
GROMOV-WITTEN THEORY LEARNING SEMINAR

ARUN DEBRAY
APRIL 23, 2018

Contents

1. An Overview of Gromov-Witten Theory: 1/29/18 1
2. Quantum Cohomology: 2/5/18 3
3. The moduli space of stable maps: 2/12/18 5
4. The little quantum product: 2/19/18 5
5. Moduli stacks: 2/26/18 7
6. Virtual fundamental classes: 3/5/18 9
7. More virtual fundamental classes: 3/26/18 11
8. Spin Hurwitz numbers and Gromov-Witten theory: 4/2/18 12
9. The Gromov-Witten/Donaldson-Thomas correspondence: 4/23/18 14
References 15

1. An Overview of Gromov-Witten Theory: 1/29/18

Today, Jonathan spoke, delivering an overview of Gromov-Witten theory and how associativity of
quantum cohomology leads to applications in enumerative geometry. Today we always work over C, and
follow Fulton-Pandharipande’s notes [FP96].

Classically, if X is a nonsingular projective variety and β ∈ H2(X;Z), we want to know how many
algebraic curves in X represent the class β. This relates to very classical questions, such as: if you have
3d− 1 points in Pn, how many degree-d curves pass through them?

Definition 1.1. To simplify notation, let Ad(X) := H2d(X;Z), and similarly Ad(X) := H2d(X;Z).

The moduli space of stable maps. Another important ingredient, whose construction we will punt on, is
the moduli space of stable maps. Here we summarize its definition. Let X be a smooth projective variety and
β ∈ A1(X). The moduli space of stable maps, denoted Mg,n(X, β) is the moduli space of isomorphism
classes of pointed maps

(1.2) u : (C, p1, . . . , pn) −→ X

where C is a projective nonsingular curve of genus g, p1, . . . , pn are distinct marked points in C, and
u∗([c]) = β. We must impose a stability condition which ensures these maps have finitely many automor-
phisms, where an automorphism (C, p1, . . . , pn)→ (C′, p1], . . . , p′n) must send pi 7→ p′i and commute with
the maps to X.

This is all right, but we really want something compact, and therefore will have to consider stable maps
which are slightly worse. The compactification Mg,n(X, β) ⊃ Mg,n(X, β) is the space of stable maps as
in (1.2), subject to the following conditions.

• C is a projective, connected, reduced, genus-g curve with at worst nodal singularities, and the pj
are distinct smooth points.
• Stability: for every irreducible compact E ⊂ C such that if E ' P1 and u(E) = {pt}, then E contains

at least 3 of the points pi.
• If E is genus 1 and u(E) = {pt}, then E contains at least one of the points pi.
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Why is this a compactification? The idea is that if u : (C, p1, . . . , pn) → X is a smooth curve, we can let
two points collide. In the compactified moduli space, the collision is avoided by adding another P1 to C
intersecting near the collision point; then, the two points can live in distinct irreducible components.

The next question is: what’s the dimension ofMg,n(X, β) be? Naı̈vely, the expected dimension is

(1.3) n +
∫

β
c1(X) + (dim X− 3)(1− g) = n + 3g− 3 + χ(TX|C).

Here c1 is the first Chern class, and
∫

β c1(X) represents the cap product pairing A1(X)⊗ A1(X)→ Z, and
χ(TX|C) denotes its Euler characteristic:

(1.4) χ(TX|C) := h0(C; TX|C)− h1(C; TX|C).

This does not depend on the choice of C representing β, which is a fun fact about characteristic classes.
Why is (1.3) a reasonable guess? Here’s what’s going on.
• The 3g− 3 represents the dimension of the moduli space of the curve C, hence representing how C

can change on its own.
• The χ(TX|C) represents how C can deform in X.
• The n is the extra data corresponding to the marked points.

We said “naı̈ve,” and indeed (1.3) is not the dimension ofMg,n(X, β) in all cases. But it is true in nice cases,
and then you can do some cool stuff.

Gromov-Witten invariants. There are natural evaluation maps pi : Mg,n(X, β)→ X sending

(1.5) (u : (C, p1, . . . , pn)→ X) 7−→ u(pi).

We can pull back cohomology classes along these maps: suppose γ1, . . . , γn ∈ A∗(X). Then, let

(1.6) Iβ(γ1, . . . , γn) :=
∫
[Mg,n(X,β)]

p∗1(γ1) ^ · · ·^ p∗n(γn).

This is called a Gromov-Witten invariant for X. The thing that we’re integrating over requires some very
technical work to define in general, but for spaces which are “nice” (convex and homogeneous, which we’ll
discuss later), it’s not so bad. Pn is an example of such a space.

Suppose γ1, . . . , γn have the correct dimensions such that (1.6) is a number. Then there’s an enumerative
interpretation of (1.6) (in the convex case): the number of pointed maps u : Σg → X such that u∗([Σg]) = β

and if Γi is a subvariety representing the Poincaré dual to γi,
1 then u(pi) ∈ Γi. Here Σg is a curve of genus

g.

Important properties.

Proposition 1.7. If β = 0, the only nonzero Gromov-Witten invariants occur when n = 3.

Proof sketch. If β = 0, there’s an identificationM0,n(X, β) ∼=M0,n × X, which carries all of the evaluation
maps to projection onto X, whereM0,n is the (compactified) moduli space of genus-0 curves with n marked
points. Call this map π. Then,

Iβ(γ1, . . . , γn) =
∫
M0,n(X,0)

p∗1(γ1) ^ · · ·^ p∗n(γn)

=
∫
M0,n×X

π∗(γ1 ^ · · ·^ γn)

=
∫

π∗([M0,n×X])
γ1 ^ · · ·^ γn.

If n < 3,M0,n is empty, because any choice of n points in P1 doesn’t have a finite automorphism group.
For n > 3, π has positive-dimensional fibers. �

1We can dodge the Steenrod realizability problem because every even-degree homology class of Pn is represented by a complex
subvariety.
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If n = 3, then

(1.8) I0(γ1, γ2, γ3) =
∫

X
γ1 ^ γ2 ^ γ3,

so this Gromov-Witten invariant isn’t too hard to calculate.

Proposition 1.9. Suppose γ1 = 1 ∈ A0(X). Then, Iβ(1, γ2, . . . , γn) is nonzero only when β = 0 and n = 3.

Proof sketch. If β 6= 0, p∗1(1) ^ · · ·^ p∗n(γn) is the pullback of a class inM0,n−1(X, β) along the map

(1.10) M0,n(X, β) −→M0,n−1(X, β)

which forgets the first point. There’s a projection formula which then finishes the proof in a similar way to
Proposition 1.7. �

In the case β = 0 and n = 3, there’s a similar formula to (1.8):

(1.11) I0(1, γ2, γ3) =
∫

X
γ2 ^ γ3.

Proposition 1.12. If γ1 ∈ A1(X), then

Iβ(γ1, . . . , γn) =

(∫
β

γ1

)
Iβ(γ2, . . . , γn).

Since
∫

β γ1 is the number of choices for pi ∈ C to map to Γ1, where Γ1 is a Poincaré dual to γ1. The
proof idea has something to do with the pushforward map (1.10) again.

Next time we’ll talk about the quantum cohomology ring, and show that its associativity provides
recursive formulas for enumerative invariants.

2. Quantum Cohomology: 2/5/18

Today, Jonathan spoke again, discussing quantum cohomology and an explicit example of how its
associativity produces enumerative data on convex varieties.

Recall that last time, we discussed the moduli spaces of stable maps M0,n(X, β) given a variety X, a
β ∈ A1(X), and an n ≥ 0. We can use this moduli space, and the evaluation maps pi : M0,n(X, β) → X,
to define Gromov-Witten invariants as in (1.6). We then discussed three important properties of Gromov-
Witten invariants, namely Propositions 1.7, 1.9 and 1.12; they will be useful when we do calculations.2

Now we’ll define quantum cohomology in a restricted setting. Some of our notation will be redundant
today, but will be useful when we discuss the general case. Fix X = Pr and T0 = 1 ∈ A0(X). Let T1, . . . , Tp

be a basis for A1(X) and Tp+1, . . . , Tm be a basis for the rest of A∗(X). For β ∈ A1(X) and np+1, . . . , nm ∈ N,
let

(2.1) N(np+1, . . . , nm; β) := Iβ(T
np+1
p+1 , . . . , Tnm

m ).

For 0 ≤ i, j ≤ m, define

(2.2) gij :=
∫

X
Ti ^ Tj

and gij be the entries of the matrix inverse to (gij). By (1.8),

(2.3) Ti ^ Tj = ∑
e, f

I0(Ti, Tj, Te)ge f Tf .

Definition 2.4. The quantum potential of a γ ∈ A∗(X) is

Φ(γ) := ∑
n≥3

∑
β∈H2(X;Z)

1
n!

Iβ(γ
n).

2Kontsevich and Manin [KM94] take these properties as axioms for Gromov-Witten theory.
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The summand is nonzero for only finitely many β for a given n, so this converges. Moreover, if
γ = ∑ yiTi,

(2.5) Φ(y0, . . . , yn) := Φ(γ) = ∑
n0+···+nm≥3

∑
β

Iβ(T
n0
0 , . . . , Tnm

m )
yn0

0
n0!
· · · ynm

m
nm!

.

This is a formal power series in y0, . . . , yn, and hence one may define

(2.6) Φijk :=
∂3Φ

∂yi∂yj∂yk
= ∑

n≥0
∑
β

1
n!

Iβ(γ
n, Ti, Tj, Tk).

Definition 2.7. The quantum cup product is

Ti ∗ Tj := ∑
e, f

Φijege f Tf .

Remark 2.8. This definition is kind of unenlightening — it’s not clear what it’s doing. Hopefully through
examples we can figure out why it’s defined in this way. (

Theorem 2.9. A∗(X) with the quantum cup product is associative, commutative, and has T0 as a unit.

The hardest part is associativity, requiring a full page of calculations. We’re not going to do that today,
but we’ll talk about what it implies. Writing everything out,

(Ti ∗ Tj) ∗ Tk = ∑
e, f

Φi,ege f Tf ∗ Tk

= ∑
e, f

∑
c,d

Φijege f Φ f kcgcdTd.

Similarly,

Ti ∗(Tj ∗ Tk) = ∑
e, f

∑
c,d

Φjkege f Φi f cgcdTd.

Therefore associativity is equivalent to

(2.10) Φijege f Φ f kc = Φjkege f Φi f c,

so if we define

(2.11) F(i, j | k, `) := ∑
e, f

Φijege f Φ f k`,

then associativity is equivalent to F(i, j | k, `) = F(j, k | i, `) for all i, j, k, `.
We can split the quantum potential into two pieces: the “classical” part Φclassical, given by β = 0, and the

“quantum” part Φquantum, for which β 6= 0. Then Φ = Φclassical + Φquantum, and using Proposition 1.7,

(2.12) Φclassical = ∑
n1+···+nm=3

∫
X

Tn0
0 ^ · · ·^ Tnm

m

m

∏
i=1

yni
i

ni!
.

TODO: then there was a big formula for Γ(y) whose relation to the story was unclear to me.

Example 2.13. Let’s actually do this on X = P2. For i = 0, 1, 2, let Ti ∈ H2i(P2) be the generators
corresponding to the orientation coming from the complex structure. That is, T0 is Poincaré dual to P2, T1
to a embedded P1, and T2 to a point. Recall that gij =

∫
P2 Ti ^ Tj, so

(2.14) g =

0 0 1
0 1 0
1 0 0

 ,

and g−1 = g.
Associativity of the quantum cup product implies that F(1, 1 | 2, 2) = F(1, 2 | 1, 2), i.e.

(2.15) ∑
e, f

Φ11ege f Φ f 22 = ∑
e, f

Φ12ege f Φ f 12.
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Since ge f 6= 0 only when e + f = 2, this sum simplifies to

(2.16) Φ110Φ222 + Φ111Φ122 + Φ112 + Φ022 = Φ120Φ212 + Φ121Φ112 + Φ122Φ012.

Now we have to actually compute some of these things.

(2.17) Φ110 = ∑
n≥0

∑
β

Iβ(γ
n · T1 · T0).

Most of these are zero for degree reasons, and the only nonzero contribution is from
∫

X T2
1 .

TODO: then there was another thing I didn’t follow. . .
(

3. The moduli space of stable maps: 2/12/18

4. The little quantum product: 2/19/18

Today, Yixian spoke about associativity, the little quantum product, and more, finishing up the talks
from [FP96].

We will continue to use notation from previous sections, in particular for Gromov-Witten invariants and
the ingredients in the quantum product.

Let’s suppose our target X is really nice: it’s a projective, nonsingular, convex variety.

Definition 4.1. Let β ∈ H2(X). We call β an effective class if there is a stable map realizing β, i.e.M0,n(X, β)

is nonempty.3

The idea of a boundary divisor is to split a reducible stable map into two components.

Definition 4.2. Let µ : (C, p1, . . . , pn)→ X ∈ M0,n(X, β) be a stable map such that the domain curve C is
reducible. The boundary divisor D(A, B; β1, β2) ⊂M0,n(X, β) is the locus of stable maps which admit the
following data:

• a partition [n] = A ∪ B,4 and
• effective classes β1, β2 such that β1 + β2 = β,

such that:
(1) If β1 = 0, |A| ≥ 2, and if β2 = 0, |B| ≥ 2.
(2) There are curves CA, CB such that CA ∪ CB = C and CA ∩ CB = {pt}.
(3) The markings in A lie in CA and the markings in B lie in CB.
(4) µ([CA]) = β1 and µ([CB]) = β2.

Theorem 4.3. Let e1 : M0,A∪{pt}(X, β)→ X be the evaluation map at the extra point, and define e2 : M0,B∪{pt}(X, β)→
X analogously. Let D(A, B; β1, β2) be a boundary divisor and define

(4.4) K̃ :=M0,A∪{pt}(X, β1)×XM0,B∪{pt}(X, β2)

along e1 and e2. If A and B are nonempty, then K̃ ∼= D(A, B; β1, β2).

Let i, j, k, ` ∈ [n]. We define a divisor

(4.5) D(i, j | k, `) := ∑
i,j∈A
k,`∈B

D(A, B; β1, β2).

Then D(i, j | k, `) = D(i, k | j, `).5

Recall that associativity of the quantum product, as defined in a previous lecture, is equivalent to (2.10):
we have to prove some equalities about quantum potentials.

3TODO: just genus zero?
4Here, [n] := {1, . . . , n}.
5TODO: why?
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Lemma 4.6. Let

ι : D(A, B, β1, β2) −→M0,A∪{pt}(X, β1)×M0,B∪{pt}(X, β2)

and

α : D(A, B; β1, β2) −→M0,n(X, β)

denote inclusion. For γ1, . . . , γm ∈ A∗(X),

ι∗ ◦ α∗(ρ∗1(γ1) ^ · · ·^ ρ∗n(γn)) = ∑
e, f

ge f

(
∏
a∈A

ρ∗a(γa)ρ
∗
pt(Te)

)(
∏
b∈B

ρ∗b(γb)ρ
∗
pt(Tf )

)
.

Define

G(q, r | s, t) := ∑
q,r∈A
s,t∈B

ge f Iβ1

(
∏
a∈A

γaTe

)
Iβ2

(
∏
β∈B

γbTf

)

= ∑
A∪B=[n]
β1+β2=β

∫
D(A,B,β1,β2)

ρ∗1(γ1) ^ · · ·^ ρ∗n(γn)

=
∫

D(q,r|s,t)
ρ∗1(γ1) ^ · · ·^ ρ∗n(γn).

Then associativity of the quantum product is asking whether

(4.7) G(q, r | s, t) ?
= G(q, s | r, t).

Next we define

(4.8) F(i, j | k, `) := ∑
e, f

Φijege f Φ f k` = ∑
β1+β2=β
e, f ,n1,n2

Iβ1(γ
n1 · TiTjT`)ge f Iβ2(γ

n2 · TkTeTf ),

and associativity would imply this is equal to F(i, k | j, `).

Remark 4.9. We’re not going to attach intrinsic geometric meaning to F and G; they are tools in the proof of
associativity. However, the notes suggestively use Feynman-diagram-like notation for them, which suggests
that these things have an interpretation in physics. (

Recall that the quantum product is defined on a basis by

(4.10) Ti ∗ Tj := ∑
e, f

Φijege f Tf .

We can use this to define the quantum cohomology ring QH∗(X) as the algebra generated by A∗(X) under
this product. This is naturally a Q[[y]]-algebra (where y acts by the extra factor of γ that has appeared in
everything), and if V := A∗(X) \ 0, it’s also a Q[[V]]-algebra, which is a more coordinate-free way to say it.
That is, Q[[V]] is the completion of

∞⊕
i=0

Symi(V)⊗Q

at its unique maximal ideal.
The embedding map A∗(X)→ QH∗(X) is a group homomorphism, but not a ring homomorphism.
If X is a homogeneous variety, there’s an isomorphism

QH∗(X) ∼= A∗Q(X)⊗Q[[y]].

In general this is not true.
TODO: more stuff happened, including a calculation on P2, but I didn’t get it down.
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5. Moduli stacks: 2/26/18

Today, Rok spoke about moduli stacks in the context of Gromov-Witten theory.
Often in algebraic geometry, objects we’re interested in have nontrivial automorphisms. This can be

frustrating, because it makes it much less likely that they’re accurately represented by schemes (i.e. there is
often no fine moduli space for a moduli problem with automorphisms).

The reason, from the functor-of-points view, is that the functor of points of a moduli space M is a
functorM : Schop → Set, and sets don’t encode automorphisms. The idea of a set with automorphisms is
encoded in a groupoid, so we’re led to the notion of functors of points valued in groupoids, but this comes
with its own technical issues.

• Since groupoids have automorphisms, stacks have two kinds of morphisms, and therefore have an
inherent 2-categoricity. If you’re willing to work with stacks as 2-functors, this is not a problem, but
not everyone is willing to do that, and working around this comes with its own issues.
• To get everything strictly, rather than up to automorphisms, one has to work with categories fibered

in groupoids. This is a somewhat technical condition related to straightening and unstraightening
constructions, but it makes everything works.

Now that we’ve broadened our world from set-valued functors to groupoid-valued ones, we need to decide
which functors are representable.

Definition 5.1. A functor X : Schop → Gpd is a stack if it satisfies descent with respect to a given topology
of interest. That is, if U is a cover of a scheme S in the given topology, then the diagram

(5.2) X (S) // ∏
U∈U
X (U) //// ∏

U,V∈U
X (U ∩V)

// //// ∏
U,V,W∈U

X (U ∩V ∩W)

is a 2-pullback diagram in the 2-category of groupoids.6

Since we’re at categorical level 2, we need to consider triple intersections, rather than double ones. If
you need to care about higher stacks you’ll consider higher-order intersections.

We’re deliberately ambiguous about what topology to use, because it might depend on the application,
but generally the étale topology is a good one to use.

Definition 5.3. Let f : X → Y be a morphism of stacks, i.e. a natural transformation. Then, f is representable
if for all schemes S and maps g : S→ Y , i.e. natural transformations g : HomSch(–, Y)⇒ Y , if T denotes
the pullback

(5.4)

T //

��

X

f
��

S
g // Y ,

then T is a scheme.

Using representability, we can extend definitions of schemes to stacks: for example, we say that a map of
stacks f : X → Y is étale if, with notation as in (5.4), the induced map T → S on all pullbacks to schemes is
étale. Hence we can make sense of the following notion.

Definition 5.5. A stack is algebraic if it’s covered by a scheme.

Definition 5.6. A stack X is Artin (resp. Deligne-Mumford) if

• the diagonal ∆ : X → X ×X is representable, and
• there exists a scheme X and a smooth (resp. étale) surjection X → X .

Remark 5.7. Representability of the diagonal is equivalent to a simpler condition: for all morphisms S→ X
and T → X , where S and T are schemes, the pullback S×X T is a scheme. The reason this arises is that the

6The objects are groupoids, the morphisms are functors, and the 2-morphisms are natural transformations.
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diagram

(5.8)

S×X T //

��

X

∆
��

S× T // X ×X
is a pullback diagram. (

On the other hand, the existence of a surjection from a scheme is hard to check. There are some theorems
which can help you, e.g. the Artin representability theorem, but there’s no silver bullet.

Example 5.9. Let X be a scheme and G be an algebraic group acting on X. Then, we can define the quotient
stack (sometimes also stacky quotient) [X/G] by its functor of points: given a scheme S, [X/G](S) is the
groupoid of G-torsors T → S (i.e. G-schemes T such that T/G ∼= S) together with G-equivariant maps
T → X; the morphisms are automorphisms of G-torsors7 intertwining the maps to X.

Of course, one has to check this is a stack, but this is easier than in general, and Artin representability
follows from the natural quotient map X → [X/G].

For example, if X = pt and G acts trivially, [pt/G] is called the classifying space of G and denoted BG; it
is the moduli space of G-torsors, as maps S→ BG are in natural bijection with G-torsors over S. (

Remark 5.10. Another perspective on stacks is that they’re quotients of groupoids in schemes. For example,
if X → X is an étale cover of a Deligne-Mumford stack, then the diagram

(5.11) X×X X //
// Xoo // X

is a groupoid object in Sch. This is nice, but it absolutely depends on X, which we can think of as an atlas
on X . (

Key examples of stacks are moduli spaces of curves, because they tend to have automorphisms.

Definition 5.12. The moduli stack of stable curves Mg,n is the Deligne-Mumford stack whose functor of
points sends a scheme S to the groupoid of maps f : C → S together with n sections p1, . . . , pn such that f
is proper, flat, has geometric fibers, is dimension 1, is connected, is reduced, has at most nodal singularities,
and whose fibers have finitely many automorphisms fixing the images of the sections (i.e. the fibers are
stable marked curves). A lot of work goes into showing that this is a Deligne-Mumford stack! It’s also
proper and smooth.

Remark 5.13. Without the finite automorphisms condition, such curves are called prestable curves. There is a
moduli stackMpre

g,n , but it’s only an Artin stack, which is not as cool. (

One way to constructMg.n is to start with the Hilbert scheme of points Hilb1(PN), the fine moduli space
of N points on P1, which is representable as a scheme; then one constructs an action of a GLM on it, and
the stacky quotient is equivalent toMg.n.

By general moduli theory, applying the identity map Mg,n → Mg,n, there’s a universal stable curve
Cg,n →Mg,n such that any family of stable curves C → S arises as a pullback of Cg,n. In fact, Cg,n 'Mg,n+1
and the map forgets the last point. This is somewhat surprising, and is nontrivial.

Example 5.14. More generally, we’re in the moduli stack of stable maps: fix a target X and a β ∈ A1(X);
then the stack is calledMg,n(X, β). In this case the functor of points sends a scheme S to the groupoid of
maps f : C → S with n sections p1, . . . , pn with the same conditions as above, except that the curves are
prestable, together with a map µ : C → X such that C is stable with respect to µ.
Mg,n(X, β) is a Deligne-Mumford stack. The proof is not easy, of course; one proof can be found in

Olsson’s book [Ols16]. Another approach, due to Kontsevich [Kon95], assumes that representability of the
diagonal has already been shown (which is fine, because that’s the easier part), then constructs a map

(5.15) Mg,n(X, β) −→ Hom(Cg,n, X)

7A morphism of G-torsors is automatically an automorphism, at least in the complex topology. TODO: is this true more generally
in algebraic geometry?
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sending (C → X, C → S) 7→ C → X. This is great, except that it’s prestable, so we need to fix it. Kontsevich
shows (5.15) is an étale-locally closed immersion, and then there is a map Hom(Cg,n, X) ↪→ Hilb1‘(Cg,n×X)
sending f to its graph. That this works is highly nontrivial, and depends on nice properties of everything
around. Anyways, now we’ve constructed an étale-local embedding into a scheme, so there must be an
étale cover by a scheme.

There’s a third construction, due to Toën. It begins with the following general theorem from the theory
of stacks.

Theorem 5.16. Let X and Y be Artin stacks. If X is proper and Y is locally finite type, then HomStack(X ,Y) is
again an Artin stack.

TODO: I missed what followed. (

6. Virtual fundamental classes: 3/5/18

Recall that in Gromov-Witten theory, we’ve been studying maps of punctured algebraic curves (C, p1, . . . , pn)
into a projective variety X pushing [C] ∈ H2(C;Z) to a fixed class β ∈ H2(X;Z), and such that each pi
lands in a specified algebraic cycle zi. We allow reducible curves with specified singularities in order to
obtain a compact moduli spaceMg,n(X).

Within the Deligne-Mumford coarse moduli space Mg.n, we can consider curves which admit maps of
the form described above. These define a class in H∗(Mg,n;Q). More precisely, we have an evaluation map8

(6.1) π1 : Mg,n(X, β) −→ Xn

sending ( f , C, p1, . . . , pn) 7→ ( f (p1), . . . , f (pn)) and a map π1 : Mg,n(X, β) → Mg,n which is not just the
forgetful map — the underlying curve of a stable map might not be stable. However, after contracting some
components without marked points, it is, and that’s what π2 does.

Therefore we can pull back by π1, and we can also push forward by π2 with a Gysin map9

(6.2) π2! : H∗(Mg,n(X, β);Q) −→ H2m+∗(Mg,n;Q),

where

(6.3) m := (g− 1)dim X +
∫

β
ωX .

Here ωX is the canonical class (Chern class of the canonical bundle).

Definition 6.4. The Gromov-Witten class is

Ig,n,β(α1, . . . , αn) := π2!π)∗1(α1 ^ · · ·^ αn) ∈ H2m+|α1|+···+|αn |(Mg,n;Q),

where αi ∈ H∗(X) is the Poincaré dual to zi.

In particular, the Gromov-Witten invariant associated to all this data is

(6.5) 〈Ig,n,β〉(α1, . . . , αn) :=
∫
Mg,n

Ig,n,β(α1, . . . , αn).

We can define the moduli functor Mg,n(X; β) : SchC → Set sending S to isomorphism classes of stable
maps over S with genus g and class β.

Theorem 6.6 (Alexeev). If X is projective, then Mg,n(X; β) has a coarse moduli space Mg,n(X; β), which is a
projective scheme over C.

Theorem 6.7 (Kontsevich [Kon95]). If X is projective,Mg,n(X, β) is an algebraic stack which is proper over C.
Furthermore,M0,n(Pr, β) is smooth for any β ∈ H2(Pr;Z).

8TODO: I might have Mg.n versusMg,n wrong in the following.
9This is true if X is smooth. Otherwise we have to do some more work.
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This story is very nice, but is too naı̈ve: Mg,n(X, β) may have components whose dimension is “too
large,” i.e. larger than this argument expects. Therefore integrating cohomology classes over it doesn’t
work in the way we described.

Let ξ be the fundamental class of Mg,n(X, β), which is Poincaré dual to 1 ∈ H∗(Mg,n(X, β);Q), and let
e := dim Mg,n(X, β). Poincaré duality tells us that capping with ξ defines a map

(6.8) – _ ξ : H∗(Mg,n(X, β);Q) −→ H2e−∗(Mg,n(X, β);Q).

Therefore if π := (π1, π2) : Mg.n(X, β)→ Xn ×Mg,n and α := α1 ^ · · ·^ αn, then

π2!π
∗
1 (α) = π2!PD−1(π∗1 α _ ξ)

= PD−1 p2∗π∗(π
∗p∗1α _ ξ),

where p1 and p2 are the projection maps out of Xn ×Mg,n. Therefore we can rewrite (6.5) as

(6.9) 〈Ig,n,β〉(α1, . . . , αn) = PD−1 p2∗(p∗1α _ ξ).

In very nice situations, this makes sense. In general, it makes sense except for ξ, so to make these formula
make sense, we need some sort of replacement ξ ∈ H∗(Mg,n(X, β);Q). This is what the virtual fundamental
class does.

Example 6.10 (Normal cone). One explicit example of a virtual fundamental class comes from the normal
cone. Let E → Y be a rank-r vector bundle over a smooth variety Y. For a section s of E, let Z := Z(s)
denote its zero scheme, the scheme defined by its zero locus.

This varies badly in s, but we can replace it with something which varies better. Let I denote the sheaf
of ideals of the closed embedding Z ↪→ Y. The normal cone of Z is

(6.11) CZY := SpecZ

(
∞⊕

k=0

I k/I k+1

)
.

Here SpecZ means to take the relative Spec over Z. This is an affine cone over Z. The structure map to Z
comes from the surjection (·s) : O(E∗)→ I , inducing a surjective map

(6.12)
⊕

+k Symk(O(E∗)/I O(E∗)) �
⊕

k

I k/I k+1.

inducing an embedding CZY ↪→ E|Z with a pushed-forward fundamental class [CZY] ∈ An(E|Z). Its
pullback s∗[CZY] ∈ An−r(Z) has the “expected dimension of Z,” even in non-generic situations.

Lemma 6.13. If i : Z ↪→ Y denotes inclusion, then i∗(s∗[CZY]) ∈ An−r(Y) is the Euler class of E.

Therefore s∗[CZY] refines the Euler class, and varies nicely with s. This is the kind of approach we’ll
use. (

There are various approaches to this: one can look at the perfect tangent-obstruction complex, which was
done by Li-Tian [LT98], or using perfect obstruction theory, which was done by Behrend-Fantechi [BF97].

Why does obstruction theory enter the story? Here’s an analogy: let’s consider deformations of a
compact complex manifold M. The infinitestimal deformations live in H1(M; ΘM) (where ΘM denotes the
tangent sheaf ), and the obstructions live in H2(M; ΘM). Kuranishi theory says that the moduli space of
complex structure on M is locally the zero locus of a map U → H2(M; ΘM), where U ⊂ H1(M; ΘM) is an
open subset.

For us, instead of the tangent space we have something relative. Let ~q := ∑ pi and consider the sheaves
of differentials Ω1

C(~q) and f ∗Ω1
X over C; the natural map f ∗Ω1

X → Ω1
C(~q) induces a sheaf of relative

differentials Ω1
C↪→X and we have a long exact sequence of sheaf Exts:

(6.14) 0 // Ext0C(Ω
1
C/↪→X , OC) // Ext0C(Ω

1
C(q), OC) // Ext0

C( f ∗Ω1
X , OC)(Ω1

C↪→X , OC)
Ext
C
1 //// · · ·

The analogue of the tangent sheaf is

(6.15) Ext1C(Ω
1
C↪→X), OC) = H 1(C; Θ1

C → f ∗ΘX).
10



Here Θ1
C → f ∗ΘX) denotes the tangent sheaf of vector fields on C which vanish at each pi. The obstructions

live in Ext2, hence in H 2(C; Θ1
C → f ∗ΘX). Therefore the expected dimension is

(6.16) dC,X := dim H 1(C; Θ1
C → f ∗ΘX)− dim H 2(C; Θ1

C → f ∗ΘX).

Anyways, using the long exact sequence, you can actually calculate what this is: it will be

dC,X = χ( f ∗ΘX) + dim Ext1(Ω1
C(~q),Q)− dim Ext0(Ω1

C(~q),Q)

= −
∫

β
ωX + (1− g)dim X + (3g− 3) + n

= n−
∫

β
ωX + (1− g)(dim X− 3),

which is what we saw in the first talk.
Li-Tian’s approach [LT98] works more generally. One can start with a functor F : SchopC → Set, such as

the stackyMg,n(X, β), an affine scheme S over C, and an OS-module N . If SN = Spec(Γ(OS)⊕ Γ(N )),
then we have an infinitesimal extension S→ SN .

Definition 6.17. The tangent functor TF to F is the functor which, for all α ∈ F (S), defines the functor
TF (α) : ModOS

→ Set sending N to the elements of F (SN ) which restrict to α under pullback F (SN )→
F (S).

7. More virtual fundamental classes: 3/26/18

Today, Jonathan spoke about virtual fundamental classes, including some examples.
In the convex case, we saw that the obstruction was zero, so the virtual fundamental class is the actual

fundamental class, and therefore a lot of this is irrelevant. But convex varieties are very special.
Recall that we’ve been studying Gromov-Witten invariants Iβ(γ1, . . . , γn), which we naı̈vely defined to

be an integral overMg,n(X, β) of p∗1(γ1) ^ · · ·^ p∗n(γn), where pi : Mg.n(X, β) is the ith projection map.
In general, though, we might not have a fundamental class: Mg,n(X, β) isn’t always smooth, and might

not have the expected dimension. Last time, we computed the expected dimension of the moduli space,
which is the dimension in the convex case, and is the dimension which would allow Gromov-Witten
invariants to be defined and make sense. We would like to construct a replacement, called the virtual
fundamental class, in this dimension.

As a guiding example of what we want to generalize, we’ll look at the normal cone. Let Y be a smooth
scheme and E be a rank-r vector bundle over Y with a section s and zero scheme Z ⊂ Y of s. In general,
Z behaves weirdly in families, e.g. its dimension can jump, so we want to replace Z with a class in the
correct degree. To do this, we constructed the normal cone CZY with an embedding CZY ↪→ E|Z, and then
the virtual fundamental class s∗[CZY] ∈ An−r(Z). We then saw that in the case of a quintic threefold, this
virtual fundamental class, which has the expected dimension, is very helpful.

There are two definitions of the virtual fundamental class, one due to Li-Tian, and a more commonly
used one by Behrend-Fantechi. It’s stacky, so we’ll provide the simpler Li-Tian construction today.

The idea is to endow Mg,n(X, β), understood through its functor of points SchopC → Set, with some
extra structure. We defined the tangent functor of such a functor above. More generally, given a functor
F : SchopC → Set, the tangent functor fits into a tangent-obstruction complex T1F → T2F , where T1F is
the tangent functor and T2F is some obstructon functor: given (α, S, N) it produces an obstruction class;
the vanishing of this class is a necessary and sufficient condition for the existence of an α ∈ F (SN) which
extends α.

Remark 7.1. TODO: what exactly does “vanish” mean? I think (but am not certain) the naturality of this
construction in S and N is expressed in some natural transformation, and we can ask whether this is
nontrivial. (

Definition 7.2. The tangent-obstruction complex is perfect if for each (α, S), there’s a 2-term complex of
locally free sheaves OS-modules E1 → E2 such that TiF (α)(N) is the ith sheaf cohomology of E• ⊗OS N .
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Again, there’s got to be something additive going on. The tangent-obstruction complex ought to be
valued in some kind of linear category, in the sense that tangent things tend to be linearizations, but it’s not
entirely clear what happened. Probably they’re valued in OS-modules, but it’s not immediately clear how.

Let’s make the strong assumption that F is represented by a scheme Z, so that E i passes to a vector
bundle Ei := SpecS(Sym•(Ei)) (this is relative Spec); equivalently, O(Ei) = E i. If Ê1 denotes the formal
completion of E1 along its zero section, Li-Tian constructed a Kuranishi map F : Ê1 → E2 (which is non-
unique). This has a zero scheme Ẑ, and a virtual normal cone Cε− , which is its restriction to Z, and embeds
in E2. Then, the virtual fundamental class is s∗[Cε− ], where s is the zero section of E2. We had to choose E1

and E2, but Li-Tian show that the class we get doesn’t depend on this choice.
This is a generalization of the normal cone; if Y is smooth, E→ Y is a vector bundle, and s is a section

with zero scheme Z, then the virtual normal cone reduces to the normal cone we discussed last time.

Example 7.3. Let V ⊂ P4 be a smooth quintic and d > 0. To count lines in it, we’re interested in the virtual
fundamental class [M0,0(V, d`)]virt. A line in V comes from a line in P4, so we have a map

M0,0(V, d`) ↪→M0,0(P4, d).

Not everything here is smooth, so the former is a stack. Let Vd →M0,0(V, d`) be the vector bundle whose
fiber over an f : C → P4 is the space H0(C; f ∗OP4(5)).

Fix an s ∈ OP4(5) that defines V as its zero scheme; then s induces a section s of Vd, and there is a sense
in whichM0,0(V, d`) is the zero locus of s.

TODO: then I had to leave early. . . (

8. Spin Hurwitz numbers and Gromov-Witten theory: 4/2/18

8.1. Hurwitz numbers and Gromov-Witten theory. In this section, we follow Okounkov-Pandharipande,
“Gromov-Witten theory, Hurwitz theory, and completed cycles.”

Let X be a smooth projective curve over C and β ∈ H2(X), so that we have a moduli space Mg,n(X; β)
and Gromov-Witten invariants.

(For this section, we need a small variant: we allow curves to be disconnected. The theory apparently
still goes through unchanged.)

Definition 8.1. For 1 ≤ i ≤ n, the ith cotangent line bundle Li → Mg,n(X, β) is the bundle whose fiber at a
(C, p1, . . . , pn)→ X is T∗pi

C. Its first Chern class is denoted ψi.

We’re interested in a specific kind of Gromov-Witten invariants.

Definition 8.2. Fix a γ ∈ H∗(X;Q), and define〈
n

∏
i=1

τki
(γ)

〉
:=
∫
[Mg,n(X,β)]vir

n

∏
i=1

ψ
ki
i ev∗i (γ).

(If the cohomology class in the integrand doesn’t have the expected dimension, this invariant is defined to
be zero.)

Let ω ∈ H2(X;Q) denote the Poincaré dual of the point class. Then, the invariants for γ = ω are called
the stationary sector of the Gromov-Witten theory for X.

Definition 8.3. TODO: define Hurwitz numbers.

The stationary sector of the Gromov-Witten theory of a curve can be determined completely in terms of
Hurwitz numbers. The idea of the proof is that the moduli space has dimension zero, and is therefore the
integral is a finite, weighted sum.

Theorem 8.4 (Gromov-Witten/Hurwitz correspondence (Okounkov-Pandharipande)). Let X be a smooth
curve. Then 〈

n

∏
i=1

τki
(ω)

〉
X,β

=
1

k1! · · · kn!
HX

d ((k1 + 1), . . . , (kn + 1)).
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We explain the notation on the right-hand side, sort of. Let φn : Q[Sn]Sn → Q[P(n)] denote the
Fourier transform (average value of characters on a given conjugacy class), which extends to a map
from

⊕
n Q[Sn]→ Q[P] (here P(n) is partitions of n and P is all partitions of natural numbers. We allow

n = 0.) Then, something technical involving generating series happened. . . but what it seems like is to get
(i), we apply φ, then take the highest-degree term in something called the shifted symmetric action, then
apply φ−1 with an appropriate weighting.

So that part of the story is completely solved. Nice.

8.2. Spin structures and spin Hurwitz numbers. You can define different flavors of Hurwitz numbers for
different tangential structures associated to surfaces; for example, there’s no reason we have to restrict to
orientable surfaces (and the relationship between Hurwitz numbers and Gromov-Witten theory apparently
generalizes to one between unoriented Hurwitz numbers and a kind of Gromov-Witten theory for real
surfaces). Today we’re going to focus on spin Hurwitz numbers.

Recall that a spin structure on a manifold M is an (equivalence class of a) choice of a principal Spinn
bundle which reduces to the principal On-bundle of frames. On a Riemann surface, this is equivalent to
an (isomorphism class of a) choice of a square root of the canonical bundle K, i.e. a line bundle L with
L⊗ L ∼= K. In genus g, there are 22g such line bundles.

Definition 8.5 (Atiyah). The Arf invariant a(Σ) of a Riemann surface Σ with a spin structure L is
h0(Σ; L) mod 2 ∈ Z/2.

There are many equivalent ways to think of the Arf invariant. A spin structure defines a pushforward
in K-theory, and the Arf invariant is the pushforward of 1 ∈ K0(Σ) to K−2(pt) ∼= Z/2. It is a cobordism
invariant, defining an isomorphism ΩSpin

2 → Z/2.
There are two spin diffeomorphism classes of spin circles (this is a good exercise, making use of the fact

that Spin1
∼= Z/2), called bounding and nonbounding.

To define spin Hurwitz numbers, we’ll choose a spin structure on Σ and lift it across branched covers
Σ′ → Σ. Thus the preimage of a small circle around a branch point must be a disjoint union of bounding
circles! Given an n-fold cover S1 → S1

b , the pullback spin structure is bounding iff n is odd, so we can only
consider partitions of n into odd numbers, called odd partitions. Thus, given m odd partitions p1, . . . , pm, we
define the spin Hurwitz number

Hn(Σ; p1, . . . , pm) := ∑
Σ′→Σ

(−1)a(Σ′)

Aut(Σ′)
.

The big difference is that we’re weighting by the Arf invariant this time.

8.3. Local Gromov-Witten theory of Kähler surfaces. In the next few sections, we follow Lee-Parker, “A
Structure Theorem for the Gromov-Witten Invariants of Kähler Surfaces.”

Let X be a Kähler surface and D be a canonical divisor for X. Then, the Gromov-Witten invariants of X
decompose into a sum of “local Gromov-Witten invariants” indexed over the connected components of D.
In this section we’ll discuss this result, but not its proof (which uses geometric analysis). We assume the
geometric genus pg := h2,0(X) > 0.

Instead of considering the Gromov-Witten invariants Iβ(γ1, . . . , γn), we will in this section consider the
invariant GW(X, β) ∈ H∗(Mg,n × Xn) which is the pushforward of the virtual fundamental class under
the mapMg,n(X, β)→Mg,n × Xn (stabilize, evaluate). To calculate the Gromov-Witten invariants as we’re
used to, you can evaluate this on γ1 ^ · · ·^ γn.

Let V := Re(H2,0 ⊕ H0,2), which is a 2pg-dimensional real vector space, and α ∈ V. Let Dα denote its
zero divisor and D1

α, . . . , D`
α denote its connected components. If Uk denotes an open neighborhood of Dk

α

and ιk : Uk ↪→ X is inclusion, we have a moduli spaceMg,n(Uk, Ak)

Definition 8.6. The local Gromov-Witten invariant associated to Dk
α, denoted GWloc(Dk)α, ι∗k β), is the push-

forward of the (virtual fundamental class?) ofMg,b(Uk, Ak) under the map toMg,n × Dk)
n.

One can show this doesn’t depend on α as long as we get back the same canonical divisor Dα.
Anyways, these local invariants capture the whole theory.
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Proposition 8.7 (Lee-Parker). For any choice of α,

GWg,n(X, β) = ∑
k

GWloc
g,n(Dk

α, ι∗k β).

8.4. Reduction to spin Hurwitz theory. Somehow these local GW invariants often are spin Hurwitz
numbers where the target is the curve D. But it’s still a mystery to me.

9. The Gromov-Witten/Donaldson-Thomas correspondence: 4/23/18

Today, Yan spoke about Donaldson-Thomas theory and its relationship to Gromov-Witten theory.
Let X be a smooth projective variety and C be an embedded curve. Two different ways of thinking of

C inside X will lead to two different compactifications of Mg,n(X). We’ve been thinking of C as a map
f : C → X representing a homology class β ∈ H2(X), which leads to the moduli space of stable maps
Mg.n(X, β) and Gromov-Witten theory. If we instead think of C as a one-dimensional subscheme of X,
we’ll end up with Donaldson-Thomas theory.

Before we discuss this, let’s review what we’ve done for Gromov-Witten theory, since a lot of the story
will be similar. Recall that if f ∈ Mg,n(X, β), the tangent space TfMg,n(X, β) = H0(C; f ∗TX) is the space
of deformations of f , hence is also denoted Def( f ). The obstructions are H1(C; f ∗TX). We defined the
virtual dimension to be dim(Def( f ))− dim H1(C; f ∗TX); this is the expected dimension of the moduli
space, though not always the actual dimension. Therefore one has to work harder to produce a virtual
fundamental class of the correct dimension; in the end, it’s the Poincaré dual of the top Chern class of an
obstruction.

Gromov-Witten theory is hard to compute; sometimes one can produce a C×-action on X and reduce
the computation to the fixed locus, but in general Gromov-Witten invariants are hard to compute, and
may be rational numbers. This is related to the fact thatMg,n(X, β) is generally a stack, which also makes
life harder, since a stable map usually has automorphisms. Some of these problems can be solved by
Donaldson-Thomas theory, e.g. its invariants are integers.

Let X be a 3-fold, β ∈ H2(X;Z), and n ∈ Z. Then, the Hilbert scheme Hilbn(X, β) parameterizes
1-dimensional subschemes Z ⊆ X such that χ(OZ) = n1−g[Z] = β.10

This is ultimately not the right answer, and here’s an example why.

Example 9.1. Let ft : P1 → P3 be the map

(9.2) [x, y] 7−→ [tx3, x2y, xyz, (1− t)x3 + y3],

and let Ct ⊂ C3 be its image inside one of the standard charts for P3.11 This is the disjoint union of two loci,
{x = 0, z = 0} and {y = 0, z− t = 0}, so we can think of ft as a map CqC→ C3 sending x 7→ (x, 0, t) and
y 7→ (0, y, 0).

However, as t → 0, something weird happened. TODO: not sure what, but it looks like the genus
changed? (

Therefore we use a different compactification, called the moduli space of ideal sheaves In(X, β), which
parameterizes data (E , φ) where

• E is a torsion-free12 rank-1 OX-module,
• φ is a map Det(E)→ OX ,
• c2(E) = −β, and
• χ(E) = χ(OX)− n.

There is an isomorphism of schemes Hilbn(X, β) ∼= In(X, β) sending Z 7→ IZ, but they have different
natural deformation theories. For Hilbn(X, β), we use the standard deformation theory of a scheme,
where the deformations are Hom(IZ, OZ), and the obstructions are Ext1

X(IZ, OZ). This is not a two-term
deformation, because there could be higher Ext groups.

10TODO: I probably got this wrong.
11TODO: which one?
12But it’s usually not locally free!
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On the moduli space of ideal sheaves, we can produce a different deformation theory, where the
deformations of (E , φ) are Ext1

0(E , E), and the obstructions are Ext2
0(E , E), but then there’s no further Ext

groups, so we can define the virtual dimension and virtual fundamental class as usual; it turns out that the
virtual dimension is zero!13

Kai and Behrend construct this for X a Calabi-Yau 3-fold, producing an ambient space M and a potential
function W : M→ C (related to the holomorphic Chern-Simons potential?) such that In(X, β) is the critical
locus of W. This involves some microlocal geometry.

One way to think of this is that M is a Lagrangian submanifold of its cotangent bundle, and In(X, β) is
an intersection Z with another Lagrangian, so we can take the intersection number

(9.3) IT∗M(M; Pdω) =
∫
[In(X,β)]vir

1 = χ(In(X, β), ν),

where we’re taking the weighted Euler characteristic: ν : In(X, β)→ Z is a constructible function (TODO: I
missed something to do with Milnor numbers).

If In(X, β) is smooth, things aren’t quite as nice as when it’s zero-dimensional, but they’re still okay:
the obstruction class is the top Chern class of T∗Z and the intersection number is

(9.4) IT∗M(M, dω) =
∫

Z
ctop(T∗Z) = (−1)dim Z

∫
X

ctop(TZ)χ(Z).

Further work has been done by Kai in the case when Z isn’t smooth; we still need to assume that it’s proper
and has a symmetric obstruction theory, i.e. the deformation and obstruction spaces are dual. This is true for
the moduli space of ideal sheaves on a Calabi-Yau 3-fold. In this case, there is still a constructible function
ν such that integration against the virtual fundamental class is the weighted Euler characteristic for ν.

The MNOP conjecture (here Maulik-Nekrasov-Okounkov-Pandaripande) relates the generating functions
of Gromov-Witten theory and Donaldson-Thomas theory. Here one must modify Gromov-Witten invariants
slightly by allowing disconnected domain curves, and Donaldson-Thomas invariants by a renormalization.
Specifically, if

ZGW
β = ∑

g≥0
Ñg,bu2g−2

ZDT
β = ∑

n
In,βqn.

where In,β is the integral of 1 against the virtual fundamental class, then the conjecture is

(9.5) ZGW
β =

ZDT
β (eiu)

ZDT
0 (eiu)

.
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