get a map on intersection cohomology

\[
I^t H_s(\tilde{X}) \longrightarrow I^t H_s(X).
\]

Proposition 5.9. If \(X \) is normal, then there are chain maps \(I^t C_i(X) \to C_i(X) \) and \(C^{n-1}(X) \to I^t C_i(X) \) inducing isomorphisms

\[
I^t H_s(X) \longrightarrow H_s(X) \\
H^{n-i}(X) \longrightarrow I^t H_i(X).
\]

This is the sense in which for normal spaces, intersection homology generalizes ordinary homology and cohomology.

Recall that Poincaré duality says for a smooth, oriented manifold \(X \),

\[
H_i(X) \otimes H_{n-i}^c(X) \longrightarrow H_0^c(X) \longrightarrow H_0^c(\text{pt}) \cong \mathbb{Q}
\]

is a perfect pairing. This fails for singular spaces, but intersection cohomology fixes this!

Definition 5.10.

- Two local systems \(L \) and \(L' \) are \textit{dual} if there is a map \(L \otimes L' \to O_{S_0} \) which is a perfect pairing on each fiber.
- Two perversities \(p \) and \(q \) are \textit{dual} (written \(q = p^* \)) if \(p + q = t \), i.e. for each \(\alpha \), \(p(\alpha) + q(\alpha) = \alpha - 2 \).

Theorem 5.11 (Goresky-MacPherson). Let \(k = \dim X \) and \(L \) and \(L' \) be dual local systems. Then, there is a perfect pairing

\[
I : I^p H_i(X,L) \otimes I^{p'} H_{k-i}(X,L') \longrightarrow \mathbb{Q}.
\]

You should think of this as an intersection number\(^{19}\)

For \(U \hookrightarrow X \) open, we get morphisms \(C_i(X) \to C_i(U) \) and \(I^p C_i(X) \to I^p C_i(U) \), but for Borel-Moore chains, we get covariant functoriality: \(C^p_i(U) \to C^p_i(U) \). This allows us to define two sheaves on \(X \),

\[
\mathcal{D}^{-i}_X(U) := C_i(U) \\
I^p C^{-i}_X(U) := I^p C_i(U).
\]

\(^{19}\)It seems like the passage from Poincaré duality to this theorem has followed the usual “fancification functor” of algebraic structures, where something you thought you understood is replaced with something ostensibly geometric, more formal, and considerably more general...
These form cochain complexes D_X^*, IP^*_X of sheaves; one can take (compactly supported) global sections to recover the original vector spaces:

$$H^i_!(X) = H^{-i}(\Gamma,(D^*_X))$$
$$IP^i_!(X) = H^{-i}(\Gamma,(IP^*_X))$$
$$H^i(X) = H^{-i}(\Gamma(D^*_X))$$
$$IP^i(X) = H^{-i}(\Gamma(IP^*_X))$$

If you want something cohomological, change the grading.

Definition 5.12. The intersection cohomology is the hypercohomology of IP^*_X:

$$IP^k(X) := \mathbb{H}^k(X, IP^*_X).$$

Thus $IP^k(X) = IP H_{-k}(X)$. So these are concentrated in negative degrees, which is a little strange, but ultimately okay. And what’s good about this is that you can do it sheafily, since everything is local.

6. **The derived category theory surrounding perverse sheaves: 9/29/17**

These are Arun’s prepared notes for his talk.

6.1. The six-functor formalism and Verdier duality

We’ll begin with the six-functor formalism as an introduction to Verdier duality. There will be no proofs.

Motivated by the fundamental importance of Poincaré duality in algebraic topology, we’re going to try to make it work in algebraic geometry. On smooth varieties, everything is fine — but it does not work in general. We’ll present two ways to fix it: the first relaxes to the derived category, but it turns out we’ll be able to establish a duality on a curious abelian subcategory of that category, which is the category of perverse sheaves.

Recall that if $f : X \to Y$ is a morphism of schemes, it defines an adjunction (f^*, f_*) between the direct and inverse image functors:

$$f_*(\mathcal{F})(U) = \mathcal{F}(f^{-1}(U)) f^*(\mathcal{G}) = \left(V \mapsto \lim_{f(U) \subseteq V} \mathcal{G}(V) \right)^{sh},$$

and a third covariant functor $f_!$ which only keeps the $s \in \mathcal{F}(f^{-1}(U))$ for which $f|_{\text{supp}(s)}$ is proper. We’d like this to also have an adjoint, and in order to do so, we must pass to the derived category. In this case, $Rf_!$ has a right adjoint, $Rf^! : D^b(Y) \to D^b(X)$. Thus we have six functors associated to derived categories of sheaves, which come in three adjoint pairs:

- $(- \otimes^L \mathcal{F}, R \mathcal{H}om(\mathcal{F}, -))$,
- (Rf^*, f_*), and
- $(Rf_!, Rf^!)$.

Henceforth we will drop the Ls and Rs. There’s a natural transformation $f_! \to f_*$, an isomorphism when f is proper, and $f^! = f^*$ if f is an open embedding.

Let $p : X \to \text{pt}$ denote the crush map and $\omega_X := p^!(\underline{\mathbb{C}}) \in D^b(X)$. This is in general a complex of sheaves, and is called the dualizing complex.

These functors are in particular generalizations of cohomology. Recall that H^* is the right derived functor of the global sections functor $\Gamma = p_*$. We also have

$$H^*_!(X) = H^*_!(p^! \underline{\mathbb{C}})$$
$$H^*_!(X) = H^*_!(f^* \omega_X)$$
$$H^*_!(X) = H^*_!(p^! \underline{\mathbb{C}})$$
$$H^*_!(X) = H^*_!(f^! \omega_X).$$

Now, define $\mathbb{D} := \mathcal{H}om(-, \omega_X)$, which is an endofunctor of $D^b(X)$.

Theorem 6.1 (Verdier duality).

1. There’s a natural isomorphism $\mathbb{D}^2 \simeq \text{id}$.
2. A map $f : X \to Y$ induces a natural isomorphism $D_Y \circ f_! = f_* \circ \mathbb{D}_X$.
3. Verdier duality reduces to Poincaré duality in that if X is smooth and \mathcal{L} is a local system on X, $\mathbb{D}\mathcal{L} \simeq \mathcal{L}^\vee [2 \dim X]$.}

16
This dimension-shifting result is really nice, but it just doesn’t work on singular varieties: you might imagine understanding a complex on each stratum of, say, its Whitney stratification, and these strata will have different dimensions. So if we’d like a nice duality result, we’ll have to restrict to a class of sheaves which account for this offset.

6.2. The perverse \(t \)-structure. We’re going to define the category of perverse sheaves using an unusual \(t \)-structure on \(D^b(X) \).

\(t \)-structures are formalizations of two things you’ve probably already encountered, where shifts of something simpler generate a triangulated category.

- If \(A \) is an abelian category, there’s a fully faithful functor \(A \to D(A) \) sending a complex \(A \to \cdots \to 0 \to A \to 0 \to \cdots \), and this sends short exact sequences to distinguished triangles. Moreover, the entire derived category is built from these and “attaching maps.”
- In algebraic topology, one can understand a space in terms of its Postnikov decomposition, which builds it as a tower from attaching maps between spaces \(K(G, n) \) with a single homotopy group. A fiber sequence defines a long exact sequence on homotopy groups (better: a distinguished triangle in the homotopy category).

Definition 6.2. Let \(C \) be a triangulated category. A \(t \)-structure on \(C \) is a pair \(C^{\geq 0} \) and \(C^{\leq 0} \) of full subcategories such that

1. If \(C^{\leq i} = C^{\leq 0}[i] \) and \(C^{\geq i} = C^{\geq 0}[i] \), then \(\text{Hom}(C^{\leq 0}, C^{\geq 1}) = 0 \).
2. \(C^{-1} \subseteq C^{\leq 0} \) and \(C^{\geq 1} \subseteq C^{\geq 0} \).
3. Any \(X \in C \) belongs to a distinguished triangle

\[
A \longrightarrow X \longrightarrow B \longrightarrow A[1],
\]

where \(A \in C^{\leq 0} \) and \(B \in C^{\geq 1} \).

In this case, we make the following additional definitions:

- The inclusion \(C^{\leq n} \) has a right adjoint, which we denote \(\tau_{\leq n} \).
- Similarly, the inclusion \(C^{\geq n} \) has a left adjoint, which we denote \(\tau_{\geq n} \).
- A \(t \)-structure is nondegenerate if the intersection of all of the subcategories \(C^{\geq n} \) is empty, and the intersection of all of the \(C^{\leq n} \) is empty.
- The heart of a \(t \)-structure is \(C^0 := C^{\geq 0} \cap C^{\leq 0} \).

Definition 6.3. Let \(C \) be a triangulated category and \(A \) be an abelian category. A functor \(F: C \to A \) is cohomological if it sends a distinguished triangle \(A \to B \to C \to A[1] \) to a long exact sequence

\[
\cdots \longrightarrow F(A) \longrightarrow F(B) \longrightarrow F(C) \longrightarrow F(A[1]) \longrightarrow \cdots
\]

The most important example is the \(i \)-th cohomology sheaf \(\mathcal{H}^i(X) := \tau_{\geq 0} \tau_{\leq 0}(X[i]) \).

Theorem 6.4. The heart of a \(t \)-structure is an abelian category, and the functor \(\tau_{\leq 0} \tau_{\geq 0}: C \to C^0 \) is cohomological.

Example 6.5.

1. Indeed, if \(X \) is a variety, \(D^b(X) \) has a \(t \)-structure in which \(D^{\leq 0} \) is the complexes whose cohomology vanishes in all negative gradings, and \(D^{\geq 0} \) is the complexes whose cohomology vanishes in all positive gradings. You can check this is a triangulated structure and that its heart is the category of sheaves on \(X \).

2. The stable homotopy category \(\text{Spc} \) has a \(t \)-structure in which \(\text{Spc}^{\geq 0} \) is the connective spectra (those whose negative homotopy groups are zero) and \(\text{Spc}^{\leq 0} \) is the coconnective spectra (positive homotopy groups are zero). The heart of this \(t \)-structure is the subcategory of spectra with only a single homotopy group in degree 0, which is the Eilenberg-Mac Lane spectra, and this is equivalent to \(\text{Ab} \).

But we can define another, different \(t \)-structure on \(D^b(X) \), and its heart is the perverse sheaves.

Let \(X \) be a space with a stratification

\[
X = \coprod_{\lambda \in \Lambda} X_\lambda,
\]

where...
such that $D^b(X_\lambda)$ is preserved by Verdier duality (e.g. any Whitney stratification). Let $d_\lambda := \dim(X_\lambda)$ and $\iota_\lambda: X_\lambda \hookrightarrow X$ be inclusion. Let\footnote{Here \mathcal{H} denotes the i^{th} cohomology, as a sheaf on X, and $D^b_{\text{const}}(X)$ denote the full subcategory of sheaves with locally constant cohomology sheaves.}

\[
\begin{align*}
^pD^\leq_\lambda &:= \{ \mathcal{F} \in D^b_{\text{const}}(X_\lambda) \mid \mathcal{H}^i(\mathcal{F}) = 0 \text{ for } i > -d_\lambda \} \\
^pD^\geq_\lambda &:= \{ \mathcal{F} \in D^b_{\text{const}}(X_\lambda) \mid \mathcal{H}^i(\mathcal{F}) = 0 \text{ for } i < -d_\lambda \};
\end{align*}
\]

the intersection of these two subcategories is $\text{Loc}(X_\lambda)[d_\lambda]$. In particular, this shift is preserved by Verdier duality, and is the only shift on X_λ that is.

Lemma 6.6. $(^pD^\leq_\lambda, ^pD^\geq_\lambda)$ is a t-structure on X_λ.

Proof. Any shift of a t-structure is a t-structure, so we may replace $-d_\lambda$ by 0, and then we have the standard t-structure on $D^b(X_\lambda)$. \hfill \square

Definition 6.7. The perverse t-structure on $D^b(X)$ is specified by

\[
\begin{align*}
^pD^\leq &:= \{ \mathcal{F} \in D^b(X) \mid i_\lambda^* \mathcal{F} \in ^pD^\leq_\lambda \text{ for all } \lambda \in \Lambda \} \\
^pD^\geq &:= \{ \mathcal{F} \in D^b(X) \mid i_\lambda^* \mathcal{F} \in ^pD^\geq_\lambda \text{ for all } \lambda \in \Lambda \}.
\end{align*}
\]

Its heart, denoted $P_\Lambda(X)$, is the category of perverse sheaves on X with respect to the stratification Λ.

Proposition 6.8. This is indeed a t-structure, and $P_\Lambda(X)$ is an abelian category.

To prove this, we need to use something about geometry.

Theorem 6.9 (Recollement). Let $i: Z \hookrightarrow X$ be a closed embedding, where X is quasiprojective, $U := X \setminus Z$, and $j: U \hookrightarrow Z$. Then,

(1) $j^*i_* = 0$, $i^*j_! = 0$, and $i^!j_\star = 0$, so $\text{Hom}(j_1A, i_1B) = 0$ and $\text{Hom}(i_*A, j_*B) = 0$.

(2) For any $A \in D^b(X)$, the adjunction maps define distinguished triangles

\[
\begin{align*}
j_!j^!A &\xrightarrow{j_!j^!} A \xrightarrow{i_!i^*A} i_*i^!A \\
&\xrightarrow{id} \xrightarrow{j_*j^*A}.
\end{align*}
\]

(3) $i_* = i_!$, and $j_! = j^*$ is fully faithful, so there are natural isomorphisms $i_*i_\star = \text{id} \Rightarrow i_!i^!$ and $j_*j_\star \Rightarrow \text{id} \Rightarrow j_!j^!$.

Theorem 6.10 (Beilinson-Bernstein-Drinfeld). Assume the setup of the previous theorem\footnote{The proof is categorical, so you could forget about the varieties and assume only that you have triangulated categories satisfying the consequences of that theorem.} and let (D^\leq_Z, D^\geq_Z) and (D^\leq_U, D^\geq_U) be t-structures on $D^b(Z)$ and $D^b(U)$ respectively. Then, the full subcategories

\[
\begin{align*}
D^\leq &:= \{ X \mid i^*X \in D^\leq_Z \text{ and } j^*X \in D^\leq_U \} \\
D^\geq &:= \{ X \mid i^*X \in D^\geq_Z \text{ and } j^*X \in D^\geq_U \}
\end{align*}
\]

defines a t-structure on $D^b(X)$.

Proof if Proposition 6.8. Induct across the stratification Λ: if X_0 denotes the smallest nonempty stratum, then $X_0 \hookrightarrow X$ is closed, so we’re in the situation of Theorems 6.9 and 6.10. The perverse t-structure on X is a t-structure if the t-structure $(^pD^\leq_0, ^pD^\geq_0)$ on X_0 is and if the perverse t-structure on $X \setminus X_0$ is, so it suffices by induction to think about X_0, and we already proved this is a t-structure on X_0 in Lemma 6.6. \hfill \square

To eliminate the dependence on the stratification, we do the same thing we did for Čech cohomology: a refinement Λ' of Λ defines a fully faithful embedding $P_\Lambda(X) \hookrightarrow P_{\Lambda'}(X)$, and taking the colimit across all of these embeddings, we obtain the category of perverse sheaves $P(X)$. (So a perverse sheaf is a perverse sheaf with respect to some stratification, and two perverse sheaves are isomorphic if they agree on some common refinement.)
6.3. Nonetheless, perverse sheaves have nice properties.

Theorem 6.11. \mathcal{D} exchanges $pD^{\leq 0}$ and $pD^{\geq 0}$, so \mathcal{D} preserves the heart and therefore is an involution on $\mathcal{P}(X)$.

Proposition 6.12. A complex \mathcal{F} is a perverse sheaf iff for all i,

1. $\dim \text{supp} \mathcal{H}^i(\mathcal{F}) \leq i$, and
2. $\dim \text{supp} \mathcal{H}^i(\mathcal{D}(\mathcal{F})) \leq -i$.

Proposition 6.13. $\mathcal{P}(X)$ is Noetherian and Artinian, meaning ascending and descending chains of objects in it stabilize.

This is not true for constructible sheaves, which are Noetherian but not Artinian.

Proposition 6.14. Let $Y \subset X$ be a smooth, locally closed subvariety and $\mathcal{L} \in \text{Loc}(Y)$, and let $d_Y := \dim(Y)$. Then, there is a perverse sheaf $IC(Y, \mathcal{L}) \in \mathcal{P}(X)$ such that the following are true, and it is unique up to unique isomorphism.

1. If $i < -d_Y$, $\mathcal{H}^i(IC(Y, \mathcal{L})) = 0$.
2. $\mathcal{H}^{-d}(IC(Y, \mathcal{L}))_Y \cong \mathcal{L}$.
3. The inequalities in Proposition 6.12 for $IC(Y, \mathcal{L})$ are strict.

This perverse sheaf is called the intersection cohomology complex. Here are a few more nice properties.

Proposition 6.15. Let Y and \mathcal{L} be as above, and $j: Y \hookrightarrow X$ be the embedding.

1. $\mathcal{H}^i(IC(Y, \mathcal{L})) = 0$ unless $i \in [-d_Y, 0]$,
2. $\mathcal{H}^{-d}(IC(Y, \mathcal{L})) \cong \mathcal{H}^0(j_\ast \mathcal{L})$, and
3. $IC(Y, \mathcal{L}^\ast) \cong IC(Y, \mathcal{L})^\vee$. (Here \ast denotes duality of local systems and \vee denotes Verdier duality).

Proposition 6.16. Let Y and \mathcal{L} be as above and $U \subset Y$ be an open subvariety. The intersection complex $IC(Y, \mathcal{L})$ is the minimal perverse sheaf extending its restriction U, where “minimal” means that it in $\mathcal{P}(X)$, it has no sub- or quotient object supported on $Y \setminus U$.

Theorem 6.17. The simple objects in $\mathcal{P}(X)$ are the intersection complexes $IC(Y, \mathcal{L})$, where

- $Y \hookrightarrow X$ is a smooth, locally closed subvariety of X, and
- \mathcal{L} is an irreducible, locally constant sheaf on Y.

Corollary 6.18.

1. For any $k < 0$ and intersection complexes $IC(Y, \mathcal{L})$ and $IC(Y', \mathcal{L}')$, $\text{Ext}^k_{\mathcal{P}(X)}(IC(Y, \mathcal{L}), IC(Y', \mathcal{L}')) = 0$.
2. Suppose \mathcal{L} and \mathcal{L}' are irreducible and locally constant. Then, $\text{Hom}^{\mathcal{P}(X)}(IC(Y, \mathcal{L}), IC(Y', \mathcal{L}')) = \text{Hom}^{\mathcal{P}(X)}(IC(Y, \mathcal{L}), IC(Y', \mathcal{L}')) = 0$.

Proposition 6.19 (Perverse continuation principle). Let $U \subset X$ be a smooth, Zariski-open subset. Then, any map $a: \mathcal{L} \to \mathcal{L}'$ of local systems on U uniquely extends to a map $IC(a): IC(X, \mathcal{L}) \to IC(X, \mathcal{L}')$, and the map $IC: \text{Hom}_{\mathcal{L}_{\text{qc}}(U)}(\mathcal{L}, \mathcal{L}') \to \text{Hom}_{\mathcal{P}(X)}(IC(X, \mathcal{L}), IC(X, \mathcal{L}'))$ is an isomorphism.

Theorem 6.20 (Perverse Artin vanishing). Let P be a perverse sheaf on an affine variety X.

- $\mathcal{H}^i(P) = 0$ if $i \notin [-\dim X, 0]$.
- $\mathcal{H}^i_c(P) = 0$ if $i \notin [0, \dim X]$.

Partial proof. We’ll use the Grothendieck composition-of-functors spectral sequence $E_2^{p,q} = H^p(X, \mathcal{H}^q(P)) \implies H^{p+q}(P)$.

We know $\dim \text{supp} \mathcal{H}^0(P) \leq -i$, and $\mathcal{Y}_q := \supp \mathcal{H}^0(P)$ is a closed affine subvariety. Using Artin vanishing for constructible sheaves, $H^p(\mathcal{Y}_q, \mathcal{H}^q(P)) = 0$ when $p > -q \geq \dim \mathcal{Y}_q$, so if $p + q > 0$, $E_2^{p,q}$ vanishes, and therefore the E_{∞}-page must also vanish there, providing the upper bound.

The rest of the proof uses Verdier duality... somehow. \square
Corollary 6.21 (Perverse Lefschetz hyperplane theorem). Let X be a quasiprojective variety, $P \in \mathbb{P}(X)$, and $X_1 \subseteq X$ be a generic hyperplane section. The map $H^i(X; P) \to H^i(X_1; P|_{X_1})$ is

- an isomorphism if $i \leq -2$, and
- injective for $i = -1$.

There’s a similar statement for cohomology with compact supports.

Proof when X is projective. Let $U := X \setminus X_1$, $i : X_1 \hookrightarrow X$ be inclusion, and $j : U \hookrightarrow X$ be inclusion. The distinguished triangle $j_*j^*P \to P \to i_*i^*P \to (\text{from Theorem } 6.9)$ induces a long exact sequence in cohomology (not cohomology sheaves):

\[\cdots \to H^k(X; j^*P) \to H^k(X; P) \to H^k(X_1; P|_{X_1}) \to H^{k+1}(X; j^*j^*P) \to \cdots \]

Now, it suffices to show that when $k < 0$,

\[H^k(X, j^*j^*P) = H^k(X, j^*j^*P) \cong H^k(U; j^*P) = 0, \]

and since U is affine, this is Theorem 6.20 (The equivalence of H and H_c on X is what used the assumption of projectivity.)

7. Neutral Tannakian categories: 10/13/17

"This is going to be a great talk for bingo."

Today, most of the time will be devoted to the proof of the following theorem (all terms will be explained). All vector spaces are finite-dimensional, and Vect_k denotes the category of finite-dimensional k-vector spaces.

Theorem 7.1. Let (C, \otimes) be a rigid, abelian, C-linear tensor category such that $\text{End}(1) = \mathbb{C}$ together with an exact, faithful, linear tensor functor $\omega : C \to \text{Vect}_C$. Then, there is a group G such that $C \cong \text{Rep}_C(G)$, and $G \cong \text{Aut}_C(\omega)^{[23]}$

That was a lot of adjectives! It’s a cool-sounding theorem, but the number of hypotheses limits its utility. Fortunately, the category of perverse sheaves on the affine Grassmannian will satisfy the hypotheses.

The idea of the proof is the Barr-Beck theorem. Let G be a finite group and $\omega : \text{Rep}_C(G) \to \text{Vect}_C$ be the forgetful functor. Then, we have an adjunction $\text{Ind}_e^G \dashv \text{Res}_e^G = \omega$, so

\[\text{Hom}_{\text{Rep}_C}(\text{Ind}_e^G, \text{Ind}^G V) \cong \text{Hom}_{\text{Vect}_C}(V, \text{Res}_e^G \text{Ind}_e^G V), \]

and $\text{Res}_e^G \text{Ind}_e^G V \cong G \times V$. This means $\text{Rep}_C(G)$ is (equivalent to) the category of algebras in Vect_C over the monad $V \to G \times V$.

We don’t have induction or restriction in C, but we will attack Theorem 7.1 by realizing it as a category of algebras over a monad.

Glossary 7.2. Let’s define all of the words in the statement of Theorem 7.1.

- By a tensor category we mean a symmetric monoidal category. This is the data of a functor $\otimes : C \times C \to C$ and a unit 1 along with data of natural transformations guaranteeing its associativity $((A \otimes B) \otimes C \cong A \otimes (B \otimes C))$, commutativity $A \otimes B \cong B \otimes A$, and identity $1 \otimes A \cong A$, together with some coherence conditions. But the point is, \otimes behaves like a commutative tensor product should.
- Rigidity is what will get us a group and not a monoid in the end; it is the condition that all objects are dualizable. This implies that if $V^* := \text{Hom}_C(V, 1)$, there’s a natural isomorphism $(-)^{**} \to \text{id}_C$ (so every object is reflexive), along with a natural isomorphism $\text{Hom}_C(A, B \otimes C) \cong \text{Hom}_C(A \otimes A', B \otimes B')$.

From this it follows that there is an internal Hom.

22 This means: X is a locally closed subset of some \mathbb{P}^N; choose a generic hyperplane $H \subset \mathbb{P}^N$ and let $X_1 := H \cap X$.

23 This theorem is true for any field k in place of \mathbb{C}, but nice applications require a characteristic 0 field.

24 Some people use “tensor category” to mean just a monoidal category, so be careful!

25 The fact that this is data is important: there are multiple ways to put a symmetric structure on the tensor product of graded vector spaces, depending on whether one wants a trivial sign rule or the Koszul sign rule.
- Tensorial is data of a natural isomorphism $\omega(X \otimes Y) \cong \omega(X) \otimes \omega(Y)$, just like how the underlying vector space of the tensor product of two representations is the tensor product of their underlying vector spaces (up to natural isomorphism). We assume all tensor functors are \mathbb{C}-linear.

One can prove that for abelian symmetric monoidal categories, the tensor functor is multilinear (i.e. distributes over finite direct sums), which is a nice fact to have.

The requirement that ω is faithful is also a huge assumption: it means maps of objects in \mathcal{C} are particular maps of underlying vector spaces (as is true for representations).

Definition 7.3. Let $F,G: (\mathcal{C}, \otimes) \to (\mathcal{C}', \otimes)$ be tensorial functors of tensor categories. A natural transformation $(\lambda, c): F \Rightarrow G$ is tensorial is $\lambda: F \Rightarrow G$ is a natural transformation and $c: \lambda_{A \otimes B} \to \lambda_A \otimes \lambda_B$ is a natural isomorphism.

We’ll write $\text{Hom}^\otimes(F,G)$ for the set of tensorial natural transformations.

The end goal is to get an algebraic group G out of \mathcal{C}, so how will that work? Well, let \mathcal{C} be a tensor category and $F,G: \mathcal{C} \to \text{ Vect}_\mathbb{C}$ be tensor functors. Then, for any \mathbb{C}-algebra R, we can define

$$\text{Hom}^\otimes(F,G)(R) := \text{Hom}^\otimes(R \otimes F(-), R \otimes G(-)).$$

This takes commutative algebras and gives you sets. Thus, $\text{Aut}(\omega)$ can be applied to any \mathbb{C}-algebra R, so if we can show it’s representable, we get a group scheme, not just a group.

Remark. One general perspective on this is that if \mathcal{C} is a k-linear category and R is a k-algebra, there’s an R-linear category $\mathcal{C} \otimes_k R$, e.g. if $\mathcal{C} = \text{ Rep}_k(G)$, then $\mathcal{C} \otimes_k R = \text{ Rep}_R(G)$.

The way to do this is to let the objects in $\mathcal{C} \otimes_k R$ be the same as those in \mathcal{C} and $\text{Hom}(M,N) := R \otimes \text{ Hom}_\mathcal{C}(M,N)$.

Unfortunately, this is not an abelian category, as it doesn’t have kernels and cokernels. Thus, the actual tensor product $\mathcal{C} \otimes_k R$ is the saturation of this naïve tensor product (add in the missing kernels and cokernels). This is called the Deligne tensor product.

There’s a version of Theorem 7.1 for finite groups, rather than group schemes; in this case, you don’t assume that \mathcal{C} is k-linear (hence can’t make this representability). The proof is also much easier, because restriction in $\mathcal{R}ep_G$ (where G is finite) is both a left and a right adjoint. This means the monad we discussed above is also a comonad, so everything is an algebra over it!

Remark. Let A be a finite-dimensional algebra and V be a vector space. Then, there’s a canonical bijection between the set of A-module structures on V and A^\vee-comodule structures on V: A^\vee has a canonical coalgebra structure (since multiplication on A is turned around).

All right, here comes the hard part.

Let $\text{ Vect}_\mathbb{C}^s$ be the full subcategory of $\text{ Vect}_\mathbb{C}$ on the objects \mathbb{C}^n for each $n \geq 0$. The inclusion $\text{ Vect}_\mathbb{C}^s \hookrightarrow \text{ Vect}_\mathbb{C}$ is an equivalence, so it has an inverse $c: \text{ Vect}_\mathbb{C} \to \text{ Vect}_\mathbb{C}^s$ (up to natural isomorphism).

Definition 7.4. Define the functor $\otimes: \text{ Vect}_\mathbb{C} \times \mathcal{C} \to \mathcal{C}$ as follows: if $V = \mathbb{C}^n$, then

$$V \otimes X := \prod_n X = \prod_n X = X^n.$$

For a more general V, let $V \otimes X := \gamma(V) \otimes X$.

This is expressing that any \mathbb{C}-linear category is tensored over $\text{ Vect}_\mathbb{C}$; the definition chooses a basis, then checks it’s independent of basis.

Definition 7.5. Using this, we can define $\text{Hom}(V,X) := V^\vee \otimes X$, cotensoring C over $\text{ Vect}_\mathbb{C}$.

Lemma 7.6. Let $F: \mathcal{C} \to \text{ Vect}_\mathbb{C}$ be a tensor functor and X be as above. Then, there’s a natural isomorphism $F(\text{ Hom}(V,X)) \cong \text{ Hom}_{\text{ Vect}_\mathbb{C}}(V,FX)$.

Definition 7.7. Let V, X be as above, $W \subset V$, and $Y \subset X$. The transporter of W to Y is

$$(Y:W) := \ker(\text{ Hom}(V,X) \to \text{ Hom}(W,X/Y)).$$

Lemma 7.8. The following two subobjects are equal.
The largest subobject \(P \subset \text{Hom}(\omega X, X) \) whose image in \(\text{Hom}(\omega X^n, X^n) \) is contained in \((Y : \omega Y) \) for all \(Y \subset X^n \).

(2) The smallest subobject \(P' \subset \text{Hom}(\omega X, X) \) such that \(\omega(P') \subset \text{Hom}(\omega X, \omega X) \) contains \(\text{id}_{\omega X} \).

The idea is that \(\text{Hom}(\omega X, X) \) is playing the role of \(\text{Hom}(\text{Ind Res} X, X) = \text{Hom}(\text{Res} X, \text{Res} X) \), and this is \(G \times X \), so we’re constructing something akin to the projection map \(G \times X \to X \). \(P = P' \) will be identified with the regular representation in the Tannakian theorem.

Proof. First, why do \(P \) and \(P' \) exist? If \(\omega(X) = 0 \), then \(\text{End}(X) = 0 \) and hence \(X = 0 \). Thus for all \(Y \subset X \), if \(\omega(Y) = \omega(X) \), then \(Y = X \). Thus all objects are both Noetherian and Artinian, which implies \(P \) and \(P' \) exist.

In fact, we can explicitly identify
\[
P = \bigcap_{n, Y \subset X^n} (\text{Hom}(\omega X, X) \cap (Y : \omega Y)),
\]
which under \(\omega \) maps to
\[
\omega P = \bigcap_{n, Y} (\text{Hom}(\omega X, \omega X) \cap (\omega Y : \omega Y)).
\]

This means \(\omega(P) \) is the largest subring of \(\text{End}(\omega X) \) stabilizing \(\omega Y \) for all \(Y \subset X^n \). In particular, \(\text{id}_{\omega X} \) is a stabilizer, so \(P \supseteq P' \).

Now, let \(V \in \text{Vect}_{\mathbb{C}} \); there’s a natural map \(\text{Hom}(\omega X, X) \to \text{Hom}(\omega(V \otimes X), V \otimes X) \), which under \(\omega \) is sent to the map \(f \mapsto \text{id}_V \otimes f \), a map \(\text{Hom}(\omega X, \omega X) \to \text{Hom}(\omega(V \otimes X), \omega(V \otimes X)) \).

By definition, \(\omega P \subset \text{End}(\omega X) \) stabilizes \(\omega Y \) for all \(y \in V \otimes X \), so
\[
P' \subset \text{Hom}(\omega X, X) = (\omega X)^V \otimes V.
\]

Since \(\omega P \) preserves \(\omega P' \) and \(\text{id}_{\omega X} \in \omega P' \), then we get \(\omega P \subseteq \omega P' \), hence \(P \subseteq P' \).

All right. Let \(A := \omega P \) and \(\langle X \rangle \) denote the full subcategory of \(\mathbb{C} \) on the objects \(Y \subset X^n \). Then, \(\langle X \rangle \cong \text{Mod}_A \); this is because \(A \subset \text{Hom}(\omega X, \omega X) \) preserves all \(\omega Y \), so we get a map \(A \to \text{End}(\omega Y) \) for each \(Y \in \langle X \rangle \). Another way to think of this is that the forgetful functor factors through \(\text{Mod}_A \).

Definition 7.9. Let \(M \in \text{Mod}_A \), and define
\[
P \otimes_A M := \text{coker}(P \otimes A \otimes M \xrightarrow{P} P \otimes M).
\]

Since \(\omega \) is exact,
\[
\omega(P \otimes_A M) = (\omega P) \otimes_A M = A \otimes_A M \cong M.
\]

One can then show this is full, and it’s essentially surjective and by assumption faithful, so it’s an equivalence of categories.

Suppose \(X' = X \oplus Z \) inside \(\mathbb{C} \), \(A \) be what we defined above for \(X \), and \(A' \) be that for \(X' \). Then, there’s a restriction map \(A' \to A \). This allows us to make sense of the fact that \(\lim \text{End}(\omega|_{\langle X' \rangle}) = \text{End}(\omega) \), and if \(A = \lim_X \text{End}(\omega|_{\langle X \rangle}) \), \(\mathbb{C} \cong \text{Mod}_A \).

8. The perverse decomposition theorem: 10/20/17

Today, Yan spoke about the decomposition theorem: first the classical case for a smooth map of smooth projective varieties, then the version for perverse sheaves, where neither the varieties nor the morphism need to be smooth. Then, we’ll specialize to the case of semismall maps.

Let \(f : X \to Y \) be a smooth map of smooth projective manifolds in the sense of algebraic geometry — in complex geometry, this means \(f \) is a smooth submersion. Let \(\underline{Q}_X \) denote the constant sheaf valued in \(\mathbb{Q} \) on \(X \). We’re going to consider the direct image complex \(RF^i\underline{Q}_X \); since \(f \) is a locally trivial fibration (in the sense of differential geometry), it’s proper, and hence this is locally the derived direct image along the map \(f^{-1}(t) \to t \), i.e. cohomology! That is, for \(t \in Y \),
\[
(R^n f_!\underline{Q}_X)_t \cong H^n(f^{-1}(t); \mathbb{Q}).
\]

As \(i \) varies, we’d like this to behave well in the derived category.

\[\text{TODO: I'm not sure what happened here.}\]
Theorem 8.1 (Decomposition theorem (Deligne)). There is a quasi-isomorphism

\[Rf_* \mathbb{Q}_X \cong \bigoplus_{i \geq 0} Rf^i \mathbb{Q}_X [-i]. \]

From this, one can conclude

\[\mathcal{H}^i(X; \mathbb{Q}_X) = \mathbb{H}^i(Y; Rf_* \mathbb{Q}_X) \cong \mathbb{H}^i\left(Y; \bigoplus R^q f_* \mathbb{Q}_X[-q]\right) \cong \bigoplus_{q \geq 0} \mathcal{H}^{i-q}(Y, R^q f_* \mathbb{Q}_X). \]

Example 8.2. This is something special to algebraic geometry of smooth, projective varieties (it’s a case of the Hodge theorem): consider the Hopf fibration \(\pi: S^3 \to S^2 \). Then, \(R\pi_* \mathbb{Q}_{S^3} \) lives in the derived category of local systems. The heart of this category is the category of local systems on \(S^2 \) (which is just \(\text{Vect} \), because \(S^2 \) is simply connected). The cohomology of the fiber \(S^1 \) is \(\mathbb{Q} \oplus \mathbb{Q}[-1] \), and the hypercohomology \(\mathbb{H}(\cdot) = \text{Ext}(\mathbb{Q}, \cdot) \), so \(\text{Ext}(\mathbb{Q}, \mathbb{Q}) \cong \text{Ext}(\mathbb{Q}, \mathbb{Q}) = H^2(S^2; \mathbb{Q}) \), so the \(i \)th cohomology of the fiber is not the same as \(R^i \mathbb{Q}_{S^3} \).

Deligne proved Theorem 8.1 by calculating that the Leray-Serre spectral sequence

\[E^2_{p,q} = \mathcal{H}^p(Y; R^q f_* \mathbb{Q}_X) \implies \mathcal{H}^{p+q}(X; \mathbb{Q}_X) \]

collapses at the \(E_2 \)-page. This implies

\[\mathcal{H}^k(X; \mathbb{Q}_X) \to E^0_{0,k} = E^1_{0,k} = \Gamma(Y, R^k f_* \mathbb{Q}_X). \]

There is a monodromy action of \(\pi_1(Y) \) on the right-hand group, and one can look at its invariants.

The non-smooth case. Now, we lose the smoothness assumptions on \(X, Y, \) and \(f \), though we still need to assume it’s proper. Now we need to use perverse cohomology \(\mathcal{H}^i \) and the direct image of the intersection complex \(Rf_* \mathcal{IC}_X \).

Theorem 8.3 (Perverse decomposition theorem). There is a quasi-isomorphism

\[Rf_* \mathcal{IC}_X \cong \bigoplus_{i \geq 0} \mathcal{H}^i(Rf_* \mathcal{IC}_X)[-i]. \]

Here, the perverse cohomology of \(Rf_* \mathcal{IC}_X \) is

\[\mathcal{H}^i(Rf_* \mathcal{IC}_X) = \bigoplus_{\beta} IC_{\mathcal{S}_\beta}(L_\beta), \]

where \(Y = \coprod S_\beta \) is a stratification into closed, smooth, irreducible subvarieties and \(L_\beta \) is a local system on \(S_\beta \).

Remark. If \(X \) is any algebraic space and \(X_0 \subset X \) is a smooth subset, then \(\mathcal{IC}_X|_{X_0} \cong \mathbb{Q}_{X_0}[\dim X_0] \).

Recall that the intersection cohomology \(IC_X \) was defined in Propositions 6.12 and 6.14. We can also provide a generalization of Corollary 6.21 to the relative setting.

Theorem 8.4 ("Harder Lefschetz theorem"). Let \(f: X \to Y \) be a projective morphism, meaning there’s an embedding \(X \hookrightarrow Y \times \mathbb{P}^n \); let \(\pi: Y \times \mathbb{P}^n \to \mathbb{P}^n \) be projection and \(\eta := c_1(\pi^* L|_X) \). Then, the map

\[\eta^*: \mathbb{H}^{-i}(Rf_* \mathcal{IC}_X) \to \mathbb{H}^i(Rf_* \mathcal{IC}_X) \]

is an isomorphism.

This is an extremely deep theorem even in the case \(Y = \text{pt} \) and \(X \) is smooth, where it's one of the stronger consequences of the Hodge theorem for algebraic varieties. In the complex analytic setting, \(\eta \) is the Kähler class, and induces an \(\text{SL}_2 \)-action on cohomology.
Example 8.5. Let \(f : X \to \mathbb{P}^2 \) be the blowup of \(\mathbb{P}^2 \) at a point \(x \). \(^{27}\) Then, \(IC_X \cong \mathbb{Q}_X[2] \), so

\[
R^i f_* \mathbb{Q}_X[2] = \begin{cases}
\mathbb{Q}_{Y}, & i = -2 \\
\mathbb{Q}_{\{x\}}, & i = 0 \\
0, & \text{otherwise.}
\end{cases}
\]

Since \(f \) is proper, \(f_* = f_! \), so

\[
\]

The theorem calculates this decomposition to be something geometrically meaningful; this is an example of a semismall map, and semismall maps will display similar behavior in general.

Semismall maps. The definition of a semismall map is a little strange, but lots of examples in representation theory are semismall, and the decomposition theorem has a very nice form in this case, so the definition is worth considering.

Definition 8.6. A map \(f : X \to Y \) is semismall if \(\dim X \times_Y X = \dim X \).

In general, \(X \times Y \) is reducible, and its irreducible components can have dimensions at least as large as \(\dim X \). So this is saying that all components of \(X \times_Y X \) have the same dimension, which is the minimum possible.

Another equivalence goes through Chevalley’s theorem.

Theorem 8.7 (Chevalley). For any \(k \), \(\{ y \in Y \mid \dim f^{-1}(y) \geq k \} \) is a closed subvariety of \(Y \).

Proposition 8.8. Let \(f : X \to Y \) be a map and \(S_k := \{ y \in Y \mid \dim f^{-1}(y) = k \} \), which defines a stratification of \(Y \). Then, \(f \) is semismall iff for all \(k \),

\[
\dim S_k + 2k \leq \dim X.
\]

The intuition is that the fibers of \(f \) can’t be too fat: if you have something of very high codimension, you’re not doing much to it.

Example 8.9. Let \(f : X \to \mathbb{C}^n \) be the blowup of \(\mathbb{C}^m \subset \mathbb{C}^n \). Then, \(f \) is semismall iff \(n - m \leq 2 \). \(^{27}\)

Example 8.10. The Springer resolution for \(\text{SL}_2 \) is the map \(T^* \mathbb{P}^1 \cong \mathcal{O}(-2) \to \mathbb{P}^1 \), which is another example of a semismall map. Here, \(X \times_Y X \) has two irreducible components, and is called the Steinberg variety \(\text{St}_{\text{SL}_2} \) of \(\text{SL}_2 \).

The reason semismall maps become relevant to the decomposition theorem is that if \(X \) is smooth and \(f \) is semismall, \(Rf_* \mathbb{Q}_X[\dim X] \) is perverse.

Fix a stratification \(Y = \coprod_{\alpha \in \mathcal{A}} S_\alpha \).

Definition 8.11. A stratum \(S_\alpha \) is relevant if there’s a \(k_\alpha \) such that \(\dim S_\alpha + 2k_\alpha = \dim X \). The set of relevant strata is denoted \(\mathcal{A}_{rel} \).

In this case, the result from the decomposition theorem simplifies: we only care about relevant strata, and understand their local systems well.

\[
Rf_* IC_X \cong \bigoplus_{\alpha \in \mathcal{A}_{rel}} IC_{S_\alpha}(L_\alpha),
\]

where \(L_\alpha|_{S_\alpha} \) is TODO (I didn’t write it down in time – possibly \(Rf_* \mathbb{Q}_{S_\alpha}[\dim S_\alpha]? \)).

This has a nice consequence that behaves like Schur’s lemma and Wedderburn’s theorem: when \(f \) is semismall, \(\text{End}_{\mathcal{Y}}(Rf_* \mathbb{Q}_X[\dim X]) \) is a semisimple algebra, and there’s a decomposition of \(L_\alpha \) indexed by the irreducible representations of \(\pi_1(S_\alpha) \).

The decomposition theorem is one of the deepest theorems in geometry — for a long time, the only proof known required characteristic \(p \) methods. Then, there was a characteristic 0 proof, and it was crazy. But recently, only 40 years after the first proof, there’s a less intense characteristic 0 proof.

One perspective on this is that interesting sheaves arise as summands of pushforwards of constant sheaves by proper maps; such a sheaf arising in this way is said to be of geometric origin. Certainly, this is how we think of local systems.

\(^{27}\)As a manifold, \(X \cong \mathbb{C}P^2 \# \overline{\mathbb{C}P}^2 \).
We’d like all sheaves to arise in this way, but the decomposition theorem is a no-go theorem in this regard: it says that any sheaf of geometric origin is semisimple. Certainly, there are lots of non-semisimple sheaves, so we’re far from seeing everything.

A more optimistic way of looking at the theorem is that for a pushforward along a proper map, there are very few options for what the pushforward can be, so you can often just check on some stalks.

Example 8.12 (Springer resolution). Let \(N := \{ x \in \mathfrak{sl}_2 \mid \det x = 0 \} \) (the nilpotent cone). Let \(B \) be a Borel subgroup of \(\text{SL}_2 \), e.g. the upper triangular matrices. Then, \(\text{SL}_2/B \cong \mathbb{P}^1 \). The Springer resolution is \(f: T^*\mathbb{P}^1 \to \mathbb{P}^1 \) (understood in this representation-theoretic sense).

Say you want to understand the Springer sheaf \(S := f_*\mathbb{Q}[-2] \). The decomposition theorem makes this much easier: you check on a few stalks and can show that \(f_*\mathbb{Q}[-2] \cong IC_N \oplus IC_{\{0\}} \).

The decomposition theorem also says the endomorphism algebra is semisimple; in this case, we get \(\text{End}(S) \cong \mathbb{Q}[\mathbb{Z}/2] \), which certainly is semisimple.

More generally, if \(G \) is a reductive group and \(B \) is a Borel subgroup, let \(N \subset \mathfrak{g}^* \) be the cone of nilpotent matrices (the preimage of 0 under some characteristic polynomial map). The Springer resolution is a map \(T^*G/B \to N \): \(T^*G/B \) can be identified with the pairs \((B', x) \) where \(B' \) is a Borel subgroup and \(x \in N \), and the resolution just forgets the Borel. In symplectic geometry, this is a moment map.

This is the setting for one of the earliest applications of the decomposition theorem: the Springer sheaf is \(S := \pi_*\mathbb{Q}[\dim T^*G/B] \), and \(\text{End}(S) \cong \mathbb{Q}[W] \), where \(W \) is the Weyl group of \(G \).

This implies in particular that
\[
S \cong \bigoplus_{\text{irr } W} IC_{S_{\rho}}(\mathbb{C}) \otimes V_{\rho},
\]
for some vector spaces \(V_{\rho} \) (providing the right dimension) and strata \(S_{\rho} \). One cool consequence of this is that the irreducible representations of \(W \) are realized in the cohomology of fibers of the Springer resolution.

For \(\text{SL}_n \), \(N \) is a disjoint union over the set of partitions \(P \) of \(n \) elements of a simply connected orbit \(O_P \). The Weyl group is \(S_n \), and the irreducible representations \(V_P \) of \(S_n \) are also indexed over the partitions \(P \) of \(n \) elements. This is not a coincidence: \(\text{Hom}(IC(O_P), S) \cong V_P \).

This really depends on the fact that we’re in characteristic 0, ultimately because we need representations of \(W \) to be semisimple.\(^{28}\)

9. Tannakian categories: friend or foe?: 10/27/17

Today, Yuri spoke about Tannakian categories through examples.

Geometric Satake says that if \(G \) is a reductive group, the category of \(G(\mathcal{O}_K) \)-equivariant perverse sheaves on the affine Grassmannian \(G(K)/G(\mathcal{O}_K) \) is equivalent to the category of representations of \(G^\vee \), the Langlands dual of \(G \). This dual is generally defined in a different way, but this is the “why” of the definition. We’ll start by showing that category is a Tannakian category, hence equivalent to the category of representations of some group, and then we’ll pin down which group it is.

Example 9.1. Let \(G = \mathbb{G}_m \) (also known as \(\text{GL}_1 \)). Then, \(\text{Rep}(\mathbb{G}_m) \cong \text{GrVect} \), the category of graded finite-dimensional vector spaces, and the Langlands dual of \(\mathbb{G}_m \) is \(\mathbb{G}_m \).

The fiber functor \(\omega: \text{GrVect} \to \text{Vec}^{29}\) sends
\[
V_\bullet \mapsto \bigoplus_n V_n.
\]

We want to understand \(\text{Aut}(\omega) \), which is determined by what happens to \(R[n] \) for all \(\mathbb{C} \)-algebras \(R \), where \(R[n] = (R[1])^{\otimes n} \), so \(\text{Aut}_R(\omega) = R^\times \). Hence \(\text{Aut}(\omega) = \mathbb{G}_m \); \(\lambda \in \mathbb{G}_m \) acts on \(v \in V_n \) by \(\lambda^n \).\(^{28}\)

More generally, a map \(G \to G' \) defines an induction functor \(\text{Rep}(G') \to \text{Rep}(G) \). Thus, any cocharacter \(\chi: \mathbb{G}_m \to G \) defines a functor \(\text{Rep}(G) \to \text{Rep}(\mathbb{G}_m) \cong \text{GrVect} \), hence a way of assigning gradings to \(G \)-representations.

\(^{28}\)We can work in positive, but non-modular characteristic for \(W \), which is fine. In modular characteristic, we replace \(IC \) sheaves with something called parity sheaves.

\(^{29}\)Here and for all of today’s talk, \(\text{Vec} \) denotes the category of finite-dimensional vector spaces.
Example 9.2 (Hodge structures). Recall that a Hodge structure is a vector space over \mathbb{R} together with a decomposition

$$V \otimes_{\mathbb{R}} \mathbb{C} = \bigoplus V^{p,q},$$

where $V^{p,q}$ are \mathbb{C}-subspaces, such that $V^{p,q} = V^{q,p}$. Hodge structures will form a Tannakian category.

To make this happen, we need to describe the fiber functor ω, which is the forgetful functor $\text{HS}_{\mathbb{R}} \to \text{Vect}_{\mathbb{R}}$ sending $(V, (V^{p,q})) \mapsto V$. To understand its automorphisms, it suffices to look at position (p, q), and the condition that $V^{p,q} = V^{q,p}$ forces (somehow?) the action of a $\lambda \in \mathbb{C}^\times$ on $v \in V^{p,q}$ to be

$$v \mapsto \lambda^{-p} \overline{V}^q v.$$

The automorphism group is the restriction $\text{Res}_{\mathbb{C}/\mathbb{R}} \mathbb{G}_m$, which is sometimes denoted S. Its functor of points sends an \mathbb{R}-algebra A to $(A \otimes_{\mathbb{R}} \mathbb{C})^\times$, e.g. $S(\mathbb{R}) \cong \mathbb{C}^\times$ and $S(\mathbb{C}) \cong \mathbb{C}^\times \times \mathbb{C}^\times$. This is a real reductive group.

The functor $\text{HS} \to \text{GrVect}$ sending

$$(V^{p,q})_{p,q} \mapsto \left(V_n := \bigoplus_{p+q=n} V^{p,q} \right)$$

is induction across the map $\mathbb{G}_m(\mathbb{R}) \to S(\mathbb{R})$ sending $t \mapsto t^{-1}$.

Our next example is a little weirder.

Example 9.3. Let Γ be a topological group and k a field. Then, the category of continuous representations $\text{Rep}_k(G)$ is a neutral Tannakian category, hence isomorphic to the category of k-representations of an algebraic group Γ^{al}, called the algebraic envelope or algebraic hull of Γ.

This is usually large enough to be unwieldy, but sometimes will be nice (e.g. when Γ is the real form of a reductive complex Lie group).

If C is a neutral Tannakian category and $X \in C$, let $(X)_{\otimes}$ denote the smallest neutral Tannakian subcategory of C containing X, which is the category of subquotients of direct sums of terms of the form $X^{\otimes r} \otimes (X^r)^{\otimes s}$.

Example 9.4. Let $\rho: \Gamma G L(V)$ be a representation of an algebraic group, so $V \in \text{Rep}_G$, and the group of automorphisms of the fiber functor for $(V)_{\otimes}$ is isomorphic to the Zariski closure of $\text{Im}(\rho)$.

Example 9.5. Let X be a connected topological space. The category of local systems on X is equivalent to the category of representations $\pi_1(X) \to \text{Vect}$. Choose a basepoint $x \in X$; then, $\text{Loc}(X)$ is a neutral Tannakian category whose fiber functor is $\cal L \mapsto \cal L_x$.

Hence $\text{Loc}_X \cong \text{Rep}(\pi_1(X, x))$, and this is also equivalent to the category of representations of the group scheme $\pi_1(X, x)^{\text{al}}$. For any local system $\cal L$, $\pi_1^{\text{Tan}}((\cal L)_{\otimes})$ is isomorphic to the Zariski closure of the monodromy representation $\pi_1(X, x) \to G L(\cal L_x)$.

The next examples might not literally be the Tannakian reconstruction theorem, but embody its spirit, and will be interesting and useful in that way.

If you like stacks, you might think of $\text{Rep}(G)$ as the category of quasicoherent sheaves on the stack \bullet / G. Jacob Lurie ran with this approach to define Tannaka duality for geometric stacks. A stack is affine if the diagonal $\Delta: X \to X \times X$ is representable and affine. Lurie uses this to produce a GAGA-like theorem, and the proof uses Tannakian methods.

Given a tensor category C, define $\text{Spec }C: \text{Ring} \to \text{Grpd}$ to send $R \mapsto \text{Hom}^\otimes(C, \text{Mod}_R)$.

Theorem 9.6 (Tannaka duality for geometric stacks (Lurie)). For reasonable X (quasicompact with affine diagonal), $X = \text{Spec } \text{QCoh}(X)$.

30Except over \mathbb{Q}, or a \mathbb{Z}-module, etc.
31If X is not connected, $\text{Loc}(X) \cong \text{Rep}(\pi_{<1}(X))$, the representations of the fundamental groupoid, but one has to choose a basepoint anyways to define a fiber functor.
32There are a few other, minor conditions.
So knowing how quasicoherent sheaves map to conventional module categories determines \(X \) completely.

This ties to noncommutative geometry! There are many approaches, but one says that you care about a scheme (or stack) through its stable \(\infty \)-category of complexes in quasicoherent sheaves. This motivates the following, somewhat curious, definition.

Definition 9.7. A **noncommutative scheme** is a stable \(\infty \)-category.

Then, one can consider “noncommutative motives,” a universal category that factors through maps to abelian categories (or various variants thereof).

Anyways, on to the crucial theorem. We’ll need it to see that the category of equivariant perverse sheaves on the affine Grassmannian produces a reductive group.

Theorem 9.8. Let \(G \) be a connected affine group scheme in characteristic 0. Then, \(\text{Rep}_k(G) \) is semisimple iff \(G \) is reductive.

The proof will be through a series of lemmas.

Lemma 9.9. We may assume \(k \) is algebraically closed, because \(\text{Rep}_k(G) \) is semisimple iff \(\text{Rep}_{\overline{k}}(G) \) is.

Proof. Let \(X \in \text{Rep}_k(G) \). Then, \(X \) is semisimple as a \(G \)-representation iff it’s semisimple as a \(g \)-representation iff it’s semisimple as a representation of the universal enveloping algebra \(\mathcal{U}(g) \). This is equivalent to \(X \otimes \overline{k} \) being semisimple over \(\mathcal{U}(G) \otimes \overline{k} = \mathcal{U}(G_{\overline{k}}) \).

Thus, if \(\text{Rep}_{\overline{k}}(G_{\overline{k}}) \) is semisimple, so is \(\text{Rep}_k(G) \). Conversely, consider an \(X \in \text{Rep}_{\overline{k}}(G_{\overline{k}}) \). If \(k'/k \) is finite, then \(X = \text{Ind}^{k}_{k'} X' \), and \(X = \text{Res}^{k}_{k'} X' \), and facts about induction and restriction suffice. \(\square \)

The following lemma sounds trivial, but is true because semisimple *a priori* means different things for Lie algebras and representations.

Lemma 9.10. If \(g \) is a semisimple Lie algebra, then every finite-dimensional representation of \(g \) is semisimple.

Lemma 9.11. Let \(N \triangleleft G \) be a closed normal subgroup. If \(\rho: G \to \text{GL}(V) \) is semisimple, then \(\rho|_N: N \to \text{GL}(V) \) is also semisimple.

Proof. It suffices to assume \(V \) is simple, and choose a nonzero simple \(N \)-submodule \(Y \). For all \(g \in G(k) \), \(gY \) is still simple over \(N \), so \(\sum_{g \in G(k)} gY \) is a nonzero, \(G \)-stable subspace of \(X \), hence must be \(X \). Thus, \(X \) is a sum of simple \(N \)-modules. \(\square \)

Proof of Theorem 9.8. First, we’ll assume \(G \) is reductive. Then, there’s a torus \(Z \) such that \(G = Z \cdot G' \) where \(G' \) is the derived subgroup, which is semisimple. Hence for any \(X \in \text{Rep}_k(G) \), as a \(Z \)-representation, \(X \) is a direct sum of \(G' \)-stable \(Z \)-subrepresentations \(X_i \). Since \(G' \) is semisimple, \(X \) is semisimple too.

The other direction will be more useful to us. Assume \(G \) is finite type over an algebraically closed field (using the lemmas, we can do this), and assume \(\text{Rep}(G) \) is semisimple; we will prove \(G \) is reductive.

Let \(V \) be a faithful representation of \(G \), and \(N \) be the unipotent radical. Then, \(V \) is semisimple as an \(N \)-module, by Lemma 9.11, so it’s a sum of simple \(N \)-modules \(V_i \). The Lie-Kolchin theorem says that solvable implies each \(V_i \) is one-dimensional.

Since \(N \) is unipotent, it has a fixed vector, and therefore \(V \) is a trivial \(N \)-representation. Since \(V \) is faithful, this implies \(N \) is trivial, so \(G \) is semisimple. \(\square \)

The Lie-Kolchin theorem is not a crazy proof-killer: it’s the general formulation of the fact that if you have a solvable group, you can write it as a group of upper triangular matrices. Hence a semisimple representation of such a group is necessarily one-dimensional.

Example 9.12 (Gabriel-Kuhn-Popescu). Let \(A \) be a cocomplete abelian category with a projective generator \(P \), so that \(A \cong \text{Mod}_{\text{End}}(P) \), and this equivalence comes as a pair of adjoint functors from \(\text{Mod}_{\text{End}}(P) \) and \(A \). If \(\{C_i\} \) is a generating set of \(A \) and \(R \) is the full subcategory generated by this set, then \(\text{Mod}_R = \text{Fun}(R, Ab) \), and you can get adjunctions between \(\text{Mod}_R \) and \(A \). This says that every (cocomplete, with a projective generator) abelian category \(A \) is a localization of a category of modules, which is nice. ✗
10. Convolution and the geometric Satake category: 11/3/17

Today, Richard spoke, defining the geometric Satake category and convolution on it; next week, we’ll see why it’s symmetric monoidal. The source is Richarz’ notes, §§1–2.2.

Recall that if G is a connected reductive group over a separably closed field k, we define $LG: R \mapsto G(R[[t]])$ and $L^+G: R \mapsto G(R[[t]])$ as functors on Alg_k; the affine Grassmannian is $\text{Gr}_G := LG/L^+G$.

We’d like to realize the affine Grassmannian, or at least its reduced points, as a limit of better-behaved things.

Definition 10.1. The i^{th} jet group G_i is the functor $G_i: \text{Alg}_k \to \text{Grp}$ sending $R \mapsto G(R[[t]]/(t^{n+1})$.

One can show that as sheaves on the fpqc site, $\lim_i G_i \simeq L^+G$. Moreover, the L^+G-action on Gr_G factors through G_i, and if \mathcal{O}_i denotes the orbit space of this action of G_i,

$$ (\text{Gr}_G)_{\text{red}} = \lim_i \mathcal{O}_i. $$

We also recall some facts about perverse sheaves: if $\ell \neq \text{char } k$ is a prime and T is a separable scheme of finite type over k, then within $D^b_c(T, \mathbb{Q}_\ell)$ we constructed the abelian category $\mathcal{P}(T)$ of ℓ-adic perverse sheaves.

What’s new is that if H is a connected, smooth, affine group scheme acting on T, this can be promoted into a category $\mathcal{P}_H(T)$ of H-equivariant perverse sheaves, where the morphisms respect the H-actions.

Definition 10.2. The **geometric Satake category** $\text{Sat}_G := \mathcal{P}_{L^+G}(\text{Gr}_G)$.

This is also $\lim_i \mathcal{P}_{L^+G}(\mathcal{O}_i)$.

Proposition 10.3. Sat_G is an abelian \mathbb{Q}_ℓ-linear category.

We’re going to define a convolution on it.

If $K \leq G$, the K-equivariant derived category $\text{D}_K(G/K)$ always has a convolution associated to the diagram

$$ G/K \times G/K \xrightarrow{\pi_1} G \times G/K \xrightarrow{q} G \times_K G/K \xrightarrow{m} G/K. $$

Recall that the external product $\boxtimes: D^b_c(X) \times D^b_c(Y) \to D^b_c(X \times Y)$ sends

$$ \boxtimes: K, M \mapsto (\pi_X^* K) \otimes^L (\pi_Y^* L), $$

where π_X, π_Y are the projections out of $X \times Y$ onto its factors.

p (resp. q) is a right G-torsor with respect to the G-action on $G \times G/K$ (resp. diagonal action).

The key theorems, which we will not prove:

Theorem 10.5. Let A_1, A_2 be L^+G-equivariant complexes on Gr_G. Then, there is a unique $A_1 \boxtimes A_2 \in \text{D}^b(LG \times_{L^+G} \text{Gr}_G)$ such that

$$ p^*(A_1 \boxtimes A_2) \cong q^*(A_1 \boxtimes A_2). $$

Definition 10.6. The **convolution** $\ast: \text{D}_{L^+G}(\text{Gr}_G) \times \text{D}_{L^+G}(\text{Gr}_G) \to \text{D}_{L^+G}(\text{Gr}_G)$ is defined by

$$ A_1 \ast A_2 := m(A_1 \boxtimes A_2). $$

Implicit in this is the theorem that $A_1 \ast A_2$ is L^+G-equivariant.

Theorem 10.7. If A_1 and A_2 are perverse, then $A_1 \ast A_2$ is perverse.

The decomposition theorem provides a noncanonical isomorphism

$$ H^*(A_1 \ast A_2) \cong H^*(A_1) \otimes H^*(A_2). $$

We’ll next globalize this story by considering the Beilinson-Drinfeld Grassmannian \mathcal{G}_G, which is a global version of the affine Grassmannian. This will allow us to realize Sat_G as a full subcategory of $\mathcal{P}_{L^+G}(\mathcal{G}_G, X, \ast)$ (where the notation will be explained below).

Let X be a smooth, geometrically connected curve over k. If R is a k-algebra, X_R will denote $X \times_k \text{Spec}(R)$.

Definition 10.8. Let $f: X \to S$ be a morphism of schemes. A **relative effective Cartier divisor** over S is a divisor $D \subseteq X$ such that $D \to S$ is flat.
Then, there are isomorphisms

\[\text{Proposition 10.12.} \]

The assignment

\[\text{Definition 10.13.} \]

The identification (10.9) carries \(X \) to a connected component of \(\Sigma \), which is what makes the idea that “\(\mathcal{G}r_G \) is the global version of \(\mathcal{G}r_G \)” rigorous. The identification sends an \(x \in X \) to \(D_x \in \Sigma(k) \); let \(\hat{D}_x := \text{Spec}(k[[t]]) \).

Then, there are isomorphisms \(\mathcal{L}G_x \cong LG, \mathcal{L}^+G_x \cong L^+G, \) and \(\mathcal{G}r_x \cong \mathcal{G}r_G. \)

Now we want to globalize convolution.

\[\text{Proposition 10.12.} \]

The assignment \(D_1, D_2 \mapsto D_1 \cup D_2 \) makes \(\Sigma \) into a monoid.

\[\text{Definition 10.13.} \]

The \(j \)-fold convolution Grassmannian \(\mathcal{G}r_{j} \) is defined to represent the functor \(R \mapsto \{(D, F, \beta)\}_{i=1, \ldots, j} \), where

- each \(D_i \in \Sigma(R) \),
- \(F_i \) is a \(G \)-torsor for \(X_R \), and
- \(\beta_i \) is an isomorphism of \(G \)-torsors \(F_i|_{X_R \setminus D_i} \to F_{i-1}|_{X_R \setminus D_{i-1}} \).

There is a multiplication map \(m_j : \mathcal{G}r_{j} \to \mathcal{G}r \) sending

\[(D, F_i, B_i)_{i=1, \ldots, j} \mapsto \left(\bigcup_i D_i, F_k, \beta_i|_{X_R \setminus D_k} \circ \cdots \circ \beta_j|_{X_R \setminus D_j} \right), \]

and the following diagram commutes:

\[\mathcal{G}r_{j} \xrightarrow{m_j} \mathcal{G}r \]

\[\Sigma^k \xrightarrow{\cup} \Sigma, \]

where the vertical maps forget everything except the divisors.

There’s also an action of \(\mathcal{L}^+G \) on \(\mathcal{G}r_{j} \) sending

\[((g, D), (D_i, F_i, \beta_i)_{i=1, \ldots, j}) \mapsto (D_i, g \cdot F_i, g \beta_i g^{-1})_{i=1, \ldots, j}. \]

The last thing we need to define is \(\mathcal{L}G_{j} \), which is the functor sending

\[R \mapsto \{ (\{D_i, F_i, \beta_i\}_{i=1, \ldots, j}), (\sigma_i)_{i=2, \ldots, j} \}, \]

where \(D_i, F_i, \) and \(\beta_i \) are as before and \(\sigma_i \) is an isomorphism between \(F_0|_{D_i} \) and \(F_{i-1}|_{D_i} \).

We can now assemble all of these things into the global diagram

\[\mathcal{G}r \xrightarrow{p_j} \mathcal{L}G_{j} \xrightarrow{q} \mathcal{G}r_{j} \xrightarrow{m_j} \mathcal{G}r. \]

\[\text{This is roughly the same thing as a principal } G \text{-bundle on } X_R. \]
Here, \(p_j \) forgets the data of \((\sigma_i)\), and \(q_j \) sends \(((D_i, F_i, \beta_i), (\sigma_i))\) to \((D_i, F'_i, \beta'_i)\) where \(F'_i = F_i \) and \(F'_i \to F'_{i-1} \) glues along \(\sigma_i \).

Thus in the same way we have a convolution \(* \) on \(P_{L+G}(Gr_X) \), finishing the globalization. Next week, we’ll see why this is Tannakian.

Taking \(j = 2 \) and working over a specific point \(x \) recovers (10.4).

11. Symmetric monoidal structure on the Satake category: 11/17/17

Last week the topic was introducing convolution on the Satake category, this week Vaibhav will tell us about why it is a symmetric monoidal structure. This will involve introducing the fusion product. Richard TeXed notes.

11.1. Recollections. Recall

We’ve been trying to use the Tannakian formalism to relate representations of the Langlands dual group to the Satake category.

Let \(G \) be connected reductive over \(F \), and \(l \neq \text{char} F \).

Definition 11.1. The Satake category \(\text{Sat}_G \) is the \(L^+G \)-equivariant \(l \)-adic perverse sheaves on the affine Grassmannian \(P_{L+G}(Gr_G) \).

Usually will denote Beilinson-Drinfeld Grassmannians by \(Gr, Gr_X, Gr_X^I \).

Convolution:

\[
\begin{align*}
\text{Gr}_G \times \text{Gr}_G & \xleftarrow{p} L^G \times \text{Gr}_G \xrightarrow{q} L^G \times L^+G \xrightarrow{m} \text{Gr} \\
A_1, A_2 & \xleftarrow{m_\ast (A_1 \boxtimes A_2)} =: A_1 \ast A_2
\end{align*}
\]

This convolution structure comes from the convolution that always exists on double cosets spaces. That convolution is a priori only associative, however – it will not in general be commutative.

11.2. Goals and beginning of this talk. Goal

Compare this convolution with a fusion product on a “factorization” version of the Satake category.

We can show that the fusion product is commutative, so realising the convolution product in this way will show that it is symmetric monoidal, and that we will have a symmetric monoidal hypercohomology functor \((P_{L+G}(Gr_G), \ast) \to (\text{Vect}_{\mathbb{Q}_l}, \otimes) \)

Definition 11.2. A factorization space \(G_X \) on \(X \) is

- \(G_X^I \) (ind-scheme) on \(X^I \)
- functorial isomorphisms for any surjection of finite sets \(p : J \to I \) that tells us that “repeating a point a bunch of times is the same as having it only once” and “taking disjoint unions of a bunch of points is the same as taking the products corresponding to those points individually” (a factorisation property). Sorry Arun, I’m going to let you insert the technical definition later.

Example 11.3. Beilinson-Drinfeld Grassmannians,

\[
\begin{align*}
\text{Gr}_k & \xleftarrow{p_k} \tilde{L}G_k \xrightarrow{q_k} \tilde{Gr}_k \xrightarrow{m_k} \text{Gr} \\
\end{align*}
\]

We will study

\[
\text{Sat}_{X^I} \subset P_{(L+G)^I} \text{(Gr}_{X^I})
\]

where \(\text{Sat}_{X^I} \) is the full subcategory of universally locally acyclic (ULA) objects with respect to \(\text{Gr}_{X^I} \to X^I \).

Remark (David). This is a version of what Lurie calls “1+2=3” – something to do with three different multiplications on an abelian category implying something-something symmetric, sorry Arun, missed the exact content.

\[\text{Called this because it has to do with two distinct points on a curve colliding, or “fusing.”}\]
Proposition 11.4. Let $D \subset S$ be a smooth Cartier divisor, and consider the Cartesian diagrams

$$E \xrightarrow{i} T \xleftarrow{j} U$$

$$D \xrightarrow{(ULA)} S \xleftarrow{S \setminus D}$$

Let A be an f-ULA complex on T and let $A|_U$ be perverse. Then A is perverse, and it is the middle perversity extension (j_*) of $A|_U$. Also, there are functorial isomorphisms

$$i^*[-1]A \simeq i'[1]A$$

(and both of these are perverse.)

We can now build an “external” convolution. Given a surjection $\phi : J \to I = \{1, \ldots, n\}$, and letting $J_i = \phi^{-1}(i)$, there is a map

$$m_\phi : \mathcal{G}_{r_{X^{J_1}}} \times \cdots \times \mathcal{G}_{r_{X^{J_n}}} \to \mathcal{G}_{r_{X^J}}$$

and we get (by the usual procedure) a convolution

$$\mathcal{S}_{r_{X^{J_1}}} \times \cdots \times \mathcal{S}_{r_{X^{J_n}}} \to \mathcal{S}_{r_{X^J}}$$

$$A_{1, \ldots, A_n} \to A_1 \ast \cdots \ast A_n$$

There is a canonical isomorphism

$$A_1 \ast \cdots \ast A_n \simeq j_*(A_1 \boxtimes \cdots \boxtimes A_n)$$

Remark.

- m_ϕ is an isomorphism over some open locus X^{ϕ}, the analog of the complement of the diagonal for an arbitrary surjections ϕ (loci of pairwise distinct coordinates).
- $\mathcal{G}_{r_{X^I}} \to X^I$ is ind-proper.
- We get an internal convolution on $\mathcal{S}_{r_{X^I}}$ from the external one by looking at diagonals (denoted $A_1 \otimes \cdots \otimes A_n$).
- There is a natural functor

$$\mathcal{S}_{\mathcal{G}} \to \mathcal{S}_{\mathcal{X}}$$

that respects the monoidal structure

$$(A_1 \ast \cdots \ast A_n)_X \simeq (A_1)_X \otimes \cdots \otimes (A_n)_X.$$

$A_{X} = \mathcal{Q}_l \boxtimes A[1]$ makes sense because of the identification $X \times \mathcal{G} = \mathcal{G}_{r_{X}}$.

Let i_x be the inclusion of a point. Then we have the composition of functors

$$\mathcal{A} \longrightarrow \mathcal{A}_X \mathcal{G} \longrightarrow \mathcal{S}_{\mathcal{X}} \mathcal{G} \longrightarrow \mathcal{H}^r(X) \mathcal{G} \longrightarrow \mathcal{J}_x \mathcal{G} \longrightarrow \mathcal{V}ect_{\mathcal{Q}_l}$$

11.3. Now we compare the two products I guess? We now consider §2.3 of Richarz. In Richarz notation, $\mathcal{S}_{\mathcal{X}} = P_{L^G}(\mathcal{G}_{r_{X}})^{ULA}$. Fix finite set I, U_I be the locus of pairwise distinct coordinates in X^I. Consider the cartesian diagrams

$$\mathcal{G}_{r} \xrightarrow{i_I} \mathcal{G}_{r_{U_I}} \xleftarrow{j_I} (\mathcal{G}_{r_{X^I}})|_{U_I}$$

$$\xrightarrow{\mathcal{S}_{\mathcal{G}}} \mathcal{S}_{\mathcal{X}} \xrightarrow{X^{I}} \mathcal{H}^r(X) $$

$$\xrightarrow{\mathcal{J}_x} \mathcal{V}ect_{\mathcal{Q}_l}$$
Definition 11.5. For $A_{X,i} \in \text{Sat}_X$, $i \in I$, the I-fold fusion product is defined as
\[*_{i \in I} A_{X,i} = i_I[-k+1](j_I)_* \left((\bigotimes_{i \in I} A_{X,i}) \big| U_I \right) \]
where $k = |I|$.

Let $\Phi : I \to J$ be a surjection, $I_j = \Phi^{-1}(j)$. Let U_Φ be the open locus in X^I where the I_j-coordinates are pairwise distinct from the $I_{j'}$ ones, $j \neq j'$. The following diagram is cartesian
\[
\begin{array}{ccc}
Gr_J & \longrightarrow & Gr_I \\
\downarrow & & \downarrow \\
Y^J & \longrightarrow & Y^I & \longrightarrow & U_\Phi \\
\end{array}
\]

Theorem 11.6. There is an associativity and commutativity constraint for the fusion product, so that there's a canonical isomorphism
\[*_{i \in I} A_{X,i} \simeq *_{j \in J} (*_{i \in I} A_{X,i}) \]
where $I_j = \Phi^{-1}(j)$. (I.e. Sat_X is symmetric monoidal.)

12. The proof of the geometric Satake theorem: 12/1/17

Today, Rok talked about the proof of the geometric Satake theorem.

First let's recall some stuff, and in doing so define our notation. We begin with a connected reductive algebraic group G and let Sat_G denote the Satake category, the category of L^+G-equivariant perverse sheaves on the affine Grassmannian Gr_G, symmetric monoidal under the convolution product \ast. It also has a fiber functor $\omega := H^*(\text{Gr}_G;\mathbb{C}) : \text{Sat}_G \to \text{Vect}$.

Recall that the Tannakian reconstruction theorem tells us that if C is a rigid \mathbb{C}-linear symmetric monoidal category together with a fiber functor $\omega : C \to \text{Vect}$ which is linear, exact, and faithful, then if $\tilde{G} := \text{Aut}^\otimes(\omega)$, $C \cong \text{Rep}_{\tilde{G}}$.

Thus, by the Tannakian reconstruction theorem, there is a symmetric monoidal equivalence of categories $\text{Sat}_G \cong \text{Rep}_{\tilde{G}}$ for some algebraic group G. We can use properties of Sat_G to deduce properties of G.

- If \tilde{G} is algebraic, then $\text{Rep}_{\tilde{G}}$ has a tensor generator, given by a faithful representation into GL_n.
- If \tilde{G} is connected, then any subcategory of $\text{Rep}_{\tilde{G}}$ generated under direct sum by finitely many objects it’s not closed under tensor product.
- If $\text{Rep}_{\tilde{G}}$ is semisimple, then \tilde{G} is reductive.

Proposition 12.1. Sat_G is semisimple.

Recall that the simple objects in the category $\mathbb{P}(X)$ of perverse sheaves on X are the IC sheaves $IC(Y, L)$, where $Y \subset X$ is a closed stratum and L is a local system on Y.

Proof sketch. We defined $Gr_G = LG/L^+G$, hence admits a stratification by L^+G-orbits $Gr^\mu := L^+G \cdot \mu L^+G$, which are called the Schubert cells. Here $\mu \in X_+(T)_+$, where T is a maximal torus for G. We also have that $Gr^{\leq \mu} := \bigsqcup_{\lambda \leq \mu} \text{Gr}^\lambda$.

Lemma 12.2. Gr^μ is étale simply connected, and hence L must be constant.

Therefore the simple objects of Sat_G are $IC_\mu := j_!\mu^! \mathbb{C}$, for $\mu \in X_+(T)_+$. Here $j : Gr^\mu \hookrightarrow Gr^{\leq \mu}$ is inclusion. This means it suffices to prove that for all cocharacters μ, ν, $\text{Ext}^1(IC_\mu, IC_\nu) = 0$. This is a fun argument with perverse sheaves and homological algebra that we didn’t go into.

Proposition 12.3. ω is additive, exact, and faithful.

Proof. Additivity is clear, and exactness follows from additivity because Sat_G is semisimple. Semisimplification also means it suffices to show that $\omega(IC_\mu) \neq 0$ to get faithfulness.

To prove this, we appeal to the decomposition theorem: if X is quasiprojective, then $IC(X) \neq 0$, and we have an embedding $X \hookrightarrow \mathbb{P}^N$. Projecting onto a hyperplane $\mathbb{P}^N \to \mathbb{P}^n$, we get a map $f : X \to \mathbb{P}^n$. The
decomposition theorem Theorem 8.3 implies that $IC(\mathbb{P}^n)$ is a direct summand of $f_*IC(X)$, and this implies that its cohomology cannot be trivial, since the cohomology of $IC(\mathbb{P}^n)$ is nonvanishing.

Proposition 12.4. $(\text{Sat}_G, *, \omega)$ is neutral Tannakian.

Proof sketch. We’ve proven a lot of this already. The unit is $1 := IC_{e_0}$, where e_0 is the smallest cocharacter\footnote{TODO: couldn’t read this part of the board; this is a guess and feels sketchy.}. Properties of convolution imply $\omega(1) \cong \mathbb{C}$.

Therefore $\text{Sat}_G \cong \text{Rep}_G$ for some reductive group \widetilde{G}. We want to show that $\widetilde{G} \cong G^\vee$, the Langlands dual of G.

Proposition 12.5. \widetilde{G} is algebraic.

Proof. As mentioned above, it suffices to prove that Sat_G has a tensor generator. Let $\lambda_1, \ldots, \lambda_n$ be dominating generators of $X_*(T)$, so that for any $\lambda \in X_*(T)$, $\lambda = k_1\lambda_1 + \cdots + k_n\lambda_n$, with each $k_i \in \mathbb{Z}$.

Recall that convolution comes to us from the diagram

$$Gr_G \times \cdots \times Gr_G \xrightarrow{\text{L.G.}} LG \times \cdots \times LG \times Gr_G \xrightarrow{\text{L.G.}} LG \times_{L+G} LG \times_{L+G} \cdots \times_{L+G} LG \times_{L+G} LG \times_{L+G} Gr_G \xrightarrow{m} Gr_G.$$

Given an external product $A_1 \otimes \cdots \otimes A_m$ on $LG \times_{L+G} LG \times_{L+G} \cdots \times_{L+G} LG \times_{L+G} Gr_G$, one can push it forward by m_i, and this is how we defined the convolution $A_1 \ast \cdots \ast A_m$.

We want to apply this to IC sheaves. If $\lambda = \sum k_i\lambda_i$, then $m_{\mid Gr \leq \lambda}$ is birational, and therefore

$$m_*(IC_{\lambda_1} \otimes \cdots \otimes IC_{\lambda_n}) = IC_{\lambda_1}^{\star k_1} \ast \cdots \ast IC_{\lambda_n}^{\star k_n}.$$

We can apply the perverse decomposition to find IC_{λ} as a summand. □

Remark. Convolution comes from a very classical construction called the Bott-Samelson resolution. For GL_m, this arises from a stratification of the flag variety G/B into cells B_w indexed by w in the Weyl group (in this case S^n). These B_w are called Schubert varieties, and are often singular, but if w is a simple reflection, then $B_w \cong \mathbb{P}^1$.

A more general $w \in W$ can be written as a product of simple reflections: let $w_{s_1} = s_1 \cdots s_k$ be such a decomposition for w. This provides a resolution of singularities of B_w as an iterated tower of \mathbb{P}^1-bundles. Behind the scenes, this is convolution: $IC(B_w) = IC(B_{s_1}) \ast \cdots \ast IC(B_{s_k})$. \(\blacksquare\)

Proposition 12.6. \widetilde{G} is connected.

Proof. Suppose IC_μ is in such a \oplus-closed category. Then for all k, $IC_{k\mu}$ is also a generator. □

Proposition 12.7. \widetilde{G} is reductive.

This is a restatement of Proposition 12.1.

To get more information about \widetilde{G}, we will need to work harder. We will reinterpret ω. Choose a Borel B so we have inclusions $T \subset B \subset G$ and a quotient map $B \to T$ and therefore maps

$$Gr_G \xrightarrow{b} Gr_B \xrightarrow{t} Gr_T.$$

Then we will look at t_b^r.\footnote{Diagrams of this sort, and compositions like this, are common in representation theory.}

Proposition 12.8. There is an equivalence of symmetric monoidal categories from Sat_T to the category of $X_*(T)$-graded vector spaces under graded tensor product.

Proof idea. We start with the isomorphism $(Gr_T)_{red} \cong X_*(T)\[34\]$ which means $P_{L+T}(Gr_T) \cong P(Gr_T) \cong \text{Vec}^{X_*(T)}$. \(\blacksquare\)
This can be interpreted as geometric Satake for T, since $\text{Vect}^{X_*(T)} \cong \text{Rep}(T^\vee)$.
Thus we have a sequence of functors
\[(12.9) \quad \text{Sat}_G \xrightarrow{b^*} \text{Sat}_B \xrightarrow{t_1} \text{Sat}_T \xrightarrow{\sim} \text{Vect}^{X_*(T)} \xrightarrow{\text{forget}} \text{Vect}.
\]
We would like to prove the following.

Proposition 12.10. The composition of the functors in (12.9) is the fiber functor $\omega: \text{Rep}_G \to \text{Vect}$.

Corollary 12.11. By the functoriality of Tannakian reconstruction, $\phi: \bar{T} \cong T^\vee \hookrightarrow \bar{G}$ is a maximal torus.

Let $\nu \in X_*(T)$ and U be the unipotent radical of B. Let $S_\nu := LU \cdot t^\nu L^+ G$. The Iwasawa decomposition is a stratification
\[\text{Gr}^\leq \mu = \bigcap_{\nu \leq \mu} S_\nu \cap \text{Gr}^\leq \mu.
\]
This is a very different kind of geometry: the S_ν orbits are both infinite-dimensional and infinite-codimensional. This is different than the “almost finite-dimensional” approach we’ve been using to analyze Gr_G so far.

Theorem 12.12 (Mirković-Vilonen). Let $\mu \in X_*(T)_+$ and $\nu \in X_*(T)$.

1. $S^\nu \cap \text{Gr}^\mu$ is nonempty iff $t^\nu \in \text{Gr}^\leq \mu$. In this case, $S^\nu \cap \text{Gr}^\leq \mu$ is pure of dimension $(2\rho, \nu + \mu)$.
2. If $A \in \text{Sat}_G$, $(tb^* A)_\nu = H^*_c(S_\nu; A)$ and it’s concentrated in degree $(2\rho, \nu)$.
3. $\dim H^k_c(S_\nu, IC_\mu)$ is equal to the number of irreducible components of $S_\nu \cap \text{Gr}^\leq \mu$.
4. There’s an isomorphism
\[H^k(\text{Gr}_G; A) \cong \bigoplus_{\nu \in X_*(T)_+} H^k(S_\nu; A).\]

In particular, this characterizes the fiber functor.

Proof of Corollary 12.11. First, why is ϕ injective? Let $\lambda \in X^*(\bar{T}) = X_*(T)$. Then, λ appears at least once in $L_\mu = H^*(\text{Gr}_G; IC_\mu)$, which suffices.

Hence \bar{T} is a torus, and to show it’s a maximal torus we need to show that $\dim \bar{T} = \text{rank} \bar{G}$. (We already know $\dim \bar{T} = \text{rank} G$.) But
\[
\text{rank} \bar{G} = \text{tr. deg}(Q(K^0(\text{Rep}_G))/Q)) = \text{rank}_Q X_*(T) = \text{rank} G.
\]

Now let $\bar{B} \subset \bar{G}$ be a Borel containing \bar{T}. By Theorem 12.12 $2\rho \in X^*(T) = X_*(T)_+$ is dominated coweight with respect to \bar{B}.

Lemma 12.13. With respect to the tori and Borels $T \subset B \subset G$ and $\bar{T} \subset \bar{B} \subset \bar{G}$, $X^*(\bar{T}) \cong X_*(T)_+$.

Proof. Given $\lambda \in X_*(T)_+$, the \bar{G}-representation $V := H^*(\text{Gr}_G; IC_\lambda)$ is irreducible. By Theorem 12.12
\[
\arg\max_{\mu \in \text{wt}(V)} (2\rho, \mu) = \lambda.
\]
This implies that λ is a highest weight for \bar{G}, hence dominated.

The other direction: let $\mu \in X^*(\bar{T})_+$ and V be an irreducible \bar{G}-representation with highest weight μ. Then, $V \cong H^*(\text{Gr}_G; IC_\lambda)$ for some $\lambda \in X_*(T)_+$, and by the previous part, we already know what its highest weight is; in particular $\lambda = \mu$.

13. **Geometric Satake, physics, and derived geometry: 12/8/17**

Today, David spoke about a few related things, including why people were originally interested in the geometric Satake theorem, some physics, and a derived version.
13.1. The original motivation for the geometric Satake theorem. The original motivation for the geometric Satake theorem had to do with Hecke operators.

Let \(C \) be a Riemann surface and \(\text{Bun}_G C \) be the moduli space of principal \(G \)-bundles on \(C \). If you’re interested in symmetries of this object, you’ll probably care about the Hecke correspondence: given an \(x \in C \), we have a diagram

\[
\xymatrix{
\mathcal{H}ecke_x
\ar[r] & \text{Bun}_G C
\ar@{<-->}[r] & \text{Bun}_G C,
}
\]

where \(\mathcal{H}ecke_x \) is the space of pairs of principal \(G \)-bundles on \(C \) and isomorphisms between them on \(C \setminus x \). The Hecke correspondence is a \(\text{Gr}_G \)-bundle with structure group \(LG_+ \), so given a \(V \in \text{Sat}_G \), one obtains a sheaf \(K_V \) on \(\mathcal{H}ecke_x \).

Therefore for any \(x \in C \), we have a functor \(\text{Sat}_G \to \text{End}(\text{Sh}v(\text{Bun}_G C)) \), where by sheaves we really mean \(\mathcal{D} \)-modules. The geometric Satake theorem tells us \(\text{Sat}_G \cong \text{Rep}_G \), so we know what these symmetries are, and if \(x \neq x’ \), these symmetries commute, because the Satake category is symmetric monoidal. So the geometric Satake theorem tells us there are lots of commuting symmetries of \(\text{Bun}_G C \).

Remark. Commuting symmetries ought to be simultaneously diagonalizable. This is what the geometric Langlands program is about. \(\Box \)

So in an imprecise sense, we have an action of

\[
(13.2) \quad \bigotimes_{x \in C} \text{Rep}_{G^x}
\]

on \(\mathcal{D}\text{-Mod}_{\text{Bun}_G C} \). We might want to define \(X \) to be \(\text{Spec} \) of \((13.2) \), and hope that

\[
\text{QCoh}(X) \cong \bigotimes_{x \in C} \text{Rep}_G.
\]

The way to make this rigorous is through the Tannakian perspective: just as we understood

\[
\text{QCoh}(\bullet/G^x) \cong \text{Rep}_{G^x} \cong \text{Sat}_G,
\]

one could expect that \(X \) is continuous data of a \(G^x \)-action on \(C \), i.e. the category \(\text{Loc}_{G^x} C \).

For this to be true, we ask that for any \(x \in C \) and a representation \(V \in \text{Rep}_{G^x} \), there should be a sheaf on \(C \) which is trivial everywhere except at \(x \), where it’s \(C \). One can produce this from a vector bundle \(W \) on \(\text{Loc}_{G^x} C \), sometimes called a Wilson line: given an \(E \in \text{Loc}_{G^x} C \), the fiber of this vector bundle over \(E \) is \(W_E := E_x \times_{G^x} V \): each fiber is isomorphic to \(V \), but noncanonically so.

Another way to understand this vector bundle is that looking at the fiber over \(x \) defines a functor

\[
\text{Loc}_{G^x} C \to \bullet/G^x,
\]

and since \(V \in \text{Rep}_{G^x} = \text{Vect}_{/G^x} \), we can pull it back to a vector bundle over \(\text{Loc}_{G^x} C \), and this is exactly \(W \).

Therefore given an \(x \in C \) and \(V \in \text{Rep}_{G^x} \), we have two interesting endomorphisms.

- The “easy” operator is \(- \otimes W \) on \(\text{QCoh}(\text{Loc}_{G^x} C) \).
- The harder operator is the endomorphism on \(\mathcal{D}\text{-Mod}_{\text{Bun}_G C} \) described above (since this uses geometric Satake).

The geometric Langlands program is about an equivalence between \(\text{QCoh}(\text{Loc}_{G^x} C) \) and \(\mathcal{D}\text{-Mod}_{\text{Bun}_G C} \) that preserves the additional structure of these operators. Similarly, the original Satake theorem is closely tied to the Langlands program, though with functions instead of sheaves and in a more arithmetic setting.

The name “Wilson line” is suggestive, and indeed there are relations to holonomy. Given an \(x \in C \) and a \(V \in \text{Rep}_{G^x} \), there is a function (the Wilson loop) on \(\text{Loc}_{G^x}(C \times S^1) \), which to a local system \(E \) assigns \(W_{V,x}(E) := \text{tr}(\text{Hol}(E_V)) \) on \(\{ x \} \times S^1 \). We’re one dimension lower and consequently one category level higher (sheaves instead of functions, etc.).
13.2. Relationship with physics. This can be understood from the quantum field-theoretic perspective on geometric Langlands, where the whole story is wrapped up in $\mathcal{N} = 4$ supersymmetric Yang-Mills theory. There are two specific topological field theories, both topological twists of this theory \mathcal{A}_G and $\mathcal{B}_{G^∨}$ for the compact forms of G and $G^∨$.

By S-duality (a generalization of electromagnetic duality), there is a conjectured equivalence of topological field theories $\mathcal{A}_G \simeq \mathcal{B}_{G^∨}$. But you can spell out specific aspects of these theories are.

Given a Riemann surface C, each of these extended TQFTs attaches a category $\mathcal{A}_G(C)$ and $\mathcal{B}_{G^∨}(C)$ to a surface. (Physicists might instead say to understand the theory on $C \times \mathbb{R}^2$.) From the definitions of the theories, one knows $\mathcal{B}_{G^∨}(C) = \mathcal{D}^b \mathcal{Coh}(\mathcal{L}oc_{G^∨} C)$, and on the \mathcal{A}_G-side, $\mathcal{A}_G(C)$ is the Fukaya category of $T^* \text{Bun}_G C$ (which is related to the Hitchin system). If you squint a bit, differential operators are a quantization of the cotangent bundle, so it seems reasonable to expect that this category is equivalent to the category of D-modules on $\text{Bun}_G C$. This is one of Kapustin-Witten’s insights, but is not yet a theorem.

S-duality would imply that these two categories are equivalent. But it also implies a lot more, including suitable equivalences of line operators and surface operators. Given an $x \in C$, we obtain a line operator on $C \times [0, 1]$, which goes through $(x, 1/2)$ perpendicular to $C \times [0, 1]$ (since we’re in a 4D theory, so we have one more direction).

Line defects in 4D TQFT give functors on whatever that TQFT attaches to a surface: the category of line defects is $Z(S^2)$, and we obtain a functor by cutting out a small S^2 near where the line described above intersects $C \times [0, 1]$ (i.e. at $(x, 1/2)$). Collapsing the time interval, we get a “UFO” or “ravioli” given by identifying everything except the center of the sphere: we end up considering the non-Hausdorff space $C \amalg_{\{x\}} C$.

In our specific setting, we’re therefore looking at

$$(13.3) \quad \text{Bun}_G(C \amalg_{\{x\}} C) = \text{Bun}_G C \times_{\text{Bun}_G(C \times \{x\})} \text{Bun}_G C,$$

and this comes with the two maps back to $\text{Bun}_G C$. But (13.3) is just $\mathcal{H}ecke_x$, and the projection maps recover the Hecke correspondence again!

This is one of the cool pieces of the physics picture: the Hecke correspondence seems totally static, but physicists introduced time and an interesting and new way of understanding it.

Physics also explains (albeit in retrospect) why convolution is commutative. The space $\mathcal{L}G_+ \backslash \mathcal{L}G/\mathcal{L}G_+$ is really Bun_G of the ravioli, so we should be thinking of convolution as stacking these raviolis in a direction perpendicular to the Riemann surface C. Specifically, line defects in a 4D TQFT form an E_3-category, meaning a symmetric monoidal category: we have freedom to move around in a surface, but also in the direction perpendicular to it. And this is how we got convolution.

13.3. Some applications. One of the coolest applications of the geometric Satake theorem is to modular representation theory. Mirković-Vilonen’s proof of the geometric Satake theorem actually works over \mathbb{Z}, and therefore in particular for understanding reductive groups in positive characteristic.

Of course, if k isn’t semisimple, $\mathcal{S}at_G(k)$ need not be semisimple, and the decomposition theorem (which we used to produce semisimplicity) fails for some very easy counterexamples. So in particular, the IC sheaves are not so easy to understand, and there’s something better discovered by Daniel Juteau and Carl Mautner. These agree in characteristic zero, but are much better in characteristic p. These are the most powerful tool we have for understanding modular representations of reductive groups, and Geordie Williamson in particular has used this to great effect.

In characteristic zero, the flow of information about the geometric Satake theorem is from $\mathcal{R}ep_{G^∨}$ to $\mathcal{S}at_G$, because representation theory is well-understood. But in modular characteristic, the story goes in reverse: it’s much easier to understand the Satake category and use it to learn about representation theory.

Remark. People have even thought about doing the geometric Satake theorem over the sphere spectrum. The story changes a little, because one has to deal with the derived version, and the Satake category over S is only E_3, not fully symmetric monoidal. This indicates that in general, the theorem fails. This has to do with the fact that reductive groups behave very badly over the sphere spectrum: we have $\mathcal{G}L_n$, but not even $\mathcal{S}L_n$.

38The names are suggestive: these are four-dimensional analogues of the A- and B-models in 2D.

39Well, the $\mathcal{B}_{G^∨}$ theory has been constructed as an extended theory, but not so much the \mathcal{A}_G theory.
Another cool thing you can do is write down a multiparameter deformation of the geometric Satake correspondence, over a base called (in physics) the Coulomb branch, and this arises from equivariant cohomology. Let G be a (compact) group and X be a G-space. We can then define the G-equivariant cohomology of X

$$H^*_G(X) := H^*(X/G),$$

where X/G is the quotient stack. There is a map $X/G \to \bullet/G$ arising from the G-equivariant map $X \to \bullet$, so in particular there’s a map $H^*(\bullet/G) \to H^*(X/G)$, making $H^*_G(X)$ into an $H^*_G(\bullet)$-algebra. This base ring is easy to understand: $H^*(\bullet/G) = H^*(BG) \cong \mathbb{C}[p_1, \ldots, p_e]$. More canonically, this polynomial ring can be described as

$$H^*(BG) \cong \mathbb{C}[\mathfrak{g}[2]]^G \cong \mathbb{C}[\mathfrak{h}[2]]^W.$$

Here \mathfrak{h} is the Lie algebra of the maximal torus. For example, $H^*(BSL_2) \cong \mathbb{C}[v]$ with $|v| = 4$, corresponding to the Casimir, and $H^*(BU_1) = H^*(\mathbb{C}P^\infty) = \mathbb{C}[u]$ with $|u| = 2$. If you were to ignore degrees, these would just be functions on \mathfrak{h}/W.

You can think of $H^*_G(X)$ over \mathfrak{h}/W and if you look at the level of cochains rather than cohomology (or identify them by being at the derived level), the fiber at 0 $\in \mathfrak{h}/W$ is ordinary cohomology. Thus equivariant cohomology is a deformation of ordinary cohomology whose rank is the rank of the group.

In a similar way, the entire geometric Satake correspondence deforms over the Coulomb branch \mathfrak{h}/W. This involves the derived Satake correspondence — you might think you’re replacing a rigid statement with an easier one, but equivariance becomes really interesting in the derived setting.

Specifically, the equivariant derived category $\mathcal{D}^{b}_{\mathcal{L}G^+(\mathcal{G} \mathcal{C})}$ is not the derived category of $\mathcal{P}_{\mathcal{L}G^+(\mathcal{G} \mathcal{C})}$, so even though the derived category of $\mathcal{Q}_{\mathcal{C}}(\bullet/G^V)$ isn’t interesting, this story is very interesting.

To see why the equivariant category isn’t the derived category of $\mathcal{S}\mathcal{A}_{\mathcal{C}}$, let’s look into $\mathcal{D}^{b}_{\mathcal{L}G^+(\mathcal{G} \mathcal{C})}$, which contains a copy of sheaves supported at the basepoint. This is a $\mathcal{D}^{b}_{\mathcal{L}G^+(\bullet)} = \mathcal{D}^{b}(\bullet/\mathcal{L}G^+)$, or just the derived category $\mathcal{D}^{b}(\bullet/G)$ of G-equivariant sheaves on a point. If you like topology, you could think of this as the derived category of sheaves on BG, but you have to use locally constant complexes (i.e. those whose cohomology sheaves are locally constant). This is not the same thing as $\mathcal{D}(\mathcal{L}oc_{\mathcal{C}}BG)$, which is just the derived category of $\mathcal{V}ec$.

For example, if $G = \mathbb{C}^*$, $BG = \mathbb{C}P^\infty$, and it contains a $\mathbb{C}P^1 \cong S^2$. Now, $\mathcal{D}^{b}_{\mathcal{L}oc}(S^2) \simeq \mathcal{M}_{\mathcal{D}^{b}}(S^2)$, and because S^2 has interesting cohomology, this is an interesting category. More generally,

$$\mathcal{D}^{b}_{\mathcal{L}oc}(pt) = \mathcal{D}^{b}(\mathbb{C}P^\infty) \simeq \mathcal{M}_{\mathcal{D}^{b}}(\mathbb{C}P^\infty) = \mathcal{M}_{\mathcal{D}[\mathbb{C}]}[u].$$

More generally, $\mathcal{D}^{b}_{\mathcal{L}oc}(pt) = \mathcal{M}_{\mathcal{D}^{b}}(BG) = \mathcal{M}_{\mathcal{D}[\mathbb{C}]/[W]} = \mathcal{Q}_{\mathcal{C}}(\mathbb{C}[2]/[W]).$

Though the cohomological shift might bother you, one of the lessons that physicists taught us is to not worry about it: they tend to treat all shifts democratically, as they lead to some benign things like masses or charges, whereas in mathematics we tend to view shifted things very different.

So if you look at the derived Satake category, there are two parts: the abelian piece and the totally derived direction, which can be thought of as a category of sheaves on \mathfrak{h}/W, or really as sheaves on \mathfrak{h}^{V^*}/W.

At the basepoint of the Grassmannian, you’re looking at modules over the endomorphism group of the trivial line operator. This is the category of local operators, and this is a general physics fact: given a trivial line operator, one can cut out a little sphere and insert any local operator, giving an endomorphism of the trivial line operator. And in a topological gauge theory, local operators are always related to $H^*_G(\bullet)$.

Theorem 13.4 (Derived geometric Satake (Bezrukavnikov-Finkelberg)). Let G be a reductive group. Then, there is an equivalence of derived categories

$$\mathcal{D}^{b}_{\mathcal{L}G^+(\mathcal{G} \mathcal{C})} \simeq \mathcal{Q}_{\mathcal{C}}(\mathfrak{g}^{V^*}[2]/G^V).$$

One of the first things you learn in representation theory is the adjoint representation of G^V on \mathfrak{g}^{V^*}. This in particular leads to an isomorphism $\mathbb{C}[\mathfrak{g}^{V^*}]^G \cong \mathbb{C}[\mathfrak{h}^{V^*}/W]$. One might later want to categorify this, but it’s not true in general that $\mathcal{Q}_{\mathcal{C}}(\mathfrak{g}^{V^*})^G$ is equivalent to $\mathcal{Q}_{\mathcal{C}}(\mathfrak{g}^{V^*}/W)$.

What is true is that $\mathfrak{g}^{V^*}[2]$ fibers over the Coulomb branch $\mathcal{M}_{\mathcal{D}[\mathfrak{h}]/[W]} = \mathcal{M}_{\mathcal{D}[\mathfrak{h}]}$ via the character. The piece over 0 is the story of the geometric Satake theorem.

40Some things here should be done at the cochain level if treated more precisely.
41Well, really $\mathbb{C}[2]/W$, but part of the magic is that the grading doesn’t matter.
42TODO: is this $\mathcal{Q}_{\mathcal{C}}(\mathfrak{g}^{V^*})^G$?
Once again, the shift by 2 is not so terrible. From a derived algebro-geometric perspective, it comes from a calculation for the B_{G^\vee}-model on S^2: since $S^2 = D^2 \amalg S^1 \amalg D^2$, then
\[\text{Loc}_{G^\vee} S^2 = \text{Loc} D^2 \times_{\text{Loc} S^1} \text{Loc} D^2 = \bullet \times_{G^\vee} \bullet. \]
This is where the derived perspective is important: $\text{QCoh}(\bullet \times_{G^\vee} \bullet) = \text{QCoh}(g^*[2])$. So we get something useful for representation theory, which is nice.

And the physics perspective says that this equivalence is a suitable equivalence of the B_{G^\vee}-model on S^2 with the A_{G}-model on S^2. If you think in this way, you’ll get that there’s one more direction of freedom, a parameter called \hbar by mathematicians and ε by physicists. This comes from the fact that there’s a \mathbb{C}^\times-action on the affine Grassmannian, coming from the action on $\mathbb{C}((t))$ by rotating t. If you make this action explicit, nothing changes at the abelian category level — but at the derived categorical level, there is additional symmetry.

Definition 13.5. Let $U_\hbar(g)$ be the deformation of the enveloping algebra defined by the relation $xy - yx = \hbar [x, y]$.

This allows one to study deformations of the representation theory of g: in particular, this is a quantization of g^*.

Theorem 13.6 (Bezrukavnikov-Finkelberg). The derived geometric Satake theorem extends to an equivalence of derived categories
\[D^b_{L^+ \times \mathbb{C}^\times} (Gr_G) \simeq \text{Mod}_{U_\hbar(g^*)}. \]

The category on the right-hand side is the G^\vee-equivariant derived category of $U_\hbar(g^*)$-modules.

Some things are easier on one side, and some things are easier on the other, so having this story is nice. In fact, this is how David got started in derived algebraic geometry: you can see the circle action on the affine Grassmannian, but to see it on the other side of the geometric Satake correspondence, you need to pass to derived algebraic geometry.

43 This is also the category of sheaves on the adjoint quotient stack, also called the category of Harish-Chandra bimodules.