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Day 1. July 31

1. Dan Freed: Bordism and TFT

“Quantization is an art, not a functor.”

The first lecture will be about topology, specifically bordism; we’ll talk about the grand plan near the end.
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Definition 1.1. Let Y0 and Y1 be closed d-manifolds. Then, Y0 and Y1 are bordant if there exists a compact
(d+ 1)-manifold X such that ∂X = Y0 q Y1.

Figure 1. A bordism between (S1)q3 and (S1)q2.

The empty set is a manifold of any dimension, and the disc is a bordism between S1 and ∅.
Bordism is an equivalence relation: reflexivity and symmetry are apparent, and transitivity comes from

gluing. The set of equivalence classes is a group under disjoint union, denoted Ωd and called the bordism
group of d-dimensional manifolds.

The idea of bordism dates back to Poincaré, who tried to use it to define a homology theory of maps of
manifolds into a space. He ended up using simplices, and we got the homology we’re familiar with.

Example 1.2. In dimension 0, a single point is not cobordant to an empty set. This comes from one of the
most basic theorems in differential topology, that a compact 1-manifold has an even number of boundary
points. However, two points are cobordant to an empty set, so the number of points mod 2 defines an
isomorphism Ω0 → Z/2. (

Example 1.3. It’s also true that Ω2
∼= Z/2. The complete invariant is a nice exercise in differential topology

à la Guilleman and Pollack: let DetTY denote the determinant line bundle of the tangent bundle of Y and s
be a section of DetTY transverse to the zero section. If S := s−1(0), then S is a codimension-1 submanifold
of Y , and the mod-2 intersection number of S with itself defines an isomorphism Ω2

∼= Z/2. (

Definition 1.4. A bordism invariant is a homomorphism Ωd → Z.

You can replace Z with other abelian groups, as we did above in Examples 1.2 and 1.3.

Example 1.5.

(1) One can consider bordism of oriented manifolds, with oriented cobordisms between them. This is
again an abelian group, denoted Ωd(SO). If d = 4k, the signature of the intersection pairing defines a
bordism invariant Ω4k(SO)→ Z.

(2) Manifolds with a Un-structure (we’ll discuss these and other structures in a little bit) form a cobordism
group called Ωd(U). The Todd genus td : Ω2k(U)→ Z is a bordism invariant.

(3) Spin manifolds have an Â-genus Â : Ω4k(Spin)→ Z. (

The systematic investigation of genera and bordism invariants was undertaken by Hirzebruch. Notice that
the bordism invariants Hom(Ωd,Z) is an abelian group.

We’ll now do something called categorification, a specific example of a process that adds additional structure
to things: sets or vector spaces are replaced with categories, and functions with functors. Throughout this
lecture (and following lectures), let n := d+ 1.

Definition 1.6. The bordism category Bord〈n−1,n〉 is the symmetric monoidal category specified by the
following data.

• The objects are closed (n− 1)-manifolds.
• The hom-set Bord〈n−1,n〉(Y0, Y1) is the set of diffeomorphism classes of bordisms Y0 → Y1.
• Composition is gluing of bordisms.
• The identity idY : Y → Y is the cylinder Y × [0, 1].
• The monoidal product is disjoint union.
• The monoidal unit is the empty set, regarded as an (n− 1)-manifold.
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There are many ways to think of categories, some more philosophical than others; we’re in the business of
treating them as algebraic structures like groups or rings. You might imagine a bunch of points with arrows
between them. But unlike when we defined bordism groups, these bordisms now have a direction: each
bordism X comes with a locally constant function ∂X → {0, 1} choosing which boundary components are
incoming and outgoing. Gluing must glue the outgoing component of one bordism to the incoming component
of the other. Thus you might imagine each (n− 1)-manifold M to have a collar, a neighborhood of it in these
cobordisms diffeomorphic to M × [0, 1), and cobordisms should respect this collar. You can think of this
collar as an infinitesimal thickening in the direction of cobordisms.

We can apply the monoidal product (disjoint union) to both objects and morphisms. It’s symmetric,
meaning that there’s a natural isomorphism M qN ∼= N qM , which is the maximally symmetric tensor
structure one can apply in this case. It’s the categorification of the fact that Ωd is an abelian group.

Our central definition is the categorification of Definition 1.4. We also need a categorification of Z, and
we choose VectC, the category of complex vector spaces and linear maps, and we’ll choose ⊗ to be the
monoidal structure (you could also choose ⊕, but we will not). The “decategorification” from VectC to Z is
the dimension.

Definition 1.7 (Atiyah [Ati88]). A topological field theory (TFT) is a symmetric monoidal functor

F : Bord〈n−1,n〉 −→ (VectC,⊗).

You could ask whether the bordism invariants we discussed lift; that they’re integer-valued is an interesting
hint, which Atiyah and Segal wondered about (leading to Dirac operators and all sorts of wonderful geometry).
You may be wondering where the physics is, given the physics-sounding name of a topological field theory.
We’ll certainly get there.

The definition of a topological field theory is relatively new, stemming from attempty to understand Chern-
Simons theory and related phenomena in the 1980s. As such, it’s not as set in stone as other mathematical
definitions, and we’ll certainly consider variants along the way. So maybe it’s better to think of Atiyah’s
definition as an axiom system, rather than a complete mathematical characterization of physical phenomena.

Topological field theories have stringent finiteness condition.

Definition 1.8. Let C be a symmetric monoidal category and y ∈ C. Duality data for y is a triple (y∨, e, c),
where y∨ ∈ C and c : 1→ y⊗ y∨ and e : y∨⊗ y → 1 are C-morphisms satisfying axioms called the S-diagrams.
y is dualizable if it has duality data; then, y∨ is called its dual, e is called evaluation, and c is called
coevaluation.

In VectC, Y ∨ is the usual vector-space dual Hom(Y,C): evaluation applies a functional to a vector, and its
adjoint is coevaluation. But this can only be written as a finite sum of basis vectors if Y is finite-dimensional.
Thus a vector space is dualizable iff it’s finite-dimensional.

Lemma 1.9. Every object in Bord〈n−1,n〉 is dualizable.

Corollary 1.10. Since a symmetric monoidal functor sends dualizable objects to dualizable ones, F (Y ) is a
finite-dimensional vector space for any closed manifold Y and TFT F .

Proof sketch of Lemma 1.9. Let Y be a closed (n− 1)-manifold and Y ∨ := Y . Then, evaluation will be the
“outgoing cylinder” Y q Y → ∅, and coevaluation is the “incoming cylinder” ∅→ Y q Y , and these satisfy
the necessary axioms. �

Figure 2. The evaluation (left) and coevaluation (right) morphisms in Bord〈n−1,n〉.
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That the state spaces are finite-dimensional is striking, and certainly not true for quantum mechanics and
quantum field theory in general. So to get to physics we’re going to have to leave the purely topological
world.

There are many examples, some in Dan’s lecture notes.

Example 1.11 (Finite gauge theory [DW90, FQ93]). Fix a finite group G, which we’ll call the gauge group
of this theory. Let BunG(S) denote the groupoid of principal G-bundles on a space S; that is, principal
G-bundles on S form a category, but all morphisms are invertible. Since G is finite, these are Galois covering
spaces of S with covering group G. You can imagine a groupoid with dots and arrows again, but this time
every arrow is double-headed.

How should we turn this into a field theory? Principal G-bundles pull back, so given a cobordism
X : Y0 → Y1, we obtain a correspondence diagram

BunG(X)
t

��
s

��
BunG(Y1).BunG(Y0)

This is highly nonlinear, yet a TFT is a linear thing. We’ll linearize it by taking functions: if G is a groupoid,
FunC(G) denote the vector space of complex-valued functions on the set of isomorphism classes of G. Since X,
Y0, and Y1 are compact, their groupoids of principal G-bundles have finitely many isomorphism classes of
objects, so we can both pull functions back and push them forward (summing over the fibers), hence defining
a linear map

t∗ ◦ s∗ : FunC(BunG(Y0)) −→ FunC(BunG(Y1)).

Thus we obtain a functor FG, assigning BunG to objects and this push-pull formula to morphisms. To a
closed n-manifold X (a bordism from ∅ to itself), we obtain the number FG(X) = # BunG(X), summing
over the groupoid of bundles — but this is a groupoid, not a set, so we have to weight by the number of
automorphism groups:

FG(X) = # Bun(X) =
∑

[P ]∈π0 BunG(X)

1

# Aut(P )
.

This already models the physical case: the principal G-bundles are examples of fluctuating fields, introduced
to define the theory but summed over. The groupoid sum is a simple example of the path integral! (

The category of TFTs in dimension n, denoted TFTn := Hom⊗(Bord〈n−1,n〉,VectC), has a composition
law that’s done pointwise: (F1 ⊗ F2)(M) := F1(M)⊗ F2(M), and similarly for bordisms. This will be useful
when we try to classify TFTs, providing extra structure useful to us.

Tangential structures. We’ll hear more about tangential structures from a geometric perspective later
today. Right now, we’ll adopt a more homotopical approach. We’ve just been talking about bare manifolds,
but often one introduces additional structure: orientation, spin, and more. Tangential structures are a way to
capture a large class of such structures (broadly, the topological ones).

The tangent bundle of an n-manifold M defines a classifying map M → BGLn(R), which lifts to a pullback

TM //

��

Wn

��
M // BGLn(R).

To define a tangential structure, we’ll consider Lie group homomorphisms ρn : Hn → GLn(R) (e.g. inclusion
of SOn, projection down from Spinn, and so forth). This lifts to a map Bρn : BHn → BGLn(R). An
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Hn-structure is a lift of the classifying map

(1.12)

Bρ∗nWn

��xx
TM //

��

44

Wn

��

BHn

Bρnxx
M //

44

BGLn(R).

For example, an SOn-structure is the same thing as an orientation. You will have to reconcile this definition
with the more familiar, geometric one.

Hence we have a general definition of what we need.

Definition 1.13. A tangential structure is a fibration ρ : Xn → BGLn(R). An Xn-structure on an n-manifold
M is a lift of the classifying map along ρ as in (1.12).

For example, an orientation is specified by the map BSOn → BGLn(R), and if Xn = BGLn(R)× S, you
get cobordism of manifolds with a map to S.

Path of future lectures.

(1) Bordism and TFT, as we just saw.
(2) Quantum mechanics
(3) An axiom system for Wick-rotated quantum field theory.
(4) Another advantage of axiom systems is they allow you to consider classification theorems.
(5) We’ll expand to variations on Definition 1.7, including in particular an extended notion of locality.
(6) Invertibility in TFT, and hence some stable homotopy theory.
(7) The Wick-rotated analogue of unitarity
(8) Extended positivity for invertible TFTs
(9) Non-topological invertible theories

(10) Computations for some electron systems in condensed-matter physics.

We’re roughly following the material in [FH16], which will also be useful to keep in mind throughout the
week.

2. Dave Morrison: Geometry and Physics: An Overview

“The most powerful method of advance that can be suggested at present is to employ all
the resources of pure mathematics in attempts to perfect and generalize the mathematical
formalism that forms the existing basis of theoretical physics, and after each success in this
direction, to try to interpret the new mathematical features in terms of physical entities.”
– Paul Dirac

The title is an impossibly large topic to tackle in an hour, but we’ll do what we can to introduce the
interaction between geometry, topology, and physics in its modern form. It will be impressionistic and
historical.

Maxwell’s equations for electricity and magnetism are beautifully symmetric between electricity and
magnetism — almost. We add a source term for the electricity term, an electron. But we don’t for magnetism,
because experimentalists have not discovered a magnetic analogue, a hypothetical magnetic monopole.

Dirac’s monopoles. In 1931, Dirac asked, what if there was a magnetic monopole m? As an electrically
charged particle moves in the presence of a magnetic monpole, there’s a singularity if the path hits the
monopole, and otherwise is locally constant, but can depend on the path. In particular, if two paths π1 and
π2 differ only by going different ways around m, the difference in their actions is I2 − I1 = ~eg. In particular,
if the particle travels in a loop `, the action depends on the winding number n(`) of the loop:

I` = n(`)~eg.
This is a topological invariant, and a discrete one: we exponentiate e2πiI` , hence ~eg ∈ Z! This is the first
instance of topology appearing in physics.
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Dirac thought of this in a surprisingly prescient way, chopping up the integral into a lot of little pieces and
integrating over paths, long before the notion of a path integral was ever dreamed of.

Interlude. The beginning of quantum field theory, as discovered by Schwinger, Dyson, Feynman, and
Tomonaga, was understood reasonably well from the physical perspective, but they weren’t able to put
it on mathematical foundations. This was particularly true for Feynman’s formalism of the path integral.
Impressively, the theoretical methods they developed anyways managed to agree with experiment to a
stunning degree of accuracy, coming to a zenith in quantum electrodynamics (QED).

As such, the physicists drifted away from mathematics: they couldn’t and didn’t use math to shore up
their theoretical physics, and didn’t need to in order to get amazingly accurate results. They abandoned
Dirac’s manifesto, and in a sense math and physics divorced until the 1970s.

Yang-Mills theory. Around the 1950s, Yang and Mills wrote down nonabelian gauge theory to understand
elementary particles with nonabelian gauge symmetry (e.g. SU2 or SU3). This wasn’t taken so seriously at
first; it took an approach different from the S-matrix philosophy popular at the time. This lasted until about
the 1970s, when t’ Hooft and others quantized it and managed to make it predictive of the experiments
coming from particle accelerators. This began the shift in popularity from the S-matrix-dominant perspective
to the prevalence of gauge theory that exists today.

Gauge theory is the quantum theory of principal G-bundles and connections. Mathematicians had also
been working on these, but in parallel, and so produced different words for the same concepts.1 In the 1970s,
Simons and Yang were both at Stony Brook, and realized after talking to each other that they had such
different words for the same concepts, leading to a paper [WY75] of Wu and Yang that was a dictionary
between the two fields!

The Atiyah-Singer index theorem. A third interesting interaction between geometry and physics is the
Atiyah-Singer index theorem from the early 1960s. This was all developed in and with mathematics: principal
G-bundles, characteristic classes, Dirac operators on manifolds, and more.

The physicists and mathematicians were brought together again by the theory of Yang-Mills instantons.
For a Lie group G, one considers a principal G-bundle on a 4-manifold M and its curvature F . Then, one
can take the Lie-algebra-valued trace: one is interested in the spaces of solutions related to

(2.1) L =

∫
M

tr(F ∧ (?F )).

To understand this properly, one need to understand both the mathematical and physical phenomena
behind it. There’s also interplay between Euclidean and Minkowski signature — one important input is
action-minimizing solutions to Euclidean Yang-Mills in R4 that either vanish at infinity or have bounded
growth of some sort.

The ADHM construction. Atiyah, Drinfel’d, Hitchin, and Manin [AHDM78], four mathematicians, found
all of the solutions for G = SU2. This is impressive on its own, but they used some surprisingly fancy
mathematics (Penrose’s twistor transform and some algebraic geometry) that was previously not known to
be connected to physics. Subsequently, Atiyah gave the Loeb lectures in the Harvard physics department,
and this was big news: a mathematician was using geometry to talk to physicists! Even though the Harvard
math and physics buildings were near each other, there hadn’t been a lot of discussion between the two
departments at the time, barring some more traditional mathematical study of PDEs arising in physics.

One surprising fact about these solutions is that even though we want the solutions to be strongly controlled
at infinity, the connection does not need to be. You can get a topological invariant called the instanton
number from the degree of a map from a large S3 in R4 to SU2

∼= S3. Since π3(SU2) = π3(S3) ∼= Z, the
homotopy class of this map, written as an integer k, is called the instanton number of the solution. You can
also compute it geometrically:

8πk =

∫
tr(F ∧ F ).

ADHM constructed solutions with arbitrary instanton number.

1Both sets of words are still in vogue, even though the mathematicians and physicists are talking to each other again.
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Since the Lagrangian (2.1) looks very similar to k/8π, and for a 2-form F , ?F = ±F , you could ask
whether your solutions are self-dual (?F = F ) or anti-self-dual (?F = −F ). It turns out there’s always a
decompositioin

F = Fsd + Fasd,

and

‖F‖2 = ‖Fsd‖2 + ‖Fasd‖2

8π2k = ‖Fsd‖2 − ‖Fasd‖2,

so the minimal-action solutions are either self-dual or anti-self-dual.

Anomalies. The next interaction between physics and mathematics arose in the study of anomalies. These
are symmetries of the field theory that do not preserve the integration measure in the path integral. The
fields are sections of some bundle built from the tangent bundle or spinor bundles (for fermionic theories), or
self-dual fields. But in the case of spinor bundles, anomalies popped up.

This led to a question which looks very mathematical: suppose we have a bundle E → M × S1, which
we can understand as using a symmetry of M to glue M × [0, 1]. Choose a B such that ∂B = M × S1, and
we want to extend this structure to B. The anomaly ends up stated in terms of characteristic classes and
invariant polynomials of this structure on B. There are specific steps which determine how this acts on the
measure, and if they don’t vanish, the symmetry of the classical theory is not a symmetry of the quantum
theory, and you have an anomaly. This is okay, but there are some where you really need the symmetry to
be present at the quantum level, and for these checking the anomaly is an important and useful tool. This
differential-geometric perspective on manipulations of the path integral is due to Zumino and collaborators.

In a spinor theory, matter is essentially a section of a spinor bundle tensored with a gauge bundle. Hence
it’s potentially subject to an anomaly, but one of the remarkable early discoveries in this field is that the
anomaly cancels. When people generalized to supersymmetry, this anomaly vanishes for trivial reasons, and
has interesting ramifications on 12-manifolds for the type IIB theory. This leads to the famous Green-Schwarz
mechanism. In string theory, there are other ways for the anomalies to cancel.

Donaldson’s work on Yang-Mills. The ADHM construction works on R4 and S4; Donaldson generalized
it to arbitrary compact 4-manifolds to produce remarkable results in topology. This is in some ways the
opposite to Dirac’s manifesto, taking physics and using it to understand mathematics. At least topology, this
was probably the first time understanding flowed in that direction.

In 1988, Witten [Wit88] found a physical interpretation of Donaldson’s solutions, but strangely, it didn’t
depend on the metric, leading to the definition of a topological field theory. From the perspective of something
like quantum gravity, the absence of metric dependence is crazy, but it has been extremely useful. With more
physics input, Seiberg and Witten took a new approach to the Donaldson-Witten TQFT [SW94a, SW94b]
which has made some of the computations more straightforward.

These days, there’s also the large overlap between the mathematics and physics of topological phases of
matter, kicked off by Haldane and Wen’s work. Wen was a string theorist before he did condensed-matter,
which is probably where he picked up the perspective of geometric methods.

This ping-pong between math and physics is a great perspective to adopt, and hopefully future research in
this area will continue to use input from math to understand physics and physics to understand math.

3. Dan Freed: An axiomatic system for quantum mechanics

First, Dan encouraged all of us to look at the notes he posts online: they contain lots more examples of
TFTs, and exercises that will probably generate interesting discussion.

Axiom systems for quantum mechanics have been considered for a long time, starting with Dirac, but
mathematicial physicists have considered myriad variations on these axioms. The ones we consider will be
useful for considerations on Wick rotation that we’ll see in later lectures.

We start with a Riemannian manifold (M, g) together with a potential function V : M → R. This at least
seems to model a single particle moving on M , but if, e.g. M = (Rn)k, this system tracks k particles moving
in Rn.
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We also have time M1, which is an affine space modeled on the Euclidean line E1.2

The Lagrangian of the system is a density representing the total energy of the system: if we let the system
evolve from t0 to t1, we get a map φ : M1 →M encoding the trajectory of the particle, and the Lagrangian is

L =

(
1

2
|φ̇|2 − φ∗V

)
|dt|.

From this we derive both classical and quantum physics. Classically, we apply the Euler-Lagrange equations
(which in this case reduce to Newton’s equations of motion) to determine which geodesics are permitted,
leading to the solution space N ⊂ Map(M1,M), which obtains a symplectic form from the Lagrangian
density.

Quantum mechanics does something different, integrating over the trajectories. There’s a space S of states,
which are points of N , or more generally probability distributions on N . There’s also a space O of observables.
In general, S is a convex set containing the pure states S0 (the probability distributions concentrated at a
point); the rest are called mixed states. The observables O form a complex vector space with a real structure,
and in the same way that N acquires a symplectic form, O contains a Lie algebra O∞; the bracket is called
the Poisson bracket.

There will also be a particular observable H ∈ O∞R called the Hamiltonian. Observing an observable in a
given state defines a map from OR ×S to the space of probability measures on R. One can take the expected
value of such a measure, and this is the expected or average value of that observable in that stete. Moreover,
the Hamiltonian defines a semigroup of automorphisms of S and O, which describes the time evolution of
this system. There are different perspectives on this, some of which are dual (e.g. the Heisenberg picture vs.
the Schrödinger picture).

It turns out that, with this mathematical data, O is also an associative algebra, even a Poisson algebra,
but there doesn’t seem to be physical meaning to the multiplication. It’s more helpful to think of O as a
vector bundle over M1; given Ati in Oti (the fiber over time ti), one can form the correlator 〈At1 · · ·Atk〉,
which is an important invariant, often with physical meaning.

Using this, we can formulate an axiom system.

Definition 3.1. A quantum system is the following data.

• A complex Hilbert space H.
• The Hamiltonian, a self-adjoint operator H : H → H.
• The space of pure states S0 = PH, and the space of mixed states

S = {ρ : H → H | ρ ≥ 0, tr(ρ) = 1}.

• The space of observables OR, the self-adjoint operators on H.
• Time evolution, a semigroup law

t 7−→ Ut = e−itH/~ : H −→ H.

The observation map comes from von Neumann’s spectral theorem: given a self-adjoint operator A, one
obtains a projection-valued measure πA on the line. Hence the map sends A and ρ to the probability measyre

E ⊂ R 7−→ tr(πA(E) ◦ ρ).

With our Riemannian manifold (M, g) as above, you should think of H = L2(M) and H = ∆g.

Example 3.2 (Toric code). This example is relevant to what we’ll be thinking about this week. It was
introduced by Kitaev [Kit03], albeit not quite in this form. Throughout, d denotes the space dimension.

Let Y be a closed manifold with the structure as a finite CW complex, i.e. finite sets of i-cells ∆i for each
0 ≤ i ≤ d. Let Y i denote the i-skeleton, the cells of dimensions at most i; then Y 0 ⊂ Y 1 ⊂ · · · , and this is a
filtration. Let ∆i denote the set of i-cells of Y .

We’ll consider the (discrete) groupoid of “relative principal G-bundles” BunG(Y 1, Y 0), pairs (P, s) where
P → Y 1 is a principal G-bundle and s : Y 0 → P |Y 0 is a section of P on the 0-skeleton. As a set, this is a
product of copies of G indexed by the edges of Y .

2You might think the distinction between affine space and a vector space is fussy, but it’s different to say “this lecture ends

in an hour” and “this lecture ends at 1:00,” especially since it ends at 3.
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Now we can incorporate this system into our axiomatic framework. The complex Hilbert space of states is
actually finite-dimensional:

H := Map(BunG(Y 1, Y 0);C) ∼=
⊗
e∈∆1

Map(G,C).

The Hamiltonian is

H :=
∑
v∈∆0

Hv +
∑
f∈∆2

Hf ,

whereHv andHf are terms corresponding to 0- and 2-cells respectively: given a vertex v, let ϕv : BunG(Y 1, Y 0)→
BunG(Y 1, Y 0) send (P, s) 7→ P (P, sv), where

sv(v
′) =

{
s(v), v 6= v′

1 + s(v), v = v′.

Then,

Hvψ :=
1

2
(ψ − ϕ∗vψ),

and

Hfψ := Hol∂f (P ) · ψ.
That is, take the holonomy of P around the boundary of f , which is either −1 or 1, and multiply by that.

From this definition, it’s evident that SpecH ⊂ Z≥0. The space of ground states isH0 = Map(BunG(Y );C).
Why is this? We have a correspondence diagram

BunG(Y 1, Y 0) // BunG(Y 1) BunG(Y );oo

if Hvψ = 0, then ϕ∗vψ = ψ, so ψ cannot depend on the value of the section s at v; dually, if Hfψ = 0, then
ψ = 0 on all bundles P which have nontrivial holonomy around f . Thus, requiring Hvψ = 0 for all v pushes
us forward to BunG(Y 1), and requiring Hfψ = 0 pulls us back to Bun)G(Y ). (

Relativity tells us that certain approximations of these systems are the same: since ~ has units of ML2/T ,
then low-energy behavior is the same thing as long-time behavior, and using the speed of light c, which
has units of L/T , then this is also the same thing as long-range (long-distance). Much of the interesting
qualitative behavior of the system (e.g. ergodicity) fits into one of these paradigms, so understanding this
behavior (e.g. via the space of ground states) is important, and is something we’ll see later this week. One
suprising phenomenon is that, though the toric code depends strongly on the lattice, its space of ground states
is a purely topological invariant. This is expected behavior of gapped systems, those whose Hamiltonians
have a gap between their two smallest eigenvalues. Another example of a gapped system is a particle moving
on a compact Riemannian manifold, using spectral theory of the Laplacian; compactness is necessary here.

We want to consider families of systems, e.g. for classifying them. This involves forming a moduli space, a
space parameterizing geometric objects. Here’s a simple example.

Example 3.3. Let V be a real, two-dimensional vector space, so that Sym2 V ∗ is the space of symmetric
bilinear forms V × V → R. Such a form has a signature: there’s a cone of forms with signature ±2, and the
rest have signature 0, along with some degenerate forms ∆. Thus, the moduli space of nondegenerate bilinear
forms is M := Sym2 V ∗ \∆, and its set of connected components, also called the deformation classes for the
original moduli problem, is given by the signature σ : π0M→ {−2, 0, 2}, and is a bijection. (

In general, you have to fix some discrete invariants: signature or Euler characteristic of a geometric object,
dimension, etc.

We’ll want to form a moduli space of quantum-mechanical systems and determine the deformation classes.
In general, this is set up by fixing some data (e.g. dimension), then considering all systems and removing
some singularities. The singularities are those where the Hamiltonians are gapless, and are phase transitions
(exactly as in the phase transitions from ice to water to gas). There are two kinds: in a first-order phase
transition, one of the eigenvalues is brought down to zero, but the spectrum is still discrete and even gapped:
the dimension of the ground state jumps. In a second-order phase transition, the energy gap closes, and the
ground state is part of the continuous spectrum. For water, all phase transitions are first-order except for the
triple point, which is second-order.

9



So we throw out the phase transitions and, given a dimension d and a symmetry group I, we’d get a
moduli space M(d, I) of lattice systems in dimension d with I-symmetry. We want to compute the set of
deformation classes π0M(d, I).

But there’s a lot more to do yet — we haven’t defined these lattice models, let alone the moduli space.
More concretely, to attack this physical problem mathematically, we need to make a mathematical model F
from it, and justify why we believe this is a good model for the physical problem. After this, we can prove
theorems about F , then try to apply these theorems to the original problem.

Though we won’t construct moduli space, we do get mathematical models and enough information to
compute. The approach proceeds by producing a (not yet completely well-defined) map from M(d, I) to a
moduli space of field theories M′(d+ 1, H), where H is some other symmetry group. This map is expected
to exist for physical reasons, and we can use M′(d+ 1, H), which we understand better, to make progress on
the original problem.

Wick rotation. Let’s change gears a bit for the last few minutes.
Recall that time evolution defines for every point t ∈ R the unitary operator Ut = e−itH/~. Because the

Hamiltonian H should be a positive definite operator, we can formally extend this to C−, the semigroup of
complex numbers with nonpositive imaginary part. The function t 7→ e−itλ, λ > 0, conformally maps C−
into the (closed) unit disc. We end up with a holomorphic semigroup whose limit on the boundary is the
unitary group, and it acts by “small” operators (in a sense that they’re analytically easy to control). This is
a problem-solving technique in much the same way that one uses contour integration to understand problems
that are formulated entirely on the real line.

Now, if you look at the ray through −i, you get a real contracting semigroup τ 7→ e−τH~, whose “imaginary
time” is easier to analytically understand. One might wonder whether restricting to imaginary time is
sufficient to understand the system, and for quantum mechanics a little operator theory shows this to be the
case. The axiom system we discuss in a few lectures uses Wick rotation in a crucial way.

Axioms for quantum mechanics. Let Bord〈0,1〉(SO∇) be the bordism category of oriented Riemannian
0-manifolds (with collars), and tVectC be the category of complex topological vector spaces. Then, one could
try to think of quantum mechanics as a symmetric monoidal functor

F : Bord〈0,1〉(SO∇) −→ tVectC.

How do we see this? We want to send pt 7→ H, and the interval [a, b] to time evolution by τ = −i(b − a),
which is e−τH/~ : H → H. The observables also have a geometric interpretation: to observe at x, cut out a
small ball around x, producing a bordism starting at the S0 around x. Hence we get something roughly like
H∗ ⊗H, and evaluation defines the observable. (There are some missing words here: we really should let
the neighborhood of x shrink to 0 and take a limit, and think about distributions on H.) More generally, to
calculate a Wick-rotated correlation function, excise several points, producing maps from Hk ⊗ (H∗)k → C,
which gives you the correlation function in question (modulo the same caveats).

We’ll generalize this to arbitrary functions to get the story for Wick-rotated quantum field theory in
general, and then go back to discuss the relativistic physics that underlines it. For a good reference on all
this, see Segal’s lectures on this material from about five years ago.

4. Robert Bryant: Symmetries and G-structures

“Sorry. . . that’s the only physics joke I’ll make.”

The idea for this lecture is that there is a whole collection of geometric structures: complex, almost
complex, symplectic, almost symplectic, CR, and more, and we can treat them in a unified way that extends
what you’ve learned about Riemannian geometry. The idea is to look at local invariants and symmetry
groups. This perspective was known to Cartan a century ago, but the examples are often newer.

Throughout this lecture, we’ll consider geometric structures on an m-manifold M . It’ll often be useful to
have an auxiliary vector space m around, which is a real m-dimensional vector space which we’ll think of as a
generic tangent space to M .

The bundle of principal coframes π : FM (m)→M is the bundle whose fiber at an x ∈M is the space of
isomorphism u : TxX → m. This space is a right GL(m)-torsor (hence a GLm(R)-torsor), where if A ∈ GL(m),
u◦A = A−1 ◦u, so for any Lie subgroup H ⊆ GL(m), we can consider a subspace B →M which is a principal
right H-subbundle. An H-structure is a section of the bundle FM (m)/H.
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This formalism captures many different kinds of geometric structures on manifolds.

Example 4.1. Let q be a quadratic form on m and H = O(m, q), the orthogonal group preserving q. Then,
a point in the coframe bundle u : TxM → B that’s in a principal H-subbundle determines and is determined
by a nondegenerate, smoothly varying quadratic form on TM , i.e. a section of Sym2(T ∗M). Thus, an
H-structure is a Riemannian metric. (

Example 4.2. Now suppose J0 : m → m is a complex structure on m. If we take H = GL(J0,m), then
choosing an H-subbundle H → B →M is equivalent to choosing an almost complex structure on M . (

Example 4.3. Similarly, if β ∈ Λ2(m∗) is nondegenerate, then letting H = Sp(β,m) (the symplectic group
preserving this form) we find that H-structures are symplectic structures on M . (

The assignmentM → FM (m) is functorial: for diffeomorphisms f : M1 →M2, we get a map f∗ : FM1
(m)→

FM2
(m) which sends u 7→ u ◦ (f ′(πM1

(u)))−1. This generalizes to H-structures as long as f preserves the
H-structure.

The purpose of this talk will be to show why this is interesting and useful. We won’t really talk about
when H-structures exist: there are topological obstructions, and most even-dimensional manifolds aren’t
almost complex or symplectic. For a given manifold, it’s often not easy to determine when an almost complex
structure integrates to a complex structure.

However, homogeneous spaces provide a family of examples with H-structures. Let P be a closed subgroup
of a Lie group G and η : TG → g be the left-invariant 1-form such that ηe = idg. If π : G � G/P is the
quotient map, then its derivative maps TgG→ TgP (G/P ), and we get a commutative diagram of short exact
sequences:

0 // Tg(gP ) //

η

��

TgG //

η

��

TgP (G/P ) //

u(g)

��

0

0 // p // g // g/p = m // 0.

In this case, G/P has an H-structure, where H = Adg/p(P ) ⊂ Aut(m).

Example 4.4. Let G = SU(n+ 1)/U(n), where we map U(n)→ SU(n+ 1) through the map

A 7−→
(

(detA)−1 0
0 A

)
.

Let P = U(n). Then, G/P = CPn, though this isn’t an injective map: the kernel of the embedding is
Z(SU(n+1)) = Z/(n+1). Hence there’s a fiber bundle G/(Z/(n+1))→ B → CPn, and π1(B) ∼= Z/(n+1). (

This is an example where H isn’t a subgroup of GL(m), though it is a covering group of a subgroup of

GL(m). One might call these extended H-structures H̃ → H ↪→ GL(m), where the first map is a finite cover,

and we have an H̃-bundle B̃ →M together with a map ϕ : B̃ → B ↪→ FM (m), where again the first map is
a finite cover.

Example 4.5. There are two common choices of H̃ common in physics: Spin(m), which is a double cover of
SO(m); and Pin+(m) and Pin−(m), which are double covers of O(m). (

You could use a compact Lie group fiber instead of a finite cover, and these are the more interesting cases,
though a few things have to change. In general, using a finite cover at least doesn’t really change this story
with regards to calculating local symmetries or invariants.

Another fun example is G = G2 and P = SU3. In this case G/P = S6, and you can use this to get an
SU3-structure on S6. The inclusion SU3 ↪→ U3 produces the standard almost complex strucure on S6.

Distinguishing different H-structures locally. Though you might know how to do this for Riemannian
geometry, we’re going to talk about a uniform way to do this for all groups. The key topological information
is the soldering form: if π : FM (m) → M is the projection map, then at a u ∈ π−1(x) in FM (m), then
we’re provided with an isomorphism TxX → m, so the projection map TuFM (m)� TxM defines a smoothly
varying assignment to m, hence a smooth m-valued 1-form ω ∈ Ω1

FM (m)(m), called the soldering form. The

same construction serves to define a soldering form ωH for a manifold with H-structure.

Lemma 4.6. Let f : M1 →M2 be a diffeomorphism.
11



(1) Then, f∗(ω2) = ω1, where ωi is the soldering form on Mi.
(2) If f is in addition an isomorphism of H-structures, then f∗(ω2,H) = ω1,H .
(3) If H is connected, the converse to (2) is true.

Example 4.7. Let H = {e}, corresponding to a parallelization. Then, π : B →M is a diffeomorphism, and
so ω : TM → m is preserved by a unique C : M → m⊗ Λ2m∗ satisfying

dω = C(ω ∧ ω),

or in indices,

dωi =
1

2
Cijkω

j ∧ ωk.

That is, if f : M →M satisfies f∗ω = ω, then f∗(C) = C. You can also check that if C ′ satisfies dC = C ′(ω),
then f∗(C ′) = C ′. These relate to the codimension of the symmetry group: the number of independent such
functions is equal to the codimension of the symmetry group. (

This procedure allows you to discover what the symmetries of an H-structure are, which by Noether’s
theorem is a powerful tool for understanding conservation laws in physics.

So we’ve solved the problem in the trivial case. Great! Now we’ll try to reduce nontrivial cases to the
trivial cases, following Cartan.

Suppose we have H → B →M and ω : TB → m now has a kernel V , then vertical tangent space. Each
fiber can be parallelized individually, because they’re canonically identified with h through left translation
τ : V → h. So what we need to do is stitch these together into a form.

Definition 4.8. A pseudo-connection on B is an h-valued 1-form Θ: TB → h such that over each u ∈ B,
Θ|ker(ωu) = τu.

Cartan just calls this a connection, but because we haven’t asked Θ to be H-equivariant, it’s not quite
what we’re looking for.

Definition 4.9. A pseudo-connection Θ is a connection if R∗h(Θ) = Ad(h−1)(Θ) for all h ∈ H. (Here Rh is
right translation by h.)

This is the standard definition. But to make Cartan’s algorithm work, we need to work with pseudo-
connections (or restrict to semisimple groups).

First of all, pseudo-connections always exist (assuming M is paracompact and stuff like that), because
connections always exist. But we don’t just want some connection, we want one guaranteed to be preserved
by our notion of equivalence, like C was in the framed case. This motivates us to write down the structure
equation for a pseudo-connection Θ:

(4.10) dω = −Θ ∧ ω + C(ω ∧ ω),

where C depends on Θ. We want to find a way to choose Θ such that C is preserved by any isomorphism of
H-manifolds. So if Θ = Θ− pω is some other pseudo-connection, where p : B → h⊗m∗ is any smooth map,
then

−Θ ∧ ω + C(ω ∧ ω) = −Θ ∧ ω + C(ω ∧ ω)

(C − C)(ω ∧ ω) = −(pω) ∧ ω = (δp)(ω ∧ ω).

To describe δ, observe that h ⊂ m⊗m∗, and the composition

h⊗m
� � // (m⊗m∗)⊗m∗ // m⊗ Λ2m∗

is our δ. If h(1) := ker(δ) and H0,2(h) := coker(δ), then we obtain an exact sequence

(4.11) 0 // h(1) // h⊗m∗
δ // m⊗ Λ2m∗ // H0,2(h) // 0.

This is the key: the kernel and cokernel determine existence and uniqueness of connections satisfying the
structure equation: the cokernel determines whether you can modify the pseudo-connection without modifying
C, and the kernel controls existence.

Definition 4.12. The map T : B → H0,2(h) is called the intrinsic torsion of B.
12



For example, if H = O(n), then one can identify h ⊂ m∗⊗m∗ with Λ2(m∗). This means δ is an isomorphism,
so h(1) and H0,2(h) vanish. This tells us something familiar.

Corollary 4.13 (Fundamental theorem of Riemannian geometry). On any Riemannian manifold (M, g),
there exists a unique pseudo-connection Θ0 such that dω = −Θ0 ∧ ω, and in fact Θ is a connection.

Hence we get everything local in Riemannian geometry: (ω,Θ0) is a canonical choice of coframings, and

dΘ0 = −Θ0 ∧Θ0 +R(ω ∧ ω),

for some R : B → h⊗ Λ2m∗. This is more familiarly known as the Riemann curvature tensor.
Geometrically, T is the obstruction to being able to choose a flat H-structure to first order, i.e. the first

derivatives that don’t vanish under changes of coordinates. The second-order terms show up in R. Moreover,
if a metric is flat to second-order at every point (so R = 0), then it’s flat.

Example 4.14. Let H = Sp(β,m), where β is a nondegenerate 2-form on m. This defines an isomorphism
m ∼= m∗ allowing us to lower indices, so we can define h[ := Sym2 m∗ ⊂ m∗ ⊗m∗. Hence δ is a map

δ : Sym2(m∗)⊗m∗ −→ m∗ ⊗ Λ2m∗.

This is the exterior derivative of a degree-2 polynomial, which is linear. Your quadratic is the derivative of a
cubic function, and so the kernel is h1 = Sym3(m). The cokernel is H0,2(m) ∼= Λ3(m∗). So the obstruction
to uniqueness is a 3-form, and the only one we have is dβ. Similarly, a nontrivial kernel means there’s
no way to choose a canonical connection. If β is closed, you can at least get a flat space, and Darboux’s
theorem offers a converse. This story is unusual: usually h(1) = 0, and for semisimple groups, (4.11) splits
equivariantly, so you can use this to choose canonical connections (e.g. for an almost Hermitian structure),3

not just pseudo-connections, for most structures you will run across in real life.
In the symplectic case, H1,2(m) = 0 implies H∗,2(β) = 0 for all orders: flatness to first order implies

flatness to all orders. (

If you do this with a unitary group, you’ll discover that it does not carry a unique connection.

If you do this with an extended H-structure H̃ → H, then the invariants arise as pullbacks of those for H,
and similarly for the coframe bundle.

Example 4.15. The simplest example where you need a pseudoconnection instead of a connection is in
dimension 3 is the group of matrices of the form1 0 0

a 1 0
b a 1

 .

This is an abelian group isomorphic to R2, but is not reductive as a subgroup of GL3(R). In this case, h(1) = 0,
but (4.11) does not split equivariantly, so you get a unique pseudo-connection which is not a connection in
general.

Geometrically, this structure is the structure of a full flag 0 ( L1 ( L2 ( TM plus an isomorphism
L2/L1

∼= TM/L2. There are connections which match the intrinsic torsion, but they’re not canonical, unless
the intrinsic torsion vanishes, which it does not always do. (

5. Question session

“I’m not going to say what a quantum field theory is. Maybe tomorrow.”

After the lectures, we had a discussion/question section about things that confused us. Today, that was
gauge theory, classical bordism invariants, the Euler TQFT, Wick rotation, particles and symmetry groups in
quantum mechanics, and Lagrangians. People then reviewed several of these topics.

3There are in fact multiple choices for canonical connections in the Hermitian case; they’re all functorial for diffeomorphisms.

Two examples include the Chern connection and the Kähler connection.
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5.1. Dan Freed: Classical bordism invariants and the Euler TQFT. Any compact manifold Y has
a well-defined Euler characteristic χ(Y ). Is this a bordism invariant? Clearly not: the sphere (nonzero Euler
characteristic) is bordant to an empty set (zero Euler characteristic). However, you can check that the mod 2
Euler characteristic does define a bordism invariant Ωd → Z/2. In general, this is not an isomorphism; in
some dimensions, it’s neither injective nor surjective. We might ask if it’s possible to categorify this invariant
into a TQFT.

Definition 5.1. The symmetric monoidal category of super vector spaces sVectC is the category given by
the following data.

• The objects are complex vector spaces with a Z/2-grading V = V 0 ⊕ V 1. Equivalently, you could ask
for an involution ε : V → V ; then, the Z/2-grading comes from its (±1)-eigenvalues.

• The maps are the even linear maps.
• The monoidal structure is the tensor product. But the symmetric monoidal structure uses the grading,

the map V ⊗ V ′ → V ′ ⊗ V sending

v ⊗ v′ 7−→ (−1)|v||v
′|v′ ⊗ v.

Here, |v| is 0 if it’s in V 0 and 1 if it’s in V 1.

The dimension of a super-vector space is dimV :− dimV 0 − dimV 1.4

Thus, a super-vector space is a categorification of the Euler characteristic: instead of just the ranks of
homology groups, we remember the groups themselves, sorting them into odd and even pieces.

But we can also turn it into a TQFT.

Example 5.2. Let n ∈ N and λ ∈ C×. Then, there is an n-dimensional TQFT called the Euler TQFT

ελ : Bord〈n−1,n〉 −→ VectC

which assigns C to every (n− 1)-manifold and to any cobordism X multiplication by λχ(X). This is a simple
and important example of a TQFT, and is invertible, in that it factors through the maximal subgroupoid of
VectC, called LineC, the groupoid of complex lines and nonzero maps; we’ll discuss invertible field theories
more later.

This theory satisfies gluing (i.e. is a functor) because the Mayer-Vietoris formula controls how the Euler
characteristic changes when you glue across a common boundary. (

If you try to generalize this to other bordism invariants, you’ll run into a roadblock: the Euler characteristic
can be easily defined on a manifold with boundary, but this is less true for things like the signature, Todd
genus, etc.

You can also try to use other characteristic-class invariants. For example, you could define for a closed

2-manifold X, the action α(X) = (−1)〈w1(X)2,[X]〉, but by the Wu formula w2
1 = w2, so this is again an Euler

theory ε−1!
But there are interesting theories. Consider an oriented 8-dimensional invertible theory αλ : Bord〈7,8〉(SO)→

LineC which to a closed 8-manifold assigns the number

αλ(X) := λ〈p1(X)2−17p2(X),[X]〉,

which comes from its signature.

5.2. Andy Neitzke and Dave Morrison: What is gauge theory? There’s a whole mathematical
subject called gauge theory, which roughly means anything related to principal G-bundles and equations
on them. This was kicked off by the work of Donaldson. A typical problem is to study the moduli space of
G-bundles on M with connection whose curvature F∇ satisfies F∇ = ?F∇.

In physics, gauge theory is a quantum field theory, which is in a sense a quantization of the above; we
want to integrate over the principal G-bundles. The trick is, we need to mod out by gauge equivalence,
but somehow this whole story is a little unphysical: a modern perspective on quantum field theory eschews
the perspective of “quantize a classical field theory” as possibly missing some or having artifacts. The
gauge equivalences come up in computations, but the gauge symmetry somehow isn’t observable, and this is

4This agrees with the abstract notion of dimension in a symmetric monoidal category.
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fundamental. In particular, there are theories which have two descriptions, one gauge-theoretic and one not,
so the gauge-theoretic description cannot be invariant.

This was kicked off because in the past 10 or 15 years or so, people have found theories that we can’t write
down in terms of Lagrangians. These came from other kinds of physics (e.g. string theory). Maybe we’ll find
better ways of writing down Lagrangians, but people are wondering whether there’s a completely different
way to characterize these theories which will make the whole business of Lagrangians historical and quaint.
Of course, nobody knows how this might go. There are arguments that it’s not even possible to write down
Lagrangians for them (e.g. that they don’t have couplings), but their arguments aren’t watertight.

Related to this is the question whether every quantum field theory has a Poisson bracket on its observables.
The answer is no, because quantum field theories aren’t determined by their point operators.

One example is a six-dimensional example with a self-dual 3-form. This self-dual 3-form is what makes
it hard to write a Lagrangian description. However, if you formulate this on S1 × R1,4 and do a Fourier
expansion on the S1 and make an effective theory, this turns into an ordinary theory: the self-dual 2-form
becomes a connection valued in the Lie algebra of a nonabelian Lie group. But we don’t know how to promote
this to a self-dual 2-form in 6 dimensions.

5.3. Andy Neitzke: Why are particles representations of the Poincaré group? So you have a
quantum field theory, and hence a huge Hilbert space acted on by the Poincaré group. There’s one state
invariant under the action of the Poincaré group, which is (by definition) the vacuum. There’s another
subspace corresponding to one-particle states, and these are irreducible representation: each type of particle is
an irreducible component, because any two universes containing a single particle of the same kind are related
by a transformation of the Poincaré group. Such representations are almost always infinite-dimensional.
There are lots of other representations (multiple-particle states and so on), of course.

You can also think of the vacuum and one-particle states as the discrete part of the spectrum, and the
multi-particle states as a continuum.

In a topological theory, everything is finite-dimensional, so there aren’t really particles. Extended notions
of locality remember some facts about the excitations, though.

Day 2. August 1

6. Dan Freed: An Axiom System for Wick-rotated QFT

Yesterday, we defined an axiom system for topological field theory, as symmetric monoidal functors

F : Bord〈n−1,n〉 −→ VectC.

We then described an axiom system for Wick-rotated quantum mechanics, which considered Riemannian
manifolds and topological vector spaces:

F : Bord〈0,1〉(SO∇) −→ tVectC.

To define an axiom system for Wick-rotated quantum field theory, we simply combine them.

Definition 6.1 (G. Segal). A Wick-rotated quantum field theory is a symmetric monoidal functor

F : Bord〈n−1,n〉(X∇n ) −→ tVectC,

where X∇n is a geometric analogue of a tangential structure.

This seems surprisingly sparse, but works surprisingly well.
We’re not going to precisely define the structures X∇n , but instead give several examples.

• Tangential structures like we discussed yesterday: orientation, spin structure, pin+-structure, etc.
• More geometric structures such as a Riemannian metric, a conformal structure, a volume form, a

principal K-bundle with connection (where K is a compact Lie group), and so on.
• Maps to a space M , sections of a fiber bundle, and so on.

In physics, these are all called fields. In this context, they’re background fields: unlike the fluctuating fields
we considered yesterday, they are not integrated over. Though we won’t define fields precisely, the key
requirement is a sheaf condition: you must be able to glue local data of a field into global data, and all of the
examples above satiafy that condition.
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One particular special case is when Hn is a Lie group and ρn : Hn → GLn(R) is a map of Lie groups. For
topological field theory, it’s important for this map to have finite fibers, though there are some examples for
which this doesn’t hold, e.g. Hn = Spincn.

We’ll see several examples in a later lecture, and for some of them it could be useful to try to fit them into
this axiomatic framework, at least heuristically. Until then, we’ll show how to extract the usual ingredients of
a QFT from this axiom system.

• Let Y be a closed (n− 1)-manifold with X∇n -structure, so it’s an object in Bord〈n−1,n〉(X∇n ). Since

X∇n is not just a topological structure, we need to consider Y with a two-sided collar. This makes
composition (gluing) make sense, and allows you to think of everything as n-dimensional. The collar
represents an infinitesimal slice of time, and Y represents space. You might imagine undoing the
Wick rotation to obtain something with Lorentz signature and quantizing to produce a state space,
which is some topological vector space, and this is what F (Y ) is.
• If X is an n-manifold and x ∈ X, we can ask about the quantities near x that can be measured.

Physicists call these local observables, but you can also call them point observables. To see these from
the functorial perspective, let Sε(x) denote the sphere of radius ε around x in X. Then, Sε(x) is a
manifold with X∇n -structure, so F (Sε(x)) is a vector space of data “near x.” To make it “at x,” we
take the inverse limit:

Ox = lim←−
ε→0

F (Sε(x)).

• Correlation functions have a similar description: a k-point correlation function Φ: Ox1
⊗· · ·⊗Oxk → C

comes as the inverse limit as ε → 0 of this data of spheres of radius ε around x1, . . . , xk. We can
think of X \ (Bε(x1) ∪ · · · ∪Bε(xk)) as a bordism from Sε(x1)q · · · q Sε(xk)→ ∅, and applying F
and taking the limit produces Φ.

If the theory doesn’t depend on the metric, meaning it’s conformal or topological, you can ignore the limit,
because F (Sε(x)) doesn’t depend on ε. This would mean that the space of operators is a state space, a
phenomenon called operator-state correspondence.

Generally, though, these theories are not scale-independent. Rescaling everything by some constant
defines a functor from Bord〈n−1,n〉(X∇n ) to itself, and this is the action of the renormalization group. One
would like for this to have short-range or long-range limits; the short-range limit, if it exists, would still be
scale-independent, and hence a conformal field theory. The long-range limit will be useful in the classification
of phases.

Let Mn denote Minkowski spacetime, an affine space modeled on R1,n−1, which acts on Mn by translations.
R1,n−1 is Rn with the Lorentz metric x0 = ct and coordinates x1, . . . , xn−1 with metric

ds2 = (dx0)2 − (dx1)2 − · · · − (dxn−1)2.

There is a short exact sequence

1 // R1,n−1 // Isom(Mn) // O1,n−1
// 1.

The middle group has four connected components, and π0 Isom(Mn) ∼= Z/2× Z/2. One of these copies of
Z/2 asks whether a given isomorphism preserves or reverses orientation; the other asks whether it preserves
or reverses time. There’s a group called the Poincaré group Pn, which is a double cover of the component of
Isom(Mn) containing the identity; this is thought of as the symmetry group of the theory.

For non-relativistic quantum field theory, we had a semigroup law R→ U(H), telling us how time evolution
acts on the state space by unitary operators. In the relativistic case, we have additional symmetries, so ask
for a map U : Pn → U(H). We can also ask for our Hilbert space to be Z/2-graded: H = H0⊕H1. In physics,
one says the statistics of particles is controlled by this splitting; H0 is for bosons, and H1 is for fermions.

Inside Pn, there’s a copy of translations R1,n−1. In the dual picture (R1,n−1)∗, the two directions are
energy and momentum; there’s a lightcone in the energy direction coming from the Lorentz-signature metric
on (R1,n−1)∗, and we can precisely say that positive-energy means being in the positive (upper) part of the
lightcone C∗+.

There are multiple approaches to axiomatizing quantum field theory; both the Schrödinger and Heisenberg
approaches to quantum mechanics generalize to quantum field theory; Heisenberg’s approach becomes in the
modern picture the theory of factorization algebras applied to quantum physics, but we’re focusing on the
Schrödinger formalism.
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Wick rotation begins with the observation that U |R1,n−1 is the boundary value of a contracting holomorphic

semigroup on R1,n−1 ⊕
√
−1R1,n−1

− ⊂ Cn, the generalization of the lower half of the plane we discussed
yesterday.

Positive energy allows you to extend this to a complexified domain D, a complexification of Mn, and once
in D, we can restrict to a Euclidean space En. Thus we obtain a positive definite metric. This may have felt
vague, but there’s a mathematically rigorous theory underlying this.

Symmetry groups. The symmetry group Gn of our relativistic quantum field theory must act on Mn by
isometries. Thus we know we have a homomorphism q : Gn → Isom(Mn). This is not how it’s usually thought
about: especially in older groups, one reads that the Poincaré group is a subgroup of Gn, but from our
perspective it’s more natural as a quotient. Relativistic invariance of the theory means the identity component
Isom(M)0 is in Im(q).

We’re going to make three assumptions on q. Some of these are strict and throw out interesting theories.

(1) If K := ker(q), we ask that K is a compact Lie group. Segal considered some noncompact groups,
and there are interesting examples, but we’re not going to consider them. There are also other kinds
of symmetries we’re ignoring: both supersymmetries (those that exchange the grading, and make K
into a super-group), and higher symmetries (more homotopical things, making K into a 2-group or
3-group).

(2) R1,n−1 should lift to a normal subgroup of Gn. This is in line with Klein’s Erlangen program: we
want translation-invariance in our theory, and therefore ask for translations in our symmetry group.
With this assumption, we can define Gn := Gn/R1,n−1.

Since Gn contains Isom(Mn)0, which is noncompact, Gn isn’t compact. But after the quotient by translations,
we have an exact sequence

1 // K // Gn // O1,n−1.

Wick rotation first tells us to complexify this, producing a morphism of group extensions for D:

1 // K //� _

��

Gn //
� _

��

O1,n−1� _

�
1 // K(C) // Gn(C) // On(C).

The top row is the real forms of the groups in the bottom row that fix a Lorentz metric. But when we restrict
to En, we choose different real forms, those fixing a Euclidean metric:

1 // K(C) // Gn(C) // On(C)

1 // K // Hn
ρn //?�

OO

On.
?�

OO

Notably, all the groups on the bottom row are compact. Compact Lie groups are rigid, and so we can try to
enumerate the possibilities.

The first question is to determine the image of ρn. Because O1,n−1 contains the image of Isom(Mn)0, but
On(C) and On only have two connected components, one can show that Im(ρn) is either SOn or On. This is
determined by whether the system has time-reversal symmetry, which is a particularly important symmetry
for condensed-matter systems.

Let’s write down some analogues of SOn and Spinn.

Definition 6.2. Let SH n and S̃H n be the Lie groups that fit into the following pullback diagrams:

S̃H n
//

��

Spinn

��
SH n

//

��

SOn� _

��
Hn

ρn // On.
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The following theorem says, in a few ways, that the symmetry group splits.

Theorem 6.3 ([FH16]). Assume n ≥ 3.

(1) If hn is the Lie algebra of Hn and k is that of K, there’s a splitting

hn ∼= o′n ⊕ k

together with a Lie algebra isomorphism

ρ̇n : o′n
∼=−→ on.

(2) S̃H n
∼= Spinn ×K, and there’s a k0 ∈ K with k2

0 = 1 such that

SH n
∼= (Spinn ×K)/〈(−1, k0)〉.

(3) There’s a canonical map Spinn → Hn sending −1 7→ k0.

This is an analogue of the Coleman-Mandula theorem.
There’s also a stabilization theory which says that these symmetry groups fit into families: thus we can

say spin theory, pin−-theory, etc., rather than a Spinn-theory, Pin−n -theory, and so on.

Theorem 6.4 ([FH16]). For each m ≥ n, there is a compact Lie group Hm and homomorphisms im : Hm ↪→
Hm+1 and ρm : Hm → Om fitting into a commutative diagram

Hn
� � in //

ρn

��

Hn+1
� � in+1 //

ρn+1

��

Hn+2
� � //

ρn+2

��

· · ·

On
� � // On+1

� � // On+2
� � // · · ·

such that for each m, ker(ρm) = K and each square is a pullback square.

We can therefore for the colimit ρ : H → O, and Hn is the pullback of ρ along the inclusion On ↪→ O.
This stable version of the symmetry group is called the (H, ρ) symmetry type, and similarly we speak

of the unstable version, the (Hn, ρn) symmetry type. In Robert Bryant’s lecture, we considered maps
ρn : Hn → GLn(R) with finite fibers, but we’re looking at Lorentz symmetry, and hence some things become
nicer: the real form after Wick rotation is compact, so ρn factors through the inclusion On ↪→ GLn(R).

Definition 6.5. Let (Hn, ρn) be a symmetry type and X be a smooth manifold. Then, a differential
Hn-structure on X is the data (P,Θ, ϕ), where P → X is a principal Hn-bundle, Θ is a connection on P ,
and ϕ : B(X)→ ρ(P ) is an isomorphism carrying Θ to the Levi-Civita connection.

We’ll thus consider Wick-rotated theories with differential Hn-structure. The relevant bordism category is
denoted Bord〈n−1,n〉(H

∇
n ).

This axiom system is radical from the physics perspective: we’ve restricted to compact manifolds, and
therefore one might guess this precludes its use to study long-range behavior. But as we’ll see, this is not
true.

7. Max Metlitski: Spin systems

Condensed-matter physicists study something that could be called “quantum zoology,” classifying and
understanding states and quantum matter. Today we’re going to focus on bosonic/spin systems; in the real
world you want electrons and hence fermionic systems, but the generalization is not as hard as you’d expect.

We’ll start with a lattice system in any dimension; there are sites (dots in the lattice, or 0-cells in a
implicial structure). This is in a manifold which represents space; there is no time present in this system yet.
At each site i, there’s a Hilbert space Hi, which is a copy of Cm. The total Hilbert space for the problem is

H :=
⊗
i∈∆0

Hi.

You can think of this as an approximation of the continuum system, a quantum field theory, which is
why we can get away with finite-dimensional Hilbert spaces. For the purposes of low-energy physics, this
approximation is especially useful.
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The Hamiltonian is a local sum: at each site i, there is some operator Oi which acts on finitely many sites
in the vincinity of i (and acting by the identity on all other sites).5 We’d like these operators to all be the
same, in that if ϕ is an automorphism of the manifold and lattice carrying i 7→ j, then ϕ∗Oj = Oi. Then, the
Hamiltonian is

H =
∑
i∈∆0

Oi.

Example 7.1. Suppose m = 2, so at each site i we have a qubit C2 = span{e1, e2} (the standard basis).
One choice for the operators Oi produces the Hamiltonian

(7.2) H = −h
∑
i∈∆0

σxi − J
∑
e∈∆1

∂e={i,j}

σzi σ
z
j

for some h, J > 0.

• The first term is some kind of magnetic term.
• The second term is a spin-spin interaction between nearest neighbors.

The σi-terms are Pauli operators, the generators of su2:

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
.

Writing σxi means applying σx to the C2 at the site i. These satisfy the commutation relations

[σai , σ
b
j ] = 2iεabcδij . (

Let’s impose periodic boundary conditions, so this system is on a torus of length ~L (i.e., ~L = (L1, . . . , Ld),
and the length in the xi-coordinate is Li). To understand the excitations, consider the Schrödinger equation

H|ψ〉 = E|ψ〉.
Suppose that there’s a gap between the smallest eigenvalue E0 (corresponding to the ground states) and the
second-smallest E1 (corresponding to the lowest-energy excitations), as in Figure 3. Moreover, this is stable
under refinement, in that

lim
L→∞

(E1 − E0) = ∆ > 0.

Thus, this gap is not an artifact of the discretization, but is inherent in the system.

E0

Ei

...

∆

Figure 3. The spectrum of a nondegenerately gapped Hamiltonian.

An example ground state |0〉 is when all of the sites have the same spin, and an example of an excited
state with lowest possible energy |1〉 is when all of the sites but one have the same spin, and the remaining
site has opposite spin. When J = 0, the energy gap between |0〉 and |1〉 is 2h, which is clearly independent of
the length; if you “turn on J” (meaning make it a small positive number), this gap persists, though now it’s
∆ = 2h+O(J). This is hard to rigorously prove.

The other possibility is that the first p eigenvalus E0, . . . , Ep−1 are 0, and then Ep is nonzero, with a gap
∆, as in Figure 4. This is called a gapped, degenerate system. We ask that

lim
L→∞

(Eα − Eβ) = 0

5You can generalize these to those that decay quickly, but we’re not going to worry about this today.
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for α, β ∈ {0, . . . , p− 1}, and that

lim
L→∞

(Ep − E0) = ∆.

This can arise accidentally, e.g. if you have two eigenvalues whose values don’t coincide generally. If you
perturb this system, it returns to a nondegenerate gapped system, and hence is the less interesting case. For
example, if h = 0, |0〉 has all spins pointing up, and |1〉 has all spins pointing down, and both of these have
the same energy. The next state |2〉 will look like ↓↓↑↑↑ · · · , and its energy is E2 = E0 + 4J . But if you
perturb by a magnetic field in the z-direction, producing

H = −J
∑

∂e={i,j}

σzi σ
z
j − g

∑
i

σzi

for some small g, E0 is no longer equal to E1.

E0, . . . , Ep−1

Ep, . . .

...

∆

Figure 4. The spectrum of a degenerately gapped Hamiltonian.

E0, E1

E2, . . .

...

∆

Figure 5. A degenerately gapped system can arise “accidentally,” in that a small perturba-
tion in some parameter (here on the x-axis) produces a nondegenerately gapped system.

Definition 7.3. Two degenerate ground states α and β are locally indistinguishable if for any local operator
Ai,

lim
L→∞

〈α | Ai | β〉 = Caδαβ ,

i.e. it’s diagonal.

The toric code has local indistinguishability: in dimension d on a torus, its degeneracy (dimension of
the space of ground states) is 2d, and these states cannot be locally distinguished. More generally, this is
true for (intrinsically) topologically ordered states. The examples that we know, and which we think might
be all examples, are anyon models. In (spacetime) dinension 3, these are well-understood: the Levin-Wen
construction [LW05] produces such a model from a modular tensor category C. The idea is that if you have
two anyons in this model and braid them once around each other, the wavefunction changes by some number
which is dictated by the data of C. This seems bizarre, but is realized in nature by the fractional quantum
Hall state.

This is the zoology: you have a general picture of what can and can’t happen.
The third possibility for the spectrum is that it’s gapless: limL→∞(Eα − E0) = 0 for infinitely many α.

Often, the low-energy field theory is a conformal field theory.
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Phases. We’ve talked a little bit about perturbing the Hamiltonian. When does this change the physics of
the system?

Definition 7.4. Two Hamiltonians H0 and H1 belong to the same gapped phase if there is a smooth path of
Hamiltonians H(t) for t ∈ [0, 1] such that H(0) = H0, H(1) = H1, and H(g) is gapped for every g.

We allow degenerately gapped systems.
There is a privileged phase, called the trivial phase or product phase, represented by the Hamiltonian (7.2)

for J = 0. More generally, if J � h, the Hamiltonian belongs to the trivial phase. The name “product phase”
highlights that each site is in the same state ψ, i.e. |0〉 = |ψ〉 ⊗ · · · ⊗ |ψ〉.

Definition 7.4 is a nice definition, but doesn’t allow us to change the Hilbert space. Let’s stabilize it by
permitting one to throw away degrees of freedom corresponding to a trivial phase. Namely, if H0 : H0 → H0

and H1 : H1 → H1 are two systems such that H0 is in the trivial phase, we can couple them together (also
called “stacking”) and get a new system H := H0 +H1 acting on H := H0 ⊗H1. We say that H1 and H are
in the same phase.6

When H0 and H1 are states for different lattices, defining coupling is a little more complicated, but can
still be done.

Invertible gapped phases. Let H be a gapped Hamiltonian that is not in the trivial phase.

Definition 7.5. H is in an invertible phase if there’s a Hamiltonian H such that the system produced by
coupling H and H together is in the trivial phase, i.e. H +H acting on H⊗H is in a trivial phase.

The nice thing about invertible gapped phases is that they form an abelian group, under the group
operation of stacking. The identity is the trivial phase, and the inverse of H is H as above.

Another nice thing about (nondegenerately gapped) invertible phases is that they have a unique ground
state on every closed manifold, in particular on the torus. This is because when you stack H and H, it
deforms to a trivial phase, which has a single ground state, so since we deformed without closing the energy
gap, there has to only be one ground state before deformation. In particular, the anyon models are generally
not invertible.

In the real world, though, we can’t really impose periodic boundary conditions, and thus we have to
consider systems with boundaries. There are lots of choices for terminating the Hamiltonian at the boundary,
leading to notions of edge modes. At least for invertible (2 + 1)D systems (without symmetry), no matter
how you terminate the boundary, it’s gapless, which is somewhat disconcerting. In other words, for infinitely
many α > 0, it’s possible to get |α〉 = A|0〉 for a local operator A living at the boundary. So you end up with
a conformal field theory on the boundary that’s chiral (with left and right central charges, whose difference
vanishes mod 8). In (1 + 1)D, by contrast, the chiral central charge is always 0. One says that (back in
(2 + 1)D) the boundary is anomalous. This is sort of the meaning of an anomaly: an anomalous system is
one that can only live on the boundary of a higher-dimensional bulk.

The groups of invertible phases in low dimensions have been calculated, and some are given in Table 1.
The generators for the nonzero groups are known:

• The generator of the group of fermionic phases in (1 + 1)D is the Majorana wire [Kit01], which has
been realized physically [MZF+12, DYH+12, DRM+12, FVHM+13, RLF12].

• The generator of the group of fermionic phases in (2 + 1)D is the p+ ip superconductor. Twice the
generator is in the same phase as the ν = 1 integer quantum Hall effect.

• The generator of the group of bosonic phases in (2 + 1)D is the ν = 8 integer quantum Hall effect.

(1 + 1)D (2 + 1)D (3 + 1)D
bosons 0 Z 0

fermions Z/2 Z 0
Table 1. Groups of invertible phases. These have been calculated in several different ways,
and one reference is [FH16], which also computes examples with symmetry groups.

6When we say H0 +H1, we mean more precisely H0 ⊗ 1 + 1⊗H1, which does actually act on H0 ⊗H1.
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8. Dan Freed: Classification theorems

One advantage of axiom systems is that they allow you to classify all objects satisfying the axioms.
Sometimes there’s a uniqueness result, e.g. R is the unique complete ordered field (up to isomorphim). Other
times, uniqueness fails, such as for knot theory, but the results are still interesting. In this lecture, we’re
going to discuss some classification theorems for field theories in low dimensions; most will be topological,
but one won’t.

Morse theory. First let’s recall a little bit of Morse theory. Let M be a manifold M , and recall that a
function f : M → R is Morse if every critical point of f is nondegenerate (has a nonsingular Hessian).

Lemma 8.1 (Morse). If p ∈M is a critical point of f , then in a neighborhood of p,

f = (x1)2 + · · ·+ (xn−r)2 − (xn−r+1)2 − · · · − (xn)2 + f(p).

In the above situation, we say the index of p is r. This means that the neighborhood of p looks like
Dr ×Dn−r, and in particular is a bordism from Sr−1 ×Dn−1 to Dr × Sn−r−1. One can use this to make
a Kirby graphic for f , plotting the critical values and the indices of their respective critical points, as in
Figure 7. If each critical value is the image of a unique critical point, f is called excellent. The preimage of
the neighborhood of such a critical point is called an elementary bordism; using an excellent Morse function,
any bordism is a composition of elementary bordisms. Inside the space of all functions on a bordism X, the
functions which are not excellent Morse functions are a singular set, so we can always make this decomposition.

Figure 6. The four elementary oriented bordisms in 2D. From left to right, these are
denoted u, u∨, m, and m∨.

Figure 7. The Kirby diagram for an excellent Morse function.

This allows us to make a generators-and-relations presentation of the bordism category, and therefore
classify TFTs. We’ll have to understand what happens at the walls, though, which is the domain of Cerf
theory.

Definition 8.2. Let f : M → R be smooth. Then, f has a birth-death singularity at p if it can be written in
local coordinates as

f = (x1)3 + (x2)2 + · · ·+ (xn−r)2 − (xn−r+1)2 − · · · − (xn)2 + f(p).

Definition 8.3. Let f : M → R be smooth.

• f is good of Type α if it has a single birth-death singularity and is otherwise excellent Morse.
• f is good of Type β if it’s excellent Morse except that two critical points have the same critical value.
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Theorem 8.4 (Cerf [Cer70]). Any two excellent Morse functions for a bordism X can be connected by a path
ft of smooth functions that are excellent Morse or good of types α or β, and the non-excellent functions are
isolated.

This differential topology is crucial in the proofs of harder classification theorems such as the cobordism
hypothesis [BD95, Lur09].

The algebraic structure we end up getting can be defined over any field, though we’re only going to care
about C.

Definition 8.5. A commutative Frobenius algebra (A, τ) over a field k is a finite-dimensional unital commu-
tative associative k-algebra A together with a map τ : A→ k such that the bilinear map A×A→ k sending
(x, y) 7→ τ(xy) is nondegenerate.

Example 8.6.

(1) Let G be a finite group and A = Map(G,C)G, the central functions in C[G]. This is an algebra under
the convolution

(f1 ∗ f2)(x) =
∑

x1·x2=x

f1(x1)f2(x2).

The unit is δe, assigning 1 to e and 0 to all other conjugacy classes. The trace is

τ(f) =
f(e)

|G|
.

This A is a commutative Frobenius algebra.
(2) Let M be a compact, oriented manifold. Then, A = H∗(M ;C) is a Frobenius algebra with trace

evaluation with the fundamental class [M ]. (

Another example of a Frobenius algebra appears in the definition of Khovanov homology.
The classification result below is one of the oldest results in TFT; it was probably first written down by

Dijkgraaf, but the proof we provide is due to Moore-Segal.

Theorem 8.7 (Dijkgraaf [Dij89]). Let F : Bord〈1,2〉(SO2)→ Vectk be a TFT. Then, F (S1) is a commutative
Frobenius algebra. Conversely, if A is a commutative Frobenius algebra, there’s a TFT F unique up to
isomorphism such that F (S1) = A.

Proof sketch. Given a TFT F , let A = F (S1) as a k-vector space. Multiplication is F applied to the bordism
m in Figure 6, τ is F (u∨), and the unit is 1 = F (u)(1) ∈ A. You have to check associativity and commutativity,
but that follows because the two bordisms corresponding to m(–,m(–, –)) and m(m(–, –), –) are diffeomorphic,
and similarly for commutativity.

The converse is the harder part. Given a Frobenius algebra A, we can set F (S1) := A. Since DiffSO(S1) '
SO2, which is in particular connected, there’s no ambiguity in doing so, even though we didn’t pick an
orientation. Since any closed 1-manifold is a finite disjoint union of copies of S1, this determines F on objects.
Then, F (m) is the multiplication map, and F (m∨) is the comultiplication A→ A⊗A sending x 7→ xxi ⊗ xi,
where {xi} is a basis for A.

Now, we want to understand what’s happening on cobordisms, which is where Cerf theory comes in to
show that everything is well-defined. There are four kinds of birth-death singularities that can occur, and by
drawing a picture for what happens, you can show these have already been accounted for. �

Figure 8. The four kinds of birth-death singularities that can arise, and how they are resolved.
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Now we’ll turn to non-topological theories, specifically (1, 2)-theories depending on an area form, classified
by Segal. There’s a basic theorem of Moser which reduces the classification of volume forms to the classification
of volumes.

Theorem 8.8 (Moser). Let M be a compact, connected, oriented manifold (possibly with boundary) and ω0

and ω1 be two volume forms on M . If ∫
M

ω0 =

∫
M

ω1,

then there is a diffeomorphism ϕ : M →M such that ϕ∗ω1 = ω0.

In general, if X is disconnected, we have one number for every connected component.

Theorem 8.9 (Segal). There’s an equivalence between two-dimensional theories depending on an area form
and triples (A, τ, εt), where

• A is a commutative topological algebra,
• τ : A→ C is a nondegenerate trace, and
• εt ∈ A is a family of elements converging to 1 as t→ 0 and such that εt1εt2 = εt1+t2 and multiplication

by εt is trace-class.

This is roughly an infinite-dimensional version of a Frobenius algebra, though the topology makes things
complicated. We might not have a unit on the nose, though, as in the following example.

Example 8.10. If G is a compact Lie group with a bi-invariant metric, we can take A = C∞(G)G with
convolution and τ(f) = f(1) and εt = e−t∆δe . That is, we mollify the δ-function at e, since it isn’t actually
an element of A. According to Theorem 8.9, this defines a 2D quantum field theory, called 2D Yang-Mills
theory, which has the action ∫

X

FA ∧ ?FA.

When G is finite, we recover the TFT from Theorem 8.7.
We want to look at low-energy and high-energy limits. These correspond to t → ∞, 0 respectively.

There are issues as t → 0, because what you get should only depend on the topology of M (since the
area form goes to 0), but it has infinite-dimensional state spaces. This doesn’t fit into the functorial TFT
paradigm, so instead one restricts to cobordisms with at least one incoming component, destroying the need
for finite-dimensionality.

The t→∞ low-energy limit is a little nicer: it’s an Euler theory that depends only on the total volume of
G. (

There are many other classification theorems, e.g. by Stolz, Teichner, and their collaborators, which often
use supersymmetry. But we’ll give one last one, which is relatively simple: it’s in dimension 1, which should
be easier than dimension 2.

First, we’ll consider the bordism-theoretic analogue.

Theorem 8.11. Let M be a monoid. Then, the evaluation map

ev : HomMon(Ω0(SO),M) −→M

sending F 7→ F (pt+) is an isomorphism.

The classification theorem looks very similar, but is categorified. Let C be a symmetric monoidal category,
and let

TFTSO
〈0,1〉(C) := Hom⊗(Bord〈0,1〉(SO1),C).

Though we said these are categories, the axioms of a TFT guarantee that these are groupoids, so what we
have is more like a space of TFTs.

Theorem 8.12 (Cobordism hypothesis, 1-dimensional version). Let (Cfd)∼ denote the maximal subgroupoid
of the category of fully dualizable objects in C. Then, the map F 7→ F (pt+) defines an equivalence of groupoids

TFTSO
〈0,1〉(C) −→ (Cfd)∼.

24



9. Andy Neitzke: Examples of QFT

This lecture is about examples: quantum field theories that aren’t topological, but also their relations to
topological ones. There are two broad ways of going from a nontopological theory to a topological one: the
first is taking a low-energy limit (as we’ve seen in a few previous lectures), or Witten’s notion of a topological
twist. This was the first way TQFTs were constructed, e.g. for Donaldson-Witten theory. The structures in
the end are the same, but the journey goes through very different terrain.

Example 9.1 (Free scalar field). The free massive scalar field of mass m ≥ 0 is the first example of a
quantum field theory one learns in school. This works in any spacetime dimension n, which is unusual —
most interesting quantum field theories exist in a specific dimension, and the higher you go, the harder it
is to write down interesting ones. For example, there are no known interacting quantum field theories in
dimension greater than 6. The free scalar field theory is a free theory, though.

This theory can be formulated on a Riemannian or Lorentzian manifold; we’ll work in Riemannian signature,
and specifically formulate it on Rn with the usual metric. We’re interested in the local operators in this theory,
which are all point operators. These are generated by a single operator O. For distinct points x1, . . . , xk ∈ Rn,
we want to compute a correlation function,7 a piece of basic data

〈O(x1)O(x2) · · · O(xk)〉 =?

We’ll say that if nothing is inserted, you get 〈1〉 = 1, and if a single operator is present, 〈O(x)〉 = 0. What’s
interesting is the two-point correlation function

〈O(x1)O(x2)〉 = G(x1, x2),

which is the Green’s function for −∆ +m2, where ∆ is the Hodge Laplacian:

(−∆x +m2)G(x, y) = δ(x− y).

This is a function of x1 − x2.
The three-point correlation function is again zero, but the four-point function is nontrivial:

〈O(x1)O(x2)O(x3)O(x4)〉 = G(x1, x2)G(x3, x4) +G(x1, x3)G(x2, x4) +G(x1, x4)G(x2, x3).

The Feynman diagrams for this are nice; see Figure 9.
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Figure 9. The Feynman diagram for a four-point correlation function.

One can formally write this with a path integral:

〈O(x1)O(x2)〉 =

∫
C Dφφ(x1)φ(x2)e−S(φ)∫

C Dφ e−S(φ)
.

The denominator exists only for the normalization. Here, C = {φ : Rn → R} and the action is

S(φ) =

∫
Rn

(
‖dφ‖2 +m2φ2

)
dV.

Usually, this path integral doesn’t make rigorous mathematical sense, but in this case, because the action is
qnadratic, this can be made rigorous.

You can use this to approximate the physics of this system at short and long distances: the short-distance
approximation is

〈O(x)O(y)〉 ∼ 1

‖x− y‖n−2 ,

7We’re actually considering normalized correlation functions.
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and the long-distance approximation is

〈O(x),O(y)〉 ∼


1

‖x− y‖n−2 ,m = 0

e−m‖x−y‖,m > 0.

A codimension 1 manifold has a Hilbert space of states. For Rn−1, this Hilbert space is a direct sum of the
vacuum, the single-particle states H1, the two-particle states H⊗2

1 , the three-particles H⊗3
1 , and so forth.

Thus, HRn−1 = Sym∗H1. This is not something you can expect in general theories. Here, H1 is an irreducible
representation of ISO1,n−1 introduced from the trivial representation of SOn−1 or SOn−2. If pi ∈ iso1,n−1 is
the translation generator, then M =

∑
i p

2
i is the Casimir operator for this theory.

If you look at the spectrum for this theory, there are two cases, depending on whether there’s a mass.

• If m > 0, then the lowest-energy state after the ground state is at m, then at 4m2, and then there
are more. So this is a gapped system.

• If m = 0, there are energy levels all the way down to the vacuum; this is a gapless system.

As has been said before, one can expect to obtain a topological field theory from a gapped system. This is
the action of the renormalization group flow, an action of the semigroup R+ on the space of QFTs. Namely,
t ∈ R+ rescales all distances by et. In particular, it maps the free scalar theory with mass m to the free scalar
theory with mass etm. Thus it flows from small positive numbers to larger ones, with m = 0,∞ as fixed
points.

• m = 0 is a free massless scalar theory. The action of R+ on this theory by automorphisms is nontrivial,
sending O 7→ e(n−2/2)tO but not changing the theory.

• At m = ∞, the correlation functions are dying off faster and faster, and renormalization can’t
compensate. The physical interpretation is that the correlation functions are made closer and closer
to zero, hence the local operator itself is being crushed out of existence. The mass gap is getting
bigger and bigger, so the only physics left is that of the vacuum. So this particular TQFT is probably
trivial — though it would be interesting to calculate this explicitly. (

It’s generally believed by physicists that if you apply renormalization group flow to a gapped theory, you’ll
arrive at a topological theory in the limit t→∞. This means a lot more than we’ve considered: you have to
consider the theory on all manifolds in the given dimension. To set this up and dodge counterexamples, one
must be careful about which field theories this ansatz applies to.

For any quantum field theory, the question as to whether it’s gapped or not is very important. If it is
gapped, the second question is: what TQFT do you get by flowing to the infrared? This involves setting up
the theory, with the same action and same path integral, on an arbitrary compact Riemannian manifold of
the same dimension.

Example 9.2 (Yang-Mills theory [YM54]). This 4-dimensional theory depends on more data: fix a compact
semisimple Lie group G and a coupling τ ∈ H (the upper half-plane). Conventionally one writes it as a real
part and an imaginary part:

τ =
θ

2π
+

4πi

g2
.

Strictly speaking, g is usually called the coupling.
The configuration space is now C, the space of principal G-bundles with connection on R4, modulo gauge

equivalence, and the action is

S =
1

2g2

∫
tr‖F‖2 +

iθ

2π

∫
trF ∧ F.

If G is abelian, this is quadratic, and so this is a free theory much like the previous one. In fact, it’s
scale-invariant, like the theory of the massless free scalar field. It’s still interesting, but a very simple theory
to compute in. It’s also not gapped. For G = U1, this is the theory describing electromagnetism, and the fact
that we can see photons at low energies is related to the fact that you have a massless particle and energy
levels all the way down to the vacuum.

If G is nonabelian, things are different: this is not a quadratic function (coming from the difference in
how you write the curvature F = dA+A ∧A), and is an interacting theory. It is widely, perhaps universally
believed, that in this case the theory is gapped: to prove this rigorously is a Millenium Prize problem. There
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are empirical reasons to believe this, including experimental evidence, such as the fact that the gluons in the
SU3 piece of the Standard Model don’t appear at low energies and numerical approximations of the lattice
model. For N large, holography provides evidence for SUN , but this might not be true for SU2 or SU3.

If it is gapped, you can further ask which topological field theory you would get. It’s not clear what this
would be, or even whether it’s invertible.

There are supersymmetric variants of Yang-Mills theory for which we do know it’s gapped, but it’s also
not entirely clear what the low-energy theory is. (

The other way to produce a topological theory out of a quantum field theory is a topological twist. Recall
that in a TFT, the n-point function 〈O1(x1) · · · Ok(xk)〉 must be independent of the metric on M and the
positions of the xi. In a general quantum field theory, the dependence on the metric is nonzero, but an
operator Tµν called the energy-momentum tensor measures how it changes:

δ

δgµν(x)
〈O1(x1) · · · Ok(xk)〉 = 〈O1(x1) · · · Ok(xk)Tµν(x)〉.

So if you can produce a way to make T = 0, you wind up with a topological field theory (or more generally,
Tµν ∼ gµν). The low-energy limit we’ve been discussing is one way to do this, but there’s another way. This
arises in the context of supersymmetry, where there’s a supergroup symmetry, and its Lie superalgebra has
an odd generator Q with Q2 = 0.

This implies

〈QO · · ·O〉+ 〈OQO · · ·O〉+ · · ·+ 〈O · · ·OQ〉 = 0.

Since Q2 = 0, it makes sense to think cohomologically: if we restrict to Q-closed operators, i.e. those where
QOi = 0, then the n-point function 〈O1 · · · On〉 only depends on the cohomology classes [Oi] ∈ ker(Q)/ Im(Q).
If in addition Tµν is Q-exact, then these functions are independent of the metric! This is how Witten [Wit88]
described Donaldson theory as a TQFT, starting from N = 2 supersymmetric Yang-Mills theory. The process
of changing a theory so that this works, which doesn’t affect the theory on flat space but does on curved
manifolds, is called twisting.

10. Question session

Today, the things that came up in the discussion session:

• What is the classifying space of principal G-bundles with connection, BG∇?
• What can you infer about a quantum field theory from the TQFT that is its low-energy limit? How

about for a lattice model?
• What is quantum field theory?
• What are some typical quantities/qualitative properties one can extract from a QFT?
• What is a Berry phase?

10.1. Andy Neitzke and Dan Freed: What does it mean to have a QFT? There are many different
ways to describe a QFT: a Lagrangian description or a description relative to some other system, or through
symmetries and local operators, or more. The Lagrangian formulation is a more well-known one: there’s a
space of fields, an action functional, and the path integral. There are ways to obtain the data of a functorial
QFT (not completely rigorously) for manifolds with or without boundary. One way to study it is to form the
space of classical solutions, which is a symplectic space, and then follow a prescribed formula to geometrically
quantize it and determine the theory. But this is not easy either. To compute the vector space of states, think
about an (n− 1)-manifold as an n-manifold with one infinitesimal direction. Then there’s a wave equation to
solve. It would be nice to be able to Wick-rotate bordisms from Euclidean to Lorentzian signature directly,
and this is ongoing work of Kontsevich-Segal.

But more generally, mathematicians and physicists ask about what QFT is not just to dot the is and cross
the ts, but to gain physical understanding. One physicist who likes to think about this is Nathan Seiberg,
who has given multiple interesting talks with the title “What is quantum field theory?”8 His thesis is that
there are many starting points and many coincidences, but we still don’t know what the right starting point
or the universal picture is.

8http://scgp.stonybrook.edu/video_portal/video.php?id=389.
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10.2. Many people: What quantities can you obtain from a QFT? As we’ve discussed, you can get
state spaces and correlation functions. The phenomenologists take the correlation functions and Fourier-
transform them, then do a little more processing, to obtain an amplitude measurement described in momenta.
This is something you can apply to an experiment in a particle accelerator, and see whether the experimental
probabilities match the theoretical ones.

Laboratory scientists deal with something called effective field theory, which is only required to be defined at
medium and long distances; we’d like to extend them to short distances/high energy, but there are sometimes
problems with this, suggesting we need a new way to think about this. In practice, the techniques that have
so far been written down don’t always apply. So in general, an effective field theory is something you can
obtain from a QFT.

In the specific case of two-dimensional conformal field theory, it’s possible to get a lot of previously-known
mathematical objects out, such as operator algebras or conformal blocks or things. Sometimes CFT is studied
by mathematicians for this reason.

The correlation functions for a QFT come in an enormous variety of flavors: point observables, loop
observables, and in general an observable for every submanifold of your ambient space, and conceivably one
could compute these given a trace or expectation. Related to loops are things called Wilson line operators in
gauge theory, which computes holonomy around a loop. This depends on the perimeter and area of the loop,
but the way in which they do is an important physical invariant of your theory, determining whether or not
it’s confined.

10.3. Dan Freed: what kinds of local operators can one obtain from functorial QFT? We’ve seen
how to get point operators from the functorial QFT perspective, by excising a small sphere and thinking
of it as a bordism. What about other operators, such as monopole operators? You can also do this with
functorial QFT, it turns out. Start by thinking about the symmetry type (Hn, ρn : Hn → On). For example,
if Hn = SOn × T and ρn is projection onto SOn, then the inclusion SOn ↪→ On, then an Hn-structure on a
manifold is an orientation plus a principal T-bundle and a connection (for a quantum field theory and/or
differential Hn-structure).

If the bundle is trivial, you can think of the monopole operator as extending into a bulk and acting there.
But, e.g., for n = 3, there are nontrivial principal T-bundles which do not extend over the bulk, and in this
case the monopole operator has to extend in a singular way to the bulk. So the symmetry of the theory
carries a lot of information about it.

10.4. Dan Freed: What is the classifying space for principal G-bundles with connection? We
want this classifying space BG∇ to be, well, a space such that [M,BG∇] is naturally isomorphic to the set of
isomorphism classes of principal G-bundles P →M with connection. But one can prove no such space exists.
So one has to widen the notion of “space” to make this work. For a reference, see [FH13].

A related question is what represents differential forms. It has the same problem, as you want to define
a space B such that Map(S,B) ∼= Ωj(S), but this doesn’t work unless j = 0. Instead, you only have the
functor Ωj , and that’s what you think of as the “space” BG∇, and there are ways to make this feel a bit
geometric. For more detail, check out [FH13].

Day 3. August 2

11. Dan Freed: Extended Field Theory

“There’s some Bureau of Standards sphere in Washington, and we have to compare it with
our sphere.”

Today’s two lectures will focus on extensions and variations of the axioms of QFT. They apply to QFT in
general, but by focusing on topological field theories we can obtain a clearer understanding of them. In this
lecture, we’ll study an extended notion of locality.

Recall that any bordism is a composition of elementary bordisms (e.g. those in Figure 6 for oriented,
2-dimensional bordisms). Therefore it’s possible to compute the partition function of a closed n-manifold by
cutting it into elementary bordisms. Suppose X decomposes as X− : ∅→ Y and X+ : Y → ∅. Then, if ξi is
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a basis of F (Y ), there are ai, bi ∈ C such that

(11.1)
F (X−) = aiξi ∈ F (Y )

F (X+) = biξ
i ∈ F (Y )∗.

By functoriality this means

F (X) =
∑
i

aibi.

But physics tells us that field theories have more locality than in just one direction: it should be possible to

placeholder

Figure 10. Cutting a manifold in codimension 1.

do the same thing to Y . A Morse function divides it again into elementary bordisms in one dimension lower,
say Y− : ∅ → Z and Y+ : Z → ∅. We’d like to say something analogous to (11.1): there should be things
ci ∈ F (Z) and vector spaces Ai, Bi such that

F (Y−) = Aici ∈ F (Z)

F (Y+) = Bic
i

F (Y ) =
⊕
i

Ai ⊗Bi.

This isn’t quite rigorous yet, but it seems like F (Z) needs to be a category.
More concretely, say n = 2. Now, a decomposition of the elementary bordisms as elementary bordisms

(with corners) in one dimension lower produces two different directions of composition. Implementin this in
the bordism category produces a higher category Bord〈0,1,2〉.

placeholder

Figure 11. Cutting a surface into elementary bordisms in two directions.

Example 11.2. As another instance of these kinds of categorical structures, suppose S is a space. Then, its
connected components π0S form a set. You can extract more information from S, however: let π≤1S denote
the category whose objects are points of S and whose morphisms Homπ≤1

(x, y) are the homotopy classes of
paths from x to y. (We need to restrict to homotopy classes so that composition is associative). Since all
paths are reversible, this is a groupoid, and is called the fundamental groupoid of S; its isomorphism classes
are the set π0S, and the automorphism group of an x ∈ S is π1(S, x).

We can upgrade this to a higher structure: keep track of the entire set of paths from x to y, and the
homotopies between them, but keeping track of these homotopies only up to homotopy. This produces a
2-groupoid π≤2S, called the fundamental 2-groupoid of S, whose objects are paths of S, morphisms between
x and y are all paths between them, and whose 2-morphisms (the second composition law) are homotopies of
paths. In order to make composition associative, we must only take these homotopies up to homotopy. (

Remark 11.3. It’s possible to keep track of more and more homotopies between homotopies, producing higher
groupoids π≤kS and even π≤∞S, the fundamental ∞-groupoid of S. Grothendieck’s homotopy hypothesis
says this remembers all of the homotopical information of X; one can make this precise, or just remember the
notion that “∞-groupoids are the same data as spaces.” Certainly, spaces are usually easier to work with! (

As soon as one wants to work with homotopies of homotopies or multiple composition laws, higher
categories are pretty much inevitable. We’re not going to be precise about our definitions, as this would be
difficult and unilluminating. Nonetheless, here are some of the players.

• For every m ∈ Z≥1 ∪ {∞}, there is a notion of an m-category, where we have objects, morphisms, 2-
morphisms between morphisms, 3-morphisms between 2-morphisms, and so on up to m (or continuing
forever if m =∞). These are required to be associative only up to higher morphisms, though making
this precise can be a challenge.
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• If 0 ≤ n ≤ m, an (m,n)-category is an m-category whose k-morphisms are invertible whenever k > n.
For example, an (m, 0)-category is also called an m-groupoid.

These notions of higher category theory snuck into quantum field theory and topological field theory through
considerations of extended locality for Chern-Simons theory: how do you determine the value of a partition
function on X when you’ve cut X in two different directions?

Definition 11.4. The bordism n-category Bordn is the symmetric monoidal n-category defined by the
following data.

• The objects are 0-manifolds.
• The 1-morphisms are bordisms between 0-manifolds.
• The 2-morphisms are bordisms between 1-morphisms (so 2-manifolds with corners).
• The 3-morphisms are bordisms between the 2-morphisms, and so on.
• The n-morphisms are isotopy classes of bordisms of (n− 1)-morphisms.

As before, the symmetric monoidal structure arises from disjoint union.
There are a few variants of this notion.

• As before, you can define Bordn with various kinds of tangential structure, by requiring all manifolds
and bordisms to have orientation, spin, a principal G-bundle, etc.

• You can also keep going, defining the n-morphisms to be bordisms of (n − 1)-morphisms, the
(n+ 1)-morphisms to be isotopies of n-morphisms, (n+ 2)-morphisms to be diffeomorphisms of the
(n+ 1)-morphisms, and so on. This is useful for considering families of manifolds, and the result is a
bordism (∞, n)-category.

A field theory with this notion of extended locality should be a symmetric monoidal functor out of Bordn.
But what should the codomain be? VectC does not generalize to a symmetric monoidal (∞, n)-category as
easily. There are a few constraints told to us by physics.

• We still want partition functions to be complex numbers, so we can ask for some sort of C-linearity.
• Fermionic and bosonic statistics suggest that we consider something generalizing super-vector spaces.

But we won’t always do this, and there are useful constructions that don’t meet these criteria.

Definition 11.5. Let C be a symmetric monoidal (∞, n)-category. Then, an extended field theory with
values in C is a homomorphism (i.e. a symmetric monoidal functor)

F : Bordn(Xn) −→ C.

Example 11.6. One somewhat nonphysical choice for C is Bordn+1(Xn+1) — but this is useful. The
dimensional reduction of a theory is its composition with

–× S1 : Bordn(Xn) −→ Bordn+1(Xn+1),

which is symmetric monoidal and hence meets the definition. This has been studied in practice [CWZM97,
HKM08, Fre09]. (

Example 11.7. For something that looks more like a field theory, fix a finite group G and consider finite
gauge theory from Example 1.11. The theory FG sends S1 7→ Map(G,C)G, the class functions, and on an
oriented surface of genus g, the partition function is

FG(Xg) =
∑

[W ] irreps of G

(
dimW

#G

)2−2g

.

You can generalize this to other fields, but in modular characteristic G-representations are not semisimple
and these formulas do not work out so cleanly.

We’d like to extend this theory. The first thing we need is a symmetric monoidal 2-category, and there are
two natural choices.

(1) One choice is CatC, the 2-category specified by the following data:
• the objects are C-linear categories,
• the 1-morphisms Hom(C,D) are the C-linear functors C→ D, and
• the 2-morphisms Hom(F,G) are the C-linear natural transformations F ⇒ G.
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The symmetric monoidal structure is coproduct. In this case, the extended theory

F̂G : Bord〈0,1,2〉 −→ CatC

sends the positively oriented point to RepG, the category of complex representations of G.
(2) A second possiblity is the Morita 2-category AlgC:

• the objects are C-algebras A,
• the 1-morphisms Hom(A,B) are the (B,A)-bimodules BMA. The composition is tensor product:

given CNB and BMA, one can form the (C,A)-bimodule CN ⊗B MA.
• The 2-morphisms are the intertwiners (bimodule homomorphisms).
• The symmetric monoidal structure is ⊗C.

A 1-morphism from A to B is classically known as a Morita equivalence, hence the name of this
category. One can also consider a variant on this category where algebras and modules are Z/2-graded,
a “super-Morita 2-category.”

In this case, the extension of finite gauge theory assigns to the positively oriented point the algebra
Map(G,C), with the convolution product.

Both of these categories are deloopings of VectC, in that HomC(1C, 1C) ' VectC naturally. They are different,
but there is a functor AlgC → CatC sending A 7→ AMod, its category of left A-modules, and this identifies our
two extensions of FG. (

Remark 11.8. There’s a variant of this theory where one chooses a central extension G̃ of G by T and assigns

to a point the category of projective representations of G that extend to representations of G̃. (

In physics, this notion was present in a different form from the 1970s, using extended operators. We’ve
already seen point operators created by shrinking an excised sphere around a point, and considering the
bordism x : Sn−1 → ∅. But there are also higher-dimensional operators. Let L be a line in X; we can
do something similar by removing a small tubular neighborhood, and by locality, it should be possible to
cut the line up and compute this on a link of the line, which is an Sn−2. In this case, we would obtain a
category of operators, and in higher dimensions, you get higher categorical structures. If you work this out in
3-dimensional finite gauge theory, you can see Wilson and t’ Hooft operators in this way.

Algebraic structures. You can think of 1-dimensional TFT as encoding multiplication of square matrices:
a bordism from the point to itself defines a matrix, and a bordism from four points to two points colliding
two together and keeping the others separate is matrix multiplication. This is associative, because the two
bordisms that would represent (– · (– ·–)) and ((– ·–) ·–) are diffeomorphic, but it’s not commutative, reflecting
the associativity but noncommutativity of matrix multiplication.

Figure 12. Matrix multiplication in 1-dimensional TFT.

In two dimensions, you get a partial notion of commutativity: the algebraic structure comes from the
pair-of-pants bordism, and so local operators are associative and partly commutative, but not entirely: it
matters how many times you’ve wound one around the other. In higher dimensions, there are stronger and
stronger versions of commutativity, all encoded by various operadic structures. You can do similar things
with higher operators.

Next, you might wonder: we saw that point operators are closely related to states. Can we do the same
thing with line operators? The answer is yes: we can think of a line L as the Wick-rotated worldline of a
particle, so the category you get is the category of particles. This means that an extended low-energy effective
field theory sees more of the total theory (continuum or lattice) than you think: this category of particles can
be seen by the low-energy theory and does correspond to the lower-energy excitations in the full theory (here
we’re assuming the system is gapped).
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12. Dan Freed: Invertible Field Theories and Stable Homotopy Theory

In this section, we’ll discuss extended structure on invertible field theories, both topological and non-
topological. This will bring us to the world of stable homotopy theory, and in this lecture we’ll explain
why.

The symmetric monoidal structure on the bordism n-category is evident even at the 0-categorical level:
we have bordism groups, not bordism sets. If we restrict to invertible objects, we find symmetric monoidal
groupoid structures.

Definition 12.1. A Picard groupoid is a symmetric monoidal groupoid in which every object is invertible
under the tensor product.

Example 12.2.

(1) The groupoid of lines over a field k is a Picard groupoid. You can also form the Picard groupoid of
super-lines over k, which is the maximal subgroupoid of sVectk.

(2) The Brauer groupoid is a Picard 2-groupoid, the maximal sub-2-groupoid of Algk. If we use
superalgebras, this is called the Brauer-Wall groupoid, and its group of objects over C is Z/2 but
over R is Z/8, which ties to all sorts of interesting things such as Bott periodicity. (

Definition 12.3. A field theory F : Bordn(Xn) → C is invertible if it factors through C×, the maximal
subgroupoid of C.

In the analogous story for rings, a map R → S× ↪→ S should factor through a quotient of R, and we
expect the same thing to happen here: there should be a universal quotient |Bordn(Xn)| which is a Picard
(n-)groupoid, and F should factor through a map

α : |Bordn(Xn)| −→ C×.

Forgetting the Picardness for a moment, we should be able to use the homotopy hypothesis to move to a
map of spaces, and then we can figure out what the symmetric monoidal structure does for us.

Recall that we understand the domain, but not the codomain. We can therefore determine |Bordn(Xn)|,
which is science, but determining C× is art — easier art, because we only need the Picard groupoid, not the
entire n-category.

So we have several questions to address in this lecture.

(1) What extra structure does the symmetric monoidal structure on a TFT induce on the spaces
|Bordn(Xn)| and C×?

(2) How do we obtain reasonable choices for C×?

As a first step, let’s look at oriented 1-dimensional theories: we should have a map

i : Bord1(SO1) −→ |Bord1(SO1)|.
A Picard (1-)groupoid G has three invariants that completely characterize it up to symmetric monoidal
equivalence.

• π0G has the structure of an abelian group thanks to the symmetric monoidal product.
• π1(G, 1) is a nonabelian group; for every object x, π1(G, x) ∼= π1(G, 1) by conjugating through –⊗x−1.
• The k-invariant π0G ⊗ Z/2→ π1(G, 1), which is the composition

1
⊗(y⊗y) // y ⊗ y

σy,y // y ⊗ y
⊗(y⊗y)−1

// 1,

where σy,y is id for the identity of Z/2 and transposition for the nonidentity element.

Example 12.4. We can explicitly calculate these invariants for |Bord1(SO1)|. The first key observation is
that if f1, f2, g are morphisms in Bord1(SO1) such that if f1 ◦ g = f2 ◦ g, then i(f1) = i(f2), because all
morphisms in a groupoid are invertible.

We can therefore compute:

• π0|Bord1(SO1)| ∼= Z, which is the number of points, counted with orientation.
• π1(|Bord1(SO1)|,∅) ∼= Z/2, which comes from the fact that ∅ ∼ (S1)q2, and there’s a nontrivial

map α : Bord1(SO1)→ sLineC sending the positively oriented point to an odd line and S1 7→ −1, so
it must be a nontrivial element of π1.
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Figure 13. Generating morphisms in Bord1(SO1).

Figure 14. |Bord1(SO1)| has a nontrivial k-invariant.

• Finally, the k-invariant is nontrivial. (

The extra structure guaranteed by a symmetric monoidal product turns this space into an infinite loop space.
This is a pointed space T0

∼= ΩT1
∼= Ω2T2

∼= · · · . This adds a lot of structure: π0T0
∼= π1T1

∼= π2T2, and
therefore π0T0 is an abelian group (as is π1, for similar reasons). This is a structure on a space, just as a
symmetric monoidal product is a structure on a category.

To turn this condition into data, we make the following definition.

Definition 12.5. A spectrum T is the data of spaces {Tq}q∈Z together with maps sq : ΣTq → Tq+1.

Since Σ and Ω are adjoints, this is the same data as maps tq : Tq → ΩTq+1. Suspension comes from
crossing with an interval, so we get a direction of time. An Ω-spectrum is one in which these maps tq are
homeomorphisms, so that T0 is an infinite loop space. Any spectrum can be completed into an Ω-spectrum,
so infinite loop spaces can be recovered from spectra. (The two notions are in fact equivalent.)

The 1-truncation of a spectrum is exactly a Picard groupoid: it has abelian π0 and π1, plus the k-invariant
tying the two together.

The point is: an invertible field theory is the data of a map of spectra. This lands us in stable homotopy
theory.

Thinking back to Example 12.4, we ask: what’s a spectrum E such that π0E ∼= Z, π1E ∼= Z/2, and there’s
a nontrivial k-invariant? One choice is the sphere spectrum S0, for which Tq = Sq, and the bonding maps
are the identifications ΣSq ∼= Sq+1. π0S

0 = Z, given by the degree of a map Sn → Sn, and π1S
0 = Z/2,

generated by the Hopf fibration η : S3 → S2. This has infinite order, but its suspension Ση : S4 → S3 has
order 2. Finally, you can check that the k-invariant is nontrivial.

Given a spectrum T , one can pass to its homotopy groups
⊕

q πqT , which is a Z-graded abelian group.
Negative homotopy groups are possible. Thus a spectrum is a refinement of a Z-graded abelian group, but
the k-invariants assembling the graded pieces together are additional data.

Now we want to apply this to α : |Bordn(Xn)| → C×, and determine what spectra correspond to the domain
and codomain. There’s a lot to say here, and we won’t be able to say all of it. First some more examples of
invertible field theories.

Example 12.6.
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(1) The Euler theory extends: given a µ ∈ C×, we have an invertible field theory eµ which to a closed

n-manifold X, assigns εµ(X) = µχ(X), to a closed (n− 1)-manifold Y assigns C, and is trivial in all
higher codimensions.

(2) Kervaire defined an invariant for n = 4`+ 1 given by exponentiating the Kervaire semicharacteristic:

κ(x) := (−1)
∑
i b2i(X),

where bj is the jth Betti number of X. This defines an extended invertible field theory Bordn → sLineC
in the same way as the Euler theory, and in dimension 1 is the theory we used to prove π1|Bordn(SO1)|
is nontrivial. (

Theorem 12.7. Let α : Bord〈n−1,n〉(SOn)→ sLineC be an invertible field theory.

(1) If α(Sn) = 1, then [α] : Ωn(SOn)→ C× sending X 7→ α(X) is a bordism invariant.9

(2) In general, [α] : ΩMT
n (SOn)→ C× defines a cobordism invariant in the same way.

We need to define this more exotic bordism theory.

Definition 12.8. A closed n-manifold X is MT null bordant10 if there exists a compact (n+ 1)-manifold W
such that ∂W = X and a rank-n vector bundle E →W such that E|X ∼= TX and E is stably equivalent to
TW .

So this is a stricter condition that the usual notion of bounding (“Thom null bordance”).
The basic link between manifolds and homotopy theory is the Pontrjagin-Thom construction, beautifully

exposited in Milnor’s little book on differential topology. Pontrjagin considered a map of spheres f : Sn+q → Sq.
Suppose p ∈ Sq is a regular value of f and X := f−1(p), which is a closed n-manifold in Sn+q. Pulling back
TpS

q, we obtain a normal framing on Xn. This construction extends to an isomorphism

[Sn+q, Sq]
∼=→ Ωfr

n(Sn+q),

and we can replace Sn+q with any closed manifold M . The inverse map has a beautiful description: given
a nroamlly framed manifold X, we take a tubular neighborhood and collapse everything else outside of it,
which crushes to a q-sphere; this map is called Pontrjagin-Thom collapse.

The colimit as q →∞ has a geometric description as embedding in high-dimensional affine spaces, so we
end up with a stable version: πnS

0 ∼= Ωfr
n : the framed cobordism groups are the stable homotopy groups of

the spheres.
Generally manifolds aren’t framed, so if we embed it in a big sphere (using Whitney’s theorem), the normal

bundle isn’t framed. Instead it determines a classifying map to BGLq(R) and do a Pontrjagin-Thom collapse
to the classifying bundle over BGLq(R), producing the Thom space of BGLq(R) for this bundle. Thus we get
a map from Sn+q to this Thom space. Stabilizing, we get a map of spectra from S0 to an object called the
(unoriented) Thom spectrum MO . In particular, Ωn ∼= πnMO . You can do this for any tangential structure,
obtaining different Thom spectra.

There’s a corresponding construction of Madsen-Tillman spectra MTXn whose homotopy groups are
Madsen-Tillman bordism groups. These are the domain spectra.

Theorem 12.9 (Galatius-Madsen-Tillman-Weiss [GMTW09]). There’s an equivalence of spectra |Bordn(Hn)| '
ΣnMTH n.

So we know the domain for our invertible field theories. What about the codomain?
We want to promote the invariant [α] : ΩMT

n (Hn)→ C× to a spectrum map α : ΣnMTH n → E for some
E. Well, Hom(ΩMT

n (Hn),C×) is the Pontrjagin dual to ΩMT
n (Hn), so we should consider a spectrum-level

analogue of the Pontrjagin dual.
There is a spectrum IC× with the universal property that for every spectrum E,

[E, IC×] ∼= HomAb(π0E,C×).

Thus our choice for codomain is ΣnIC×, and our ansatz is: an invertible TFT with symmetry group Hn is a
morphism of spectra

α : ΣnMTH n −→ ΣnIC×.

9The hypothesis is necessary: consider the Kervaire theory in dimension 1.
10The MT stands for Tangential Thom (because M is used for general Thom spectra) or for Madsen-Tillman [MT01], who

first considered this theory. It could also stand for Montana.
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As far as applications to physics go, there’s some magic, as expressed in Table 2. The C× and µ2 in dimensions

q πqS
0 πqIC×

3 Z/24 0
2 Z/2 0
1 Z/2 0
0 Z C×
−1 0 µ2

−2 0 µ2

−3 0 µ24

Table 2. Small homotopy groups of the spheres and IC×.

0 and −1 give you the invariants of the Picard groupoid sLineC and with −2 gives you the Brauer-Wall
groupoid, suggesting that this is actually the right codomain to make these invariants work.

Day 4. August 3

13. Dan Freed: The Wick-rotated Version of Unitarity

“Is it clear. . . ? It’s clear to me.”

Yesterday, we got to the point where we defined, or at least motivated, an extended notion of locality and
field theories. In the invertible case, we ended up in topology, and made an ansatz that an invertible field
theory is a map of spectra.

Let’s recall that if (Hn, ρn) is a symmetry type, Hn is a compact Lie group and ρn : Hn → On is a Lie
group homomorphism. By relativistic concerns, the image of ρn is either On (in the presence of time-reversal
symmetry) or SOn (in its absence). Our ansatz was that an invertible extended TFT of symmetry type
(Hn, ρn) is a map of spectra α : ΣnMTH n → ΣnIC×. The symmetry type (Hn, ρn) has a stabilization (H, ρ),
and we will use this information.

Let’s talk a little more about these Madsen-Tillman spectra MTH n. A spectrum is a sequence of spaces,
so we need to describe those spaces. For simplicitly, we’ll fix Hn = On and ρn = id, but versions of this
description work for general Hn.

Recall that the Grassmannian Grq(Rn+q) is the manifold of q-planes through the origin in Rn+q. There is
a short exact sequence of vector bundles

0 // Sq // Rn+q // Qn // 0,

where Sq is the tautological bundle: a point in Grq(Rn+q) is a q-dimensional subspace V ⊂ Rn+q, and the
fiber over the point V is the vector space V . Then, Qn is the fiberwise quotient of the trivial bundle by Sq;
its rank is n.

The quotient of Rn+q at a point V is an n-dimensional vector space, and this varies smoothly, defining an
isomorphism Grq(Rn+q)→ Grn(Rn+q), and this exchanges Sq and Qq, and Qn and Sn.

Including Rn+q ↪→ Rn+q+1 as the first n+ q coordinates defines a map i : Grq(Rn+q)→ Grq+1(Rn+q+1)
defined by summing each subspace with R · en+q+1. The pullback of Sq+1 → Grq+1(Rn+q+1) along this map
is Sq, so we get a pullback diagram

Sq //

��

Sq+1

��
Grq(Rn+q)

i // Grq+1(Rn+q+1).

This shows that if you take the Thom spaces of these vector bundles, you get structure maps Στ(Sq)→ τ(Sq+1),
hence defining a spectrum, which is a Thom spectrum called MOn. Taking the limit in n defines MO .

The Madsen-Tillman spectrum MTOn does the same thing with the quotient bundle: inclusion Rn+q ↪→
Rn+q+1 defines a map j : Grn(Rn+q)→ Grn(Rn+q+1) just by including each subspace, and this pulls Qq+1
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back to Qq. We again get a commutative diagram

Qq //

��

Qq

��
Grn(Rn+q)

j // Grn(Rn+q+1).

Hence we get structure maps between their Thom spaces, and the resulting spectrum is denoted MTOn.
This construction stabilizes: the map i : Grn(Rn+q)→ Grn+1(Rn+q+1) pulls Qq back to Qq, and therefore

defines a map ΣnMTOn → Σn+1MTOn+1, so it’s possible to take the colimit of these maps; the resulting
spectrum is called MTO .

MTO carries information about a tangential On-structure, but MO carries information about a normal
On-structure. A tangential On-structure uniquely determines a normal one, so MTO ' MO , but this is not
true for more general Hn-structures: the standard example is that Pin+ and Pin− are interchanged.

The colimit construction means there’s a map an : ΣnMTH n → MTH .

Definition 13.1. An invertible field theory α : ΣnMTH n → ΣnIC× is called stable if it factors through
an : ΣnMTH n → MTH .

Since the maps ΣnMTH n → Σn+1MTH n+1 are fibrations, the obstructions to stability will lie in their
(homotopy) fibers.

Lemma 13.2. There is a fibration

Σn(BHn+1)+
// ΣnMTH n

// Σn+1MTH n+1.

Here, BHn+1 is the base of the universal family of Hn-spheres

Sn // BHn

��
BHn+1.

That is, Hn and Hn+1 act on Sn through the maps to On and On+1.

The codomain. The spectrum IC× is a Pontrjagin dual in the world of spectra; this concept was introduced
by Brown and Comenetz [BC76]. In abelian groups, there are two kinds of duality: the Pontrjagin dual

A∨ := HomAb(A,C×)

and the module-theoretic dual
A∗ := HomAb(A,Z).

These are related through the exponential exact sequence

(13.3) 0 // Z // C e2πi(–) // C× // 0.

If M is a smooth manifold, (13.3) induces a long exact sequence in cohomology.

(13.4) 0 // H1(M ;Z) // H1(M ;C)
exp // H1(M ;C×)

βZ // H2(M ;Z) // H2(M ;C) // · · ·

Since C× is abelian, H1(M ;C×) can be interpreted as the group of isomorphism classes of line bundles, or
principal C×-bundles with a flat connection. This is because these are identified with HomGrp(π1(M),C×),
and because C× is abelian, this factors through the abelianization.

So far everything is discrete, but H1(M ;C×) inherits a topology from C×, and hence is a Lie group A,
and this allows for a beautiful reinterpretation of (13.4): H1(M ;C) becomes identified with the Lie algebra a
of A, and the map between them is the exponential map, which fits into a long exact sequence

0 // π1A // a
exp // A // π0A = H2(M ;Z)tors

// 0.

This is an instance of a more general long exact sequence in homological algebra for any abelian group A:

0 // A∗ // Hom(A,C) // A∨
π0 // Ext1(A,Z) // 0.
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This arises from applying the Ext∗(A, –) functor to the short exact sequence (13.4), using the fact that
Ext1(A,C) = 0.

Now we bring this into the world of spectra. We can define IC× to satisfy the universal property

πq Map(B, IC×) = (π−qB)∨

and prove this satisfies Brown representability, hence defines a spectrum IC×. If you make this same
construction with C, you can show you obtain the Eilenberg-Mac Lane spectrum IC = HC. Then, define IZ
to be the homotopy fiber of the exponential map exp: IC→ IC×. This is called the Anderson dual to Z, and
was indeed first studied by Anderson. See Table 3 for a few homotopy groups of these spectra; because the
sphere spectrum is connective, IC× and IZ are coconnective: all of their positive homotopy groups vanish.
Of course, HC has a single nontrivial homotopy group, π0HC = C.

q πqS
0 πqIC× πqIZ

4 0 0 0
3 Z/24 0 0
2 Z/2 0 0
1 Z/2 0 0
0 Z C× Z
−1 0 µ2 0
−2 0 µ2 µ2

−3 0 µ24 µ2

−4 0 0 µ24

−5 0 0 0

Table 3. Small homotopy groups of IC× and IZ.

We’re interested in computing the group of invertible field theories, π0 Map(ΣnMTH n,Σ
nIC×), which

should correspond to using C× with the discrete topology, but if we care about deformation classes, we should
use the complex topology on it. We can avoid this by observing that a deformation factors through ΣnIC,
and hence taking deformation classes defines a group homomorphism

[ΣnMTH n,Σ
nIC×] −→ [ΣnMTH n,Σ

n+1IZ].

Thus we have a classification result.

Theorem 13.5 ([FH16]). There is a one-to-one correspondence between the deformation classes of invertible
topological field theories of symmetry type (Hn, ρn) and the torsion subgroup of [ΣnMTH n,Σ

n+1IZ].

If you want to consider noninvertible field theories, it ought to be possible to take the entire subgroup,
not the torsion subgroup. This theorem has been useful in work of Freed, Hopkins, Telemann, and their
collaborators; see [FKS17] for one example.

Unitarity from the homotopical viewpoint. For applications in mathematics, what we’ve done is already
good, but if we want to solve actual problems in physics, the theories we consider must satisfy locality and
unitarity. By using extended field theory, we have fully incorporated locality, but what about unitarity in
this extended, Wick-rotated context?

Recall that we started with Lorentzian signature Mn, then passed to a complex half-plane D, then to
Wick-rotated, Euclidean quantum field theory. Reconstruction theorems justify this by allowing calculations
in the Euclidean theory to determine what goes on in the Lorentzian theory, and then one can place it on
curved Riemannian manifolds.

The Wick-rotated analogue of unitarity is called reflection positivity. These are two different things:
reflection is data and positivity is a condition. It’s important to keep data and conditions separate, though
many books skip over this point. In a later lecture, we will consider an extended notion of positivity, which
will also be data.

Unitarity in Minkowski signature is evident in relativistic QFT: the symmetry group acts unitarily, through
a map Gn → U(H). When we pass to En, it provides data of a hyperplane Π splitting En into two pieces, En+
and En−. Let σ : En → En denote reflection across this hyperplane; we want σ to act by complex conjugation.
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This is not part of the symmetry group, but means we can consider the Hilbert space of states attached to
the (n− 1)-manifold Π with a given orientation o; call this space H(Π,o).

Precisely, we want an isomorphism

H(Π,−o)

∼=−→ H(Π,o)

for which all observable quantities (e.g. collections of point operators) 〈O〉En+ ∈ H(Π,o) are complex-conjugated

under reflection:

〈σO〉En− = 〈O〉En+ .

This is data (isomorphism) and a condition (what it does).
Positivity asks that if you apply O and its conjugate, the result is nonnegative:

〈OσO〉En ≥ 0.

This is a condition.
We have a few more things to do here:

• Understand what’s going on for general Hn-structures, which isn’t too complicated.
• Placing this on curved manifolds, which will be an essential step in formulating it functorially.
• Figuring out the extended analogue of positivity, which is straightforward but does bring us to

equivariant spectra.

14. Agnès Beaudry: Computations in Homotopy Theory

Theorem 13.5 tells us that deformation classes of invertible field theories can be computed by homotopy
classes of maps between spectra, and in this lecture we’ll learn how to actually compute them.

First, though, a brief simplification: after a couple steps, one learns that

[MTH ,Σn+1IZ]tor
∼= (πnMTH )tor.

There is a machine for computing this called the Adams spectral sequence

Exts,tA (H∗(X;Z/2),Z/2) =⇒ (πst−sX)⊗ Z2.

Here,

• Ext is the derived functors of something, which we’ll go into later. Thus, it’s singly graded, which is
the s-grading.

• H∗(X;Z/2) is also singly graded, corresponding to the t-grading above.
• X is a space or spectrum; if it’s a space, we need to use its reduced cohomology. πsiX is the ith stable

homotopy group of X (the same as ordinary homotopy groups for spectra).
• A is a graded algebra called the Steenrod algebra; we’ll say more about it soon.
• Z2 is the 2-adic integers. Thus we retain information about Z- and Z/2-summands, and lose everything

else.

The Steenrod algebra is a graded, noncommutative algebra over F2. Associated to the short exact sequence

0 // Z/2 // Z/4 // Z/2 // 0

there’s a long exact sequence in cohomology

(14.1) · · · // H∗(–;Z/4) // H∗(–;Z/2)
Sq1

// H∗+1(–;Z/2) // H∗+1(–;Z/4) // · · ·

which is natural and commutes with the suspension isomorphism H∗(X) ∼= H∗+1(ΣX).

Definition 14.2. A stable cohomology operation is a natural transformation between cohomology groups that
commutes with the suspension isomorphism. The Steenrod algebra A is the algebra of all stable cohomology
operations between Z/2 cohomology, with multiplication given by composition.

A is a noncommutative algebra, but admits a description as a tensor algebra modulo relations over Steenrod
squares

Sqi : H∗(–;Z/2) −→ H∗+i(–;Z/2)
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for i ≥ 0. We learned what Sq1 is, and Sq0 = 1, but the rest are hard to describe. The relations between the
Steenrod squares are called Ádem relations, and are unenlightening to describe in generality, but here are
some examples:

Sq1Sq1 = 0

Sq1Sq2 = Sq3

Sq2Sq3 = Sq5 + Sq4Sq1.

Combining the latter two relations, we see that

Sq5 = Sq4Sq1 + Sq2Sq1Sq2,

and this generalizes.

Fact. A is generated, as an algebra, by Sq2n for n ≥ 0. (

Example 14.3. As a ring,

H∗(RP2;Z/2) ∼= Z/2[x]/(x3), |x| = 1.

That is, there’s a single generator in degree 1 whose cube is zero. This comes from a CW structure on RP2:
its 1-skeleton is an S1, but then you attach a 2-cell along a degree-2 map. This is described by a diagram

∂D2 � � //

·2
��

D2

��
S1 // RP2.

We can describe this (both the cohomology ring and the CW structure) by a diagram, as in Figure 15.
The proof that Sq1x = x2 comes directly from (14.1), and says geometrically that the 2-cell is attached by
multiplication by 2. (

1

x

x2

Sq1

Figure 15. The cohomology of RP2: Sq1x = x2.

Example 14.4. There’s a very similar story for CP2.

H∗(CP2;Z/2) ∼= Z/2[y]/(y3), |y| = 2,

and there’s a 0-cell, a 2-cell, and a 4-cell, and the 4-cell is attached by the Hopf map η:

∂D4 � � //

η

��

D4

��
CP1 // CP2.

In this case, Sq2y = y2, and Sq2 witnesses the fact that the 4-cell is attached by the Hopf map. The picture
is very similar, and given in Figure 16; generally one draws Sq1 as a straight line, and Sqi for i > 1 as
increasingly curvier lines. (

For computing, the following formulas may be useful.

(1) Sq0x = x.
(2) If |x| = n (i.e. x ∈ Hn), then Sqn(x) = x2.
(3) if |x| < n, then Sqn(x) = 0.
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1

y

y2

Sq2

Figure 16. The cohomology of CP2: Sq2y = y2.

(4) The Cartan formula

Sqn(xy) =
∑
i+j=n

Sqi(x)Sqj(y).

Example 14.5. The cohomology of RP∞ is particularly simple: H∗(RP∞;Z/2) ∼= Z/2[x], with |x| = 1. The
formulas we just wrote down actually completely force the A-module structure on H∗(RP∞;Z/2):

Sqn(xm) =

(
m

n

)
xm+n,

where the binomial coefficient is interpreted modulo 2. Thus Steenrod squares of all indices appear. (

Jonathan Campbell [Cam17] has written a great exposition on how to calculate with the Steenrod algebra
and elaborating on the calculations in [FH16].

Definition 14.6. Let A(n) denote the subalgebra of A generated by Sq0,Sq1, . . . ,Sq2n .

Hence A(1) = 〈Sq1,Sq2〉, and it is only 8-dimensional, which is nice. It has a nice pictoral description in
Figure 17. This truncated spectrum makes it easier to make calculations. Here’s an example.

•
•
•

• •
•
•
•

Figure 17. The algebra A(1): the vertical stratification is the degree, the straight lines are
Sq1, and the curvy lines are Sq2.

Definition 14.7. Let ko denote the connective real K-theory spectrum, i.e. a truncation of KO (real K-theory)
that removes all negative homotopy groups.

This means that

(14.8) π∗ko = π∗(BO) =


Z, ∗ = 0, 4 mod 8 and ∗ ≥ 0

Z/2, ∗ = 1, 2 mod 8 and ∗ ≥ 0

0, otherwise.

ko has a nice structure over the Steenrod algebra:

(14.9) H∗(ko) = A/A(1) = A⊗A(1) F2.

You can use this to prove (14.8), though it’s not the only way.
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Calculations for Madsen-Tillman spectra. We want to compute π∗MTH .

Fact. There is a homotopy equivalence

MTH ' MSpin ∧X,
where X is a suspension of a familiar Thom spectrum. (

For example, if H = Pin−, then

MTPin− ∼= MPin+ ∼= MSpin ∧ Σ−1MO(1) ' MSpin ∧ Σ−1RP∞.

Concretely, by Σ−1MO(1), we mean the Thom spectrum of the tautological bundle over BO1 ' RP∞.
Using the Künneth formula, we can conclude

H∗(MTH ) ∼= H∗(MSpin)⊗H∗(X),

and if we only care about low degrees (as is the case in physics, where we care the most about physically
realizable dimensions), there’s a convenient reduction available.

Theorem 14.10 (Anderson-Brown-Peterson [ABP66]). As A-modules, H∗(MSpin) ∼= H∗(ko) for ∗ < 8.

And by (14.9), we know what the right-hand side is.
Now we can simplify the input term to the Adams spectral sequence, at least in low degrees: for t− s < 8,

Exts,tA (H∗(MTH ;Z/2),Z/2) ∼= Exts,tA (A/A(1)⊗H∗(X;Z/2),Z/2).

By a change-of-rings formula, we get Ext over a much simpler algebra:

∼= Exts,tA(1)(H
∗(X;Z/2),Z/2).

This change-of-rings isomorphism a consequence of a more familiar fact, that HomS(S ⊗R M,N) ∼=
HomR(M,N).

The next step is to compute Ext by forming a resolution as usual. The s-degree increases and each term is
a graded F2-vector space, in fact a projective A(1)-module (free modules suffice), graded in the t-degree:

0 H∗(X)oo A(1)⊗F2
Q0

oo A(1)⊗F2
Q1

oo A(1)⊗F2
Q2

oo · · ·oo

where each Qi is a graded F2-vector space (in the t-grading), so these are indeed free A(1)-modules. Let

Qi := HomA(1)(A(1)⊗F2
Qi,Z/2).

Then, Ext is calculated as

Exts,tA(1)(H
∗(X;Z/2),Z/2) = Hs(Q•).

One can choose these Qi to be a minimal resolution, meaning the maps in the complex Q• are all 0, and
therefore for such Qi,

Exts,tA(1)(H
∗(X;Z/2),Z/2) ∼= Qs.

The point is, you can do this yourself.

Example 14.11. Let’s apply this to HZ, the Eilenberg-Mac Lane spectrum which represents integral
cohomology. We know the answer should be

(πt−sHZ)⊗ Z2 =

{
Z2, t− s = 0

0, otherwise.

As an A-algebra, H∗(HZ;Z/2) ∼= A/A(1)⊗A(1)/Sq1. Hence

Exts,tA (A/A(1)⊗A(1)/Sq1,Z/2) ∼= ExtA(1)(A(1)/Sq1,Z/2),

and you can compute a minimal resolution by drawing a picture. The point is, this minimal resolution is

placeholder

Figure 18. A minimal resolution of A(1)/Sq1. This is four-dimensional, with elements in
degrees 0, 2, 3, and 5, and Sq2 connecting 0 and 2 and 3 and 5, and Sq1 connecting 2 and 3.
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periodic with a small period, and we can conclude that

Exts,tA(1)(A(1)/Sq1,Z/2) ∼=

{
F2, t = s,

0, otherwise.

Therefore, if you draw the Adams spectral sequence, it cannot have nontrivial differentials: all elements are
on the s = 0 line. Therefore all you get is lim←−Z/2k = Z2 when t− s = 0 and 0 otherwise. (

15. Dan Freed: Reflection Positivity in Invertible Field Theory

We’ve decided that, after fixing a symmetry type (Hn, ρn), invertible field theories are given by maps
α : ΣnMTH n → ΣnIC×, and to obtain deformation classes, we compose with the map ΣnIC× → Σn+1IZ.

If we add positivity, we pass from ΣnMTH n to MTH , considering homotopy classes of maps MTH →
Σn+1IZ, leading us to consider classical Thom spectra. When we incorporate reflection, we need to incorporate
stable homotopy theory, but extended positivity will return us to nonequivariant spectra.

Recall that reflection positivity is the Wick-rotated version of unitarity, specifying on a Euclidean space
En a hyperplane Π and the condition that reflecting operators across Π changes the correlation functions by
complex conjugation. One form of positivity says that if you include both a set of operators and its reflection,
the correlation functions are nonnegative. This is part of the axioms of Euclidean field theory, and one of the
ingredients in the reconstruction theorem allowing us to understand the Lorentzian case from the Euclidean
one.

We want to understand this within the homotopical framework for invertible field theory, and considering
a general symmetry group Hn. Reflection symmetry is not yet part of Hn, so we need to enlarge it.

Theorem 15.1 ([FH16]). There is a canonical extension

1 // Hn
jn // Ĥn

// {±1} // 1

such that there is a commutative diagram

Hn
jn //

ρn

��

Ĥn

ρ̂n

��
On

jn // On × {±1}

and a stabilization

{±1} ×H //

��

Ĥ

��
O1 ×O

⊕ // O.

The idea is that Ĥn is Hn plus the hyperplane reflection reflection symmetry, and the uniqueness result
means we know what the answer is. For some simple examples, this answer is given in Table 4.

Hn Ĥn

bosons only, no time-reversal SOn On

fermions, no time-reversal Spinn Pin+
n

bosons, time-reversal On On × {±1}
fermions and time-reversal Pin+

n P̂in
+

n

fermions and time-reversal Pin−n P̂in
−
n

Table 4. Incorporating reflection into various symmetry groups. The P̂in
±
n groups are

certain double covers of Pin±n ; see [FH16] for more details.

We’ve been thinking of quantum field theories as maps F : Bord〈n−1,n〉 → VectC, but reflection positivity
means that orientation-reversal must go to complex conjugation. Orientation-reversal is an involution βB on
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Bord〈n−1,n〉, and complex conjugation is an involution βC on VectC: on objects and morphisms, it complex-
conjugates the action of C. These are now symmetric monoidal categories with involution, and we require F
to preserve this structure, but now it’s data.

Definition 15.2. Let C be a symmetric monoidal category with an involution β : C→ C. Then, a Hermitian
structure on a c ∈ C is an isomorphism βc→ c∨ satisfying certain axioms.

If C = VectC and β is complex conjugation, this is an isomorphism V → V ∗, or equivalently a sesquilinear
map V ⊗ V → C. This is the model case for the general definition.

We also want to explicitly understand the involution on Bord〈n−1,n〉(Hn).

Definition 15.3. Suppose X is an Hn-manifold, specified by a principal Hn-bundle P → X and an
isomorphism ρn(P ) ∼= BO(X) (the orthonormal frame bundle) of principal On-bundles. Then, jn(P ) is a

principal Ĥn-bundle. The opposite Hn-manifold to X is the one with principal Hn-bundle jn(P ) \ P → X.

This generalizes orientation-reversal to other Hn-structures. Some of the others are familiar: the On-case
doesn’t do anything, and this also specializes to the usual notion of an opposite spin structure. For the two
pin structures, this is a different pin structure defined by tensoring with the orientation bundle.

Definition 15.4. A reflection structure on a TFT F : Bord〈n−1,n〉(Hn)→ VectC is equivariance data for F
under taking the opposite Hn-structure and complex conjugation.

Lemma 15.5. If Y ∈ Bord〈n−1,n〉(Hn), then there’s a canonical Hermitian structure βY → Y ∨.

This says that orientation-reversal is the same thing as reversing the arrow of time. But this in particular
means that every object in Bord〈n−1,n〉(Hn) has a canonical Hermitian structure. Hence, F (Y ) ∈ VectC has
a Hermitian structure, specifically a Hermitian metric, for all Y . This concretely comes from the cylinder
[0, 1]× Y with both ends as incoming components: this is a cobordism Y q Y ∨ → ∅, which defines a map

F (Y )⊗ F (Y )→ C, and an S-diagram lemma proves this is nondegenerate.

Definition 15.6. A reflection structure on F is positive if the Hermitian form F (Y ) is positive definite for
all Y .

So a reflection structure on F with positivity is the functorial version of reflection positivity in Wick-rotated
QFT.

Exercise 15.7. Show that the Euler TFT εµ has a reflection structure iff µ2 ∈ R, and has reflection positivity
iff µ ∈ R.

Definition 15.8. Let X be a compact Hn-manifold with boundary. Then, its double ∆X is the (closed)
Hn-manifold

∆X = e∂X(βX,X).

That is, we view X as a bordism ∅ → ∂X, and βX as a bordism ∂X → ∅. Evaluation is the cylinder
∂X × [0, 1] with X on one side and βX on the other.

You might be used to thinking of this as gluing X to its opposite Hn-structure along its boundary, and
indeed that’s what this construction is doing.

Example 15.9. The homogeneous space Hn+1/Hn
∼= Sn is a double. It’s worth working this out in the

case n = 1 and H = Spin, in which case you get the statement that the bounding spin circle is a double. In
general, ∆X is Hn+1-null bordant, and in particular they’re all bordant to this double Sn. (

If F has a positive reflection structure, then F (∆X) ≥ 0, because it’s F applied to an evaluation on Y ,
which is exactly its Hermitian form.

Invertible field theories and reflection positivity. Let’s see how this works from the homotopy theory
perspective.

Theorem 15.10. An invertible field theory α : ΣnMTH n → ΣnIC× is stable iff α(Sn) = 1.
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This follows from the obstruction theory mentioned earlier; there’s only a single obstruction, which is
α(Sn).

But we’re interested in deformation classes of theories, which are maps to ΣnIZ, and we want these
theories to have reflection structure. This will entail promoting our spectra to spectra with involution, and
maps to intertwiners. Equivariant stable homotopy theory is a big subject, and we can’t do all of it, but here
are some facts for a spectrum X with an involution τ , or (näıve) Z/2-spectrum11

• The involution defines a grading-preserving involution on π∗X.
• Given any spectrum T , we can consider the Z/2-spectrum i∗T which has T as its underlying spectrum

and a trivial involution.
• Given a real representation V of Z/2, we can take its one-point compactification, as a Z/2-space,

and obtain a sphere with involution SV , called a representation sphere. Another way to obtain an
equivariant spectrum from a nonequivariant spectrum T is to consider SN(1−σ) ∧ i∗T for any N ≥ 0,
where 1 is the trivial representation and σ is the sign representation.

If C is a Picard groupoid, then duality defines a canonical involution on it sending c 7→ c∨ and f : c′ → c to
f∨ : (c′)∨ → c∨. Since Picard groupoids model spectra, we can ask what duality corresponds to.

Lemma 15.11. If T is the (nonequivariant) spectrum representing the Picard groupoid C, then Sσ−1 ∧ i∗T
is the Z/2-spectrum representing C with the duality involution.

Now suppose

α : ΣnMTH n −→ ΣnIC×

is an extended invertible field theory. We’d like to implement reflection positivity, and our hand is forced.
There’s a Z/2-spectrum MTH β

n refining MTH n with the “opposite Hn-structure” involution. This is not
particularly accessible, but its stabilization is nice.

Proposition 15.12. There is a weak equivalence of Z/2-spectra

colim
n→∞

ΣnMTH β
n
'−→ S1−σ ∧ i∗MTH .

The codomain again requires a choice, but we have some information at hand: we know that its homotopy
groups with involution should correspond to the involutions on the Picard and Brauer-Wall groups of C, and
Sσ−1 ∧ i∗IC× works.

Next we need to implement positivity. There’s a näıve possibility, that α(Sn) > 0, which actually implies
stability. But if you want to think about deformation classes, the map ΣnIC× → ΣnIZ coming from the
exponential exact sequence is Z/2-equivariant, so we’re looking at the space of equivariant maps

S1−σ ∧ i∗ΣnMTH −→ S1−σ ∧ i∗Σn+1IZ.

These involutions match, so these maps are the same as maps with the trivial involution, which can be
understood nonequivariantly:

(15.13) MapZ/2(i∗B, i∗I) ∼= Map(B, I)×Map(B,Σ−1(S1−σ ∧ i∗I)hZ/2).

This is deformation classes; for actual theories, you can’t duck out of equivariance so easily.
But what’s interesting about (15.13) is that it’s product of the space of deformation classes of theories we

considered without reflection positivity with deformation classes of theories in one dimension lower. The
partition function of this theory on an (n− 1)-manifold Y is an element of Z/2 which tells us whether the
Hermitian structure on our original theory is positive or negative. And there’s data all the way down. You
can prove that the deformation classes you get are given by these maps, and that you hit the torsion classes.
It’s kind of magical that the näıve notion of positivity splits off the extended notion, and it would be nice to
know how this works in the noninvertible case.

We’ll next discuss the effective theory of a general condensed-matter system and an example calculation
for electron systems that physicists have understood another way.

11There are multiple notions of equivariant spectrum considered in stable homotopy theory, called näıve and genuine.
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16. Sam Gunningham: The Arf Theory

“I told myself I wouldn’t write out this diagram, but I couldn’t help myself.”

The Arf theory is an example of the theories we’ve been talking about: it’s a 2D invertible topological field
theory of spin manifolds, first written down in [Gun16]. We’ll formulate it as a symmetric monoidal functor
of 2-categories

FArf : Bord2(Spin2) −→ sAlgC.

The key is a classical invariant of a spin 2-manifold p(Σ) called its Arf invariant, or Atiyah invariant or parity.
On a closed spin surface Σ, FArf(Σ) = (−1)p(Σ).

As we’ve been discussing, since this theory is invertible it factors through the maximal subgroupoid sAlg×C
of sAlgC, which is a Picard 2-groupoid whose classifying spectrum is homotopy equivalent to Σ2IC×, and
factors through the groupoid completion |Bord2(Spin2)| ' Σ2MTSpin2. This is closely related to the classical

Atiyah-Bott-Shapiro orientation [ABS64], a map Â : MSpin → KO , and there are explicitly defined maps
Σ2MTSpin2 → MSpin and KO → Σ2IC× such that the following diagram commutes:

Σ2MTSpin2

FArf //

��

Σ2IC×

MSpin
Â // KO .

OO

You could even take this to be a definition of the Arf theory. Similar ideas work for other orientations in
stable homotopy theory, and you get, e.g. theories of massive free fermions in physics. The two vertical maps
are:

• Stabilization defines a map MTH n → MTH , and MTSpin ' MSpin, so we get the left-hand map
Σ2MTSpin2 → MSpin.
• Finally, KO and Σ2IC× look very similar after truncation, and the only issue to overcome is the map

on π0, which is a map Z/2→ C×, which is the usual character valued in {±1}.
The Arf theory, or at least something closely related to it, appears in condensed-matter physics as the
low-energy theory of the Majorana chain [Kit01, KT17].

Spin structures and Clifford algebras. The theory of spin manifolds is closely related to that of Clifford
algebras. Let V be a finite-dimensional vector space with a quadratic form q; then, one can define its Clifford
algebra C`(V, q) to be the algebra generated by V together with the relations v2 = −q(v) for all v ∈ V , and if
e1, . . . , en is a basis for V , eiej = −ejei and e2

i = 1. The Lie group generated by unit-length vectors in this
Clifford algebra is called Spin(V, q), which is a connected double cover of SO(V, q) (in particular, it’s not the
orthogonal group).

A spin structure is a lift of the classifying map of the frame bundle BO : M → BOn across the diagram

BSpinn

��
BSOn

��
M

BO

//
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BOn.

A lift just to BSOn is an orientation.
A little more geometrically, if M is spin and BSpinn is its bundle of spin frames, SM := B(Spinn)X×SpinnC`n,

which is a Clifford module bundle, and conversely a spin structure on a manifold M is a graded, invertible,
(C`(TM),C`n)-bimodule bundle SM .

Example 16.1. Let’s look at dimension 0. Then, C`(Tpt) = C`0 = R, so we’re asking for a graded, invertible
(R,R)-bimodule. If SM = R is a line in even grading, then we get the “positively oriented” spin structure
usually denoted pt+, and if SM = ΠR is a line in odd grading (sometimes also written R[1]), we get the
“negatively oriented” spin structure pt−.

However, there is a nontrivial spin diffeomorphism αpt+ : pt+ → pt+ which is trivial on the point, but acts

by −1 on Spt+ = R (in even grading). (
45



Example 16.2. Suppose M = S1. Then, there are two spin structures, because there are two choices for
the Clifford bundle SM .

• You can take SM to be the Möbius bundle E → S1, which determines the spin structure on S1

induced from its inclusion as the unit circle in R2 (with the canonical spin structure on Rn). Thus it
bounds a spin structure on the disc, and is called the bounding spin structure on S1, denoted S1

b .
• If you take SM to be the trivial bundle R→ S1, you get a nonbounding spin structure on S1, denoted
S1

nb . This is the induced spin structure coming from the immersion S1 → R2 as a figure-8. (

Given any spin structure on a manifold, there’s an important differential operator called the Dirac operator.
Inclusion defines a map

Γ(M ;SM ) −→ Γ(M ;T ∗M ⊗ SM ),

and Γ(M ;T ∗M) acts on Γ(M ;SM ) by differentiating sections. Thus we have a composition

Γ(M ;SM )
DM //

((

Γ(M ;SM )

Γ(M ;T ∗M ⊗ SM )

66

which is linear but has a Leibniz rule, and is called the Dirac operator for M .

Definition 16.3. The kernel of the Dirac operator is called the space of harmonic spinors on M .

This is related to the Atiyah-Bott-Shapiro orientation.

Example 16.4. Thinking back to Example 16.2, the space of harmonic spinors for the bounding spin
structure on S1 is trivial, and the space of harmonic spinors for the nonbounding spin structure for S1 is
one-dimensional. (

Returning to the Arf theory, its value on 1-manifolds is given by

FArf(S
1
b ) = C

FArf(S
1
nb) = ΠC,

i.e. in even and odd grading, respectively.
Now suppose Σ is a closed spin 2-manifold. The spin structure determines an orientation, so we may

choose a complex structure on Σ respecting this orientation, making it a Riemann surface. In this case, the
Dirac operator is ∂, so S+

Σ → Σ is a holomorphic line bundle, and S+
Σ ⊗ S

+
Σ is the canonical bundle. This

implies that the space of harmonic spinors is identified with H0
Hol(Σ;S+

Σ ). Atiyah [Ati71] provides an excellent
reference for this perspective.

A line bundle squaring to the canonical bundle is often called a θ-characteristic, and if Σ has genus g ≥ 0,
it has 22g θ-characteristics. Alternatively, on a general manifold M which admits a spin structure, the set of
isomorphism classes of spin structures is a torsor for H1(M ;Z/2), and we know this has cardinality 22g for
M = Σ.

Definition 16.5. The parity p(Σ, L) of a spin structure L = SM on a surface Σ is dimH0
Hol(Σ;L) mod 2.

So now we know what the Arf theory assigns to 1- and 2-manifolds. To pt+ and pt− we assign the
invertible superalgebra C`1 (over C); the fact that these agree is suggestive that this extends to a theory of
pin structures, and indeed it extends to a Pin−-theory.

The Arf invariant. The Arf invariant is an invariant of a quadratic form on an F2-vector space. Specifically,
we care about H1(Σ;F2) for a closed surface Σ. This is actually a symplectic vector space, and the symplectic
form is given by the intersection pairing.

In most situations, a nondegenerate symmetric bilinear form is the same thing as a quadratic form. But
in characteristic 2, this is a symplectic form, not a quadratic form, and in general there might be multiple
quadratic forms defining the same bilinear form. However, a spin structure on Σ is the extra data needed to
turn this symplectic form into a quadratic form q.

The simplest description of the Arf invariant of q is: on V \ 0, does q hit 0 or 1 more often? The Arf
invariant is the “more popular” number. Alternatively, the symplectic group acts on H1(Σ;F2), and there
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are two orbits; the Arf invariant is 0 if you’re in the same orbit as the trivial quadratic form, and 1 otherwise.
Thus, in some sense there are only two kinds of quadratic forms, and the Arf invariant tells them apart.

Lemma 16.6. The parity of a spin surface Σ is equal to the Arf invariant of the quadratic form it induces
on its first homology.

Another fun calculation is that if C ↪→ Σ is an embedded curve, q(C) is 0 if C ∼= S1
b and 1 if C ∼= S1

nb as
spin curves.

The Atiyah-Bott-Shapiro orientation. We claimed that the Arf TQFT is a shadow of the Atiyah-Bott-

Shapiro orientation Â : MSpin → KO . This orientation (a morphism of spectra that preserves multiplicative
structure) is related to the index of the Dirac operator on a spin manifold.

Whether or not you’re comfortable with the notion of a morphism of spectra, it should induce a morphism
of homotopy groups

π∗(MSpin) −→ π∗(KO).

The domain is also written ΩSpin
∗ , the spin bordism groups! The codomain is an 8-periodic sequence of abelian

groups

Z,Z/2,Z/2, 0,Z, 0, 0, 0,Z, . . .
It’s traditional to sing this sequence to the tune of “Twinkle, twinkle, little star,” in which case it’s called the
Bott song.

In each dimension there’s a πi(KO)-valued invariant of the Dirac operator, and we saw hints of the
Z/2-valued ones in dimensions 1 and 2. These stitch together into the Atiyah-Bott-Shapiro orientation,
though making this a map of spectra is a little more work, and teasing out the multiplicative structure,
producing a morphism of E∞-ring spectra, was done much more recently [Joa04].

For another example, there’s a map of spectra MSO → HZ, which tracks all the possible Thom isomor-
phisms you can make for oriented manifolds. This is orientation in the usual sense: an oriented manifold
has a Thom isomorphism for Z-cohomology and a Thom isomorphism determines an orientation (and hence
Poincaré duality and all the other nice things orientation buys us), so this map of spectra tracks orientations

in the usual sense, justifying the name “orientation” for more general things such as Â. In particular, these
things give you a way of integrating, e.g.

Hn(M ;Z)

∫
M−→ H0(pt;Z) ∼= Z

on an oriented manifold.
Similarly, if M is a spin manifold, one obtains an integration map

KOn(M) −→ KO0(pt) ∼= Z,

but since KO∗(pt) has infinitely many nontrivial homotopy groups, we can ask what happens to 1 ∈ KO0(M)
under the map KO0(M)→ KO−n(pt) = πn(KO). This is an example of a Gysin map.

Just as the Arf TQFT is associated to the Atiyah-Bott-Shapiro orientation, there’s a “higher” orientation
MString → TMF , and it could be interesting to consider TQFTs coming from this orientation.

17. Question session

17.1. Aaron Mazel-Gee: what is a spectrum? We’ve defined a (pre)-spectrum to be a sequence of spaces
Xk together with bonding maps ΣXn → Xn+1 for n ∈ Z. It’s a spectrum if the adjoint maps Xn → ΩXn+1

are equivalences.
The homotopy theories of prespectra and spectra are the same, but we give them different names because

spectra are more convenient to work with, but many important constructions arise as prespectra. Fortunately,
the forgetful functor from spectra to prespectra has a left adjoint L, called spectrification, which turns
prespectra into spectra with the same important properties (homotopy groups, cohomology theory, etc.). For
example, here’s a functor Top∗ → preSp called the suspension spectrum, sending

X 7−→
{

ΣnX,Σ(ΣnX)
∼=→ Σn+1X

}
,

but we get a prespectrum, and we need to spectrify it to obtain a spectrum. (Here Top∗ is the category of
based topological spaces and basepoint-preserving maps.)
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For example, if M is an abelian group, the Eilenberg-Mac Lane spectrum HM is the spectrum whose
nth space is K(M,n), and whose bonding maps are the adjoints of the homotopy equivalences K(M,n) '
ΩK(M,n+ 1). This is a spectrum on the nose; we don’t need to spectrify it! Then,

HM nX := [ΣnΣ∞X,HM ]preSp ∼= [X,K(M,n)]Top ∼= Hn(X;M).

Another perspective is that spectra capture stable homotopy types: after suspending something enough for
the Freudenthal suspension theorem to apply, homotopy theory displays stable phenomena, and spectra
capture this notion.

Spectra are also useful to represent generalized cohomology theories.

Definition 17.1. A generalized cohomology theory is a collection of functors {hn : Topop∗ → Ab} satisfying
the Eilenberg-Steenrod axioms:

(1) hn is invariant under weak homotopy equivalence.
(2) Given a pushout diagram

U ∩ V //

��

U

��
V // U ∪ V,

there is a long exact sequence

· · · // hn(U ∪ V ) // hn(U)⊕ hn(V ) // hn(U ∩ V ) // hn+1(U ∪ V ) // · · · .

(3) There is a natural isomorphism hn(X) ∼= hn+1(ΣX).
(4) For any collection I,

hn

(∨
i∈I

Xi

)
∼=
∏
i∈I

hn(Xi).

These encode some kind of locality of the things defining your theory, especially if they have geometric
meaning.

If you additionally add the dimension axiom that hn(pt) = 0 unless n = 0, you end up concluding that hn

is ordinary reduced cohomology H̃∗(–;h0(pt)), but in the absence of this axiom, there are many interesting
generalized cohomology theories, including various cobordism theories and K-theory.

Anyways, one major reason to care about spectra is that they keep track of generalized cohomology
theories.

Theorem 17.2 (Brown representability). Let {hn} be a generalized cohomology theory. Then, there is a
spectrum E and natural isomorphisms

hn
∼=−→ [Σ∞(–),ΣnE]

that are compatible with the connecting morphisms in the long exact sequences of a pair.

Examples: the spectrum KO represents real K-theory, and KU represents complex K-theory. HM
represents ordinary cohomology with coefficients in the abelian group M .

Yet another perspective on spectra are as derived versions of abelian groups. This perspective can get
pretty homotopical. Let C be a (suitably nice) ∞-category, which we’re going to think of as a homotopy
theory, and as something which behaves somewhat like a smooth manifold. Given an X ∈ C, we can form its
overcategory C/X , whose objects are maps fY : Y → X and whose morphisms are commutative triangles

Y
ϕ //

fY   

Z

fZ~~
X.

If R is a commutative ring, Quillen defined an isomorphism ModR ∼= Ab(CRing/R), the abelian group objects
in the commutative rings over R, through the notion of a square-zero extension: M 7→ R nM , which is
R⊕M as an abelian group with the multiplication

(r1,m1) · (r2,m2) := (r1r2, r1m2 + r2m1).
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One good example is R[ε]/(ε2), which is a square-zero extension that makes algebraic the notion of working
up to O(ε2).

In higher category theory, there’s a dictionary (called “nonabelian derived category”) sending sets to
spaces and R-modules to chain complexes.12 This dictionary sends abelian groups to spectra.

As C was supposed to resemble a smooth manifold, given a “point” (object in C), you should be able to
define a tangent space TxC, which is the derived version of Quillen’s construction: the category of spectrum
objects in C/X .

Example 17.3. If C = Top and X = pt, the “tangent category to the category of spaces” at pt is the
category of spectrum objects in Top, which is the category of spectra. (

So, in this sense, spectra are derived versions of spaces, or even the tangent space to Top.
This is as yet a little circular, until we define a spectrum object. If C has finite limits and colimits (which

Top certainly does), we can define the loop space of a Y ∈ C to be the pullback

ΩY //

��

∗C

��
∗C // Y.

For C = Top, this recovers the usual notion of loop space, which is reassuring.

Definition 17.4. A spectrum object in C is a collection of C-objects {Yk} for k ≥ 0 such that Yk is the loop
space object of Yk−1 for each k.

More generally, the tangent category to Top at a space X is a kind of “spectra over X,” and this is made
rigorous in the subject of parameterized homotopy theory.

Day 5. August 4

18. Dan Freed: Non-topological Invertible Theories

“Topology is geometry for the farsighted. And sometimes you see exactly what you need to
see to solve a problem. . . ”

Today, we’re first going to review the introduction of reflection positivity as involutions on the domain and
codomain categories for a field theory.

On VectC, we have a few choices for our involutions: complex conjugation V 7→ V , linear duality V 7→ V ∗,

or their combination V 7→ V
∗
. But this is contravariant, and we wanted it to be covariant. So let’s restrict to

invertible morphisms, sending f 7→ (f
∗
)−1, which now is covariant.

Let γ : Vect×C → Vect×C denote this involution; there’s a forgetful map (Vect×C )γ → Vect×C ; the data of a
fixed point is a Hermitian form with symmetry group Up,q, and the forgetful map forgets this form. We’d
like a homotopy section of this map, meaning a way to get from GLn(C) symmetry to Up,q symmetry. In
the invertible case, at least, this is possible: we can choose a Hermitian metric with U1-symmetry for each
complex line, and life is good.

We also discussed how to model this by spectra. If I is a spectrum, then we used i∗I to denote the (näıve)
Z/2-spectrum with the trivial involution. Its homotopy fixed points are

(i∗I)hZ/2 ' Map(RP∞+ , I) = I ×Map(RP∞, I).

The forgetful functor i∗I 7→ I can be identified with projection onto the first factor of (i∗I)hZ/2, so it has a
clear homotopy section s : I 99K I ×Map(RP∞, I).

Example 18.1. Suppose I = Σ2HZ. This is the spectrum that models complex lines, because [X,Σ2HZ] =
H2(X;Z) naturally, and this is naturally identified with the group of isomorphism classes of line bundles. If
we induce it up to a Z/2-spectrum,

(i∗Σ2HZ)hZ/2 = Σ2HZ×Map(RP∞,Σ2HZ),

12The full derived category of Set, using something called the Dold-Kan correspondence, is the category of spectra, which is

another perspective: they want to be abelian, but don’t quite cut it.
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and taking π0 of the second half, we get H2(RP∞) ∼= Z/2. This has something to say about Hermitian
metrics on complex line bundles: there are two components, positive (corresponding to 0) and negative
(corresponding to 1). (

Onwards to today. Our goal is to use mathematics to attach physics problems, in a three-step process.

(1) Take a problem P and find a good mathematical formulation F .
(2) Within F , prove theorems T .
(3) Apply T to the physical problem P .

We’ve done the first two so far this week; today is all about the third. However, it’s never quite so clean, and
often reasoning and research flows upstream as well. Today there will be conjectures as well as theorems
inspired by several of these steps, and there is plenty of good mathematics to be done.

Today we’re going to consider a lattice model in spatial dimension d with internal symmetry group I (a
compact Lie group). We’ve seen some examples of these already: the toric code, the Ising model, and there
are many more. We’d like to imagine there’s a moduli space M(d, I) of these systems, but we had to throw
out phase transitions: M(d, I) should be the space of gapped systems of this type.

Our problem P is to compute π0 of this moduli space. We haven’t defined what a lattice system is, though!
So we can’t quite defineM(d, I) — this is a very interesting question, but we can make progress on computing
its space of conncted components without knowing the entire story. We use two physical principles, which
are not (yet) mathematical theorems, to move forward.

(1) The deformation class of a physical system (in our case, the component of M(d, I) it lives in) is
determined by its long-range behavior. In a relativistic system, this also means long-time and
low-energy.

(2) The long-range behavior of a gapped system is well-approximated by a topological field theory.
There’s a basic dichotomy in quantum systems determined by whether there’s a gap between the
two smallest eigenvalues, and we’ve seen a few times so far that gapped phases have interesting
topological behavior.

The second statement has a caveat: it’s not entirely true, and this lecture will explain this.

Example 18.2. For a toy model, let Md denote the moduli space of Riemannian manifolds of dimension
d. We don’t yet know what this moduli space is, but it has a good chance of being a mathematical object,
because we at least know what a Riemannian manifold is.13 Some points would be “bad,” just like phase
transitions where the energy gap closes.

In this case, the Hamiltonian is replaced with the Laplace operator, so we throw out the noncompact
Riemannian manifolds, and consider the moduli space of Riemannian manifolds. Noncompact manifolds
would allow transitions such as splitting one circle into two. If you want to compute π0Md, it will be the set
of diffeomorphism classes of d-dimensional manifolds.

There are analogues of our two physical principles here: the deformation class of a compact Riemannian
manifold is determined by its long-range behavior, because locally all smooth manifolds look the same. The
second is about determining a Riemannian manifold from its spectrum. This is the subject of a famous paper
by Kac called “Can one hear the shape of a drum?” [Kac66]. In this case, the answer is “not quite,” but it’s
still a useful invariant. (

Assuming these physical principles, taking the long-range effective theory should define a map

{moduli of gapped lattice models} −→ {moduli of topological field theories}.
We don’t know how to define most of the things in that equation, but we hope to be able to define a map

π0M(d, I) −→ π0{moduli of TFTs}.
Physical principles tell us this map should be injective, and there’s also evidence that it should be bijective:
there is work in physics by Walker and collaborators (e.g. [BBJ+16]) to reconstruct a lattice model from its
low-energy effective field theory using state-sum constructions.

Splitting Rn = R⊕ Rn−1, you get a sequence of maps

O1 × {e} �
� // O1 ×On−1

� � // On.

13But Riemannian manifolds have isometries, so this would be a moduli stack, but that’s not important right now.
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Let In be the pullback of Hn → On under this sequence, e.g. if Hn = On, then K = {e} is the kernel of ρn,
and I = Z/2.

Anyways, we need to discuss the caveat about a system being determined by a topological low-energy
theory.

Example 18.3. Let’s consider 3D Yang-Mills theory together with a Chern-Simons term. This requires data
of a compact Lie group G, and the Chern-Simons term also needs a level λ ∈ Z, and the action is

gFA ∧ (?FA) + CS(λ),

where CS(λ) is the Chern-Simons form with level λ. This is a gapped system, and the long-range system sends
g → 0, and hence should flow to pure Chern-Simons theory. This is believed by physicists to be true, and
Witten suggested that mathematically formalizing it would be both physically interesting and mathematically
feasible.

Supposing this is correct, which it probably is, what is this pure Chern-Simons theory? We’re starting
with a quantum field theory

YM + CS: Bord〈2,3〉(SO∇) −→ tVectC.

Pure Chern-Simons theory is a well-studied topological field theory, but to make it a purely topological field
theory, something strange happens. To formulate it as a topological field theory, one needs some kind of
framing, but relativistic invariance tells us that the symmetry group we get is either SOn or On. So for a
framing to appear at the low-energy limit would be very strange!

Witten [Wit89] studied this for G = U1, and showed that the low-energy limit does not introduce a framing,
so to study the theory we need to introduce a framing from the beginning. Then the low-energy theory is
not quite topological: it’s the tensor product of a purely topological Chern-Simons theory and an invertible
theory which tracks the anomaly. This is how one can make sense of the theory in the absence of a framing:
each piece depends on a framing, but the total theory doesn’t. (

This is the caveat: we need to accept topological theories which could be tensored with non-topological
invertible theories. If we specialize to the invertible theories with this issue, then we’re looking at invertible
theories in general, which need not be topological.

We can study invertible non-topological theories in a similar way, and fortunately most of the same
formalism applies, albeit with some theorems replaced with conjectures.

Example 18.4. Choose a k ∈ Z and consider an invertible theory of oriented 0-manifolds together with a
principal T-bundle with connection

αk : Bord〈0,1〉(SO1 × T∇) −→ LineC.

Over the oriented point, we have a circle Q. Let λk : T→ C× send z 7→ zk, so we can consider the line λk(Q),
the associated line bundle (over a point, hence just a line) to the T-torsor Q, which is what αk assigns to pt+.

Given a bordism [a, b], we want a map Lk(P0)→ Lk(P1), and this is exactly parallel transport determined
by the connection. So this is an invertible field theory, but not topological, as it depends on the connection.

We want to think of this as a map of spectra. The T-symmetry means we want it to specifically be a map

MSO ∧BT+
// Σ1MTSO1 ∧BT+

α // Σ2HZ // Σ3IZ.

Hence this computes H2(BT;Z) ∼= Z, and this is exactly the integer k we began with. So if we don’t pass to
the torsion subgroup, we’re able to see non-topological invertible field theories. (

Example 18.5. For a variation, consider a smooth manifold M together with a principal C×-bundle P →M
with a flat connection Θ. We’ll consider oriented 0- and 1-manifolds together with maps to M . By pullback,
this allows us to define a theory like αk from Example 18.4; because Θ is flat, we expect this to be topological.
In this case, such an invertible field theory would be defined by a map

MSO ∧M+ −→ Σ1HC×,
and the group of homotopy classes of these maps is

[MSO ∧M+,Σ
1HC×] ∼= H1(M ;C×) ∼= H2(M ;Z)

through the Bockstein homomorphism, which hits the torsion subgroup. This all fits into the formalism we
developed over the last few days and is great.
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But you can also imagine a theory in which Θ isn’t flat, and the story still goes through. We get something
in H2(M ;Z), but it isn’t an invertible theory, and isn’t a torsion element.

One way to understand this is through differential cohomology as introduced by Cheeger-Simons [CS85].
The idea is that secondary invariants (e.g. of curvature) manifest geometric phenomena that appear in these
non-topological theories. The seminal paper on this is by Hopkins-Singer [HS05]. (

Given a spectrum B, the universal coefficient theorem provides for us the short exact sequence

0 // Ext1(πnB,Z) // [B,Σn+1IZ] // Hom(πn+1B,Z) // 0.

Taking π0 defines a map

[B,ΣnIC×] ∼= Hom(πnB,C×) −→ Ext1(πnB,Z).

The torsion part of [B,Σn+1IZ] is seen by the Ext term, and corresponds to topological theories. The free
part is seen by the quotient. This leads to the following conjecture; the infrastructure (e.g. for generalized
differential cohomology refining IZ) is not currently set up for it to be a theorem.

Conjecture 18.6 ([FH16]). The set of deformation classes of invertible, reflection-positive field theories
with symmetry type (Hn, ρn) is in one-to-one correspondence with [MTH ,Σn+1IZ].

Compare with Theorem 13.5. We’ll put this to the test in the next lecture.

19. Dan Freed: Computations in Condensed-Matter Systems

Conjecture 18.6 calculates the deformation classes of invertible, reflection-positive theories with a given
symmetry type as π0 Map0(MTH ,Σn+1IZ), but if we want to know the entire moduli space, we ought to
be able to remove the π0, so we obtain an entire homotopy type (though this is even more of a conjecture).
Nonetheless, this might be a useful ground for testing finer information about the moduli space of field
theories. The conjecture on deformation classes will probably be true once the right definitions are posed.

To test this conjecture, we’ll apply it to electron systems in condensed-matter. This is a good test, because
it’s far from where we began with quantum field theory, and there are preexisting classifications. Many
authors including Kitaev classified free systems and considered the map from free to interacting theories.

We don’t know how to state that an electron system is free in the bordism model. Perhaps it has something
to do with factoring through a symplectic vector space, but we don’t know. The classification of free systems
is an algebraic problem; in condensed-matter it’s used to write down lattice systems, and we’ll use it to
determine relativistic field theories.

The first question is: what symmetry types can exist? Electrons have electric charge, which is an integer,
and Noether’s theorem tells us this conserved quantity corresponds to a symmetry of the system. This is
a U1-symmetry, and charge conjugation is an involutive symmetry. These might interact in different ways,
and there’s three possible choices for K = ker(ρn): {±1}, T, and SU2, the units of R, C, and H respectively.
There are other ways to motivate this: you’re writing down a real representation of a spin group, and its
commutant is one of these three groups. There are yet other ways of motivating it; however you do so, these
are the three internal symmetry groups we consider.

The second condition is the choice of a k0 ∈ K squaring to 1. This is central in the spin group, and tells us
what bosons and fermions are. We ask that it’s −1 ∈ {±1}, −1 ∈ T, and

(−1
−1

)
∈ SU2. This tells us that

if a state has even charge, it’s bosonic, and if it has odd charge, it’s fermionic. This is called the spin-charge
relation.

With this constraints, we have a classification problem, of the Lie groups Hn fitting into a short exact
sequence

1 // K // Hn
// Jn // 1,

where Jn is either SOn or On. This is called a “tenfold way;” there are several other tenfold ways in this field,
though this one comes from relativistic considerations rather than quantum-mechanical ways. You can split
this in a few different ways: 3 + 3 + 4 from the three choices for K, and 8 + 2 coming from real and complex
K-theory. For the latter see Table 5; the two missing groups are Pinc and Spinc. The condensed-matter
physicists have a description of these symmetry groups in terms of Cartan’s types of homogeneous spaces.

The division algebras in Table 5 generalize the use of Clifford algebras to define spin groups, in the following
sense.
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s H K D

4 Spin×µ2 SU2 SU2 H
3 Pin+ ×µ2

SU2 SU2 Cliff3

2 Pin+ nµ2
T T Cliff2

1 Pin− µ2 Cliff1

0 Spin µ2 R
−1 Pin+ µ2 Cliff−1

−2 Pin− nµ2 T T Cliff−2

−3 Pin− ×µ2
SU2 SU2 Cliff−3

Table 5. One presentation of the (complex piece of the) 10-fold way of the classification of
possible symmetries. Here H is the (stabilized) symmetry group, K is the kernel of the map

Hn → On, and D is a corresponding super-division algebra. Pin± nµ2 T is also called Pinc̃±;

Pinc̃+ was first introduced in [Met15].

Proposition 19.1. Using the notation in Table 5, there’s an embedding

Hn(s) −→ (Cliffn⊗D(s))0.

This allows you to study all of these groups geometrically, with Dirac operators and such, which is a good
way to simplify many questions about them.

Now we need some fermionic fields, which will come from spinor14 representations Hn(s)→ Aut(S), where
S is some real vector space. For intuition, you should be thinking about s = 0. Let Gn(s) be a Lorentz form
of Hn(s), e.g. Spin1,n−1 for s = 0. There’s another piece of magic here: the existence of a pairing

Γ: S⊗ S −→ R1,n−1

which is Gn(s)-equivariant. So inside Sym2 S, there’s a copy of the translation representations. Moreover,
there’s a sense in which this is positive definite: if you look at the lightcone C of timelike vectors in R1,n−1,
then for every s ∈ S, Γ(s, s) ∈ C+. This crucially requires Lorentz signature, and fails for every other
signature.

This miraculous algebra is fascinating — is it the reason we live in Lorentz signature? But we can use it
to write down the kinetic energy term in the Lagrangian.

Theorem 19.2. Given S and Γ, one can obtain a Cliffn−1,1⊗D(s)-module structure on S ⊕ S∗, and this
data conversely determines S and Γ.

The magical embedding allows us to treat all cases simultaneously, and this tells us no information has
been lost.

Next, we ask whether there’s a mass term.

Proposition 19.3. Mass terms in this framework correspond to extension to another Clifford generator e
with e2 = −1.

This is linear algebra, and means you can look at the Clifford modules for Cliffn−1,1⊗D(s) modulo those
which have a mass term, and Atiyah-Bott-Shapiro [ABS64] showed this is a KO group. Anomalies do appear
here, though.

We’re interested in the mass terms, however, and their long-range behavior.

Conjecture 19.4. The long-range theory is trivial if it’s possible to extend to another Clifford generator.

So taking the long-range theory defines a map from these Clifford modules to invertible theories, and
conjecturally they vanish if these are modules over a certain extension of the Clifford algebra. This is again a
Clifford algebra, and taking the long-range theory is a function out of this group.

The group itself is π3−s−nKO , which is periodic by the Bott song. Kitaev [Kit09] used this to form a
periodic table of topological insulators.15

14We mean by a “spinor representation” that the Gn(s)-representation extends to a Clifford module.
15The remaining two cases are classified by complex K-theory, with an analogous story.
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Stitching all this together, we arrive at another conjecture.

Conjecture 19.5. Given massive free fermion data (modulo the conjecturally trivial theories) y ∈ π3−s−nKO ,
the deformation class of the long-range effective theory, which is invertible, is the composition

MTH (s)
Â // Σ−1KO

ff ∗ // Σn+1IZ,

where the first map is the Atiyah-Bott-Shapiro orientation, shifted by the division algebras described in
Table 5, and ff is a “transpose map” arising from the Anderson self-duality of KO [HS14]:

π3−s−nKO
∼=−→ [Σ−sKO ,Σn+1IZ],

and ff ∗ is this map applied to y.

(Here there were a whole bunch of tables organizing these symmetry groups.)
Now we have to make some computations, which use the Adams spectral sequence as previously discussed.

You end up with several abelian groups organizing these phases in low dimensions. You can see Bott
periodicity for KO appearing in the classification of the free fermion phases, and Anderson duality in the
groups of deformation classes of topological phases.

Many of these computations have been done elsewhere in condensed-matter or high-energy literature
through other methods. For example, in dimension 3 + 1 with Pin+-symmetry, the group is Z/16; this is
well-known, and many papers have been written about it (e.g. reasons why 16 times any such phase vanishes),
e.g. Wang-Senthil [WS14], who make this classification without reference to Anderson duals, the Adams
spectral sequence, etc.

For Pinc̃+ (time reversal squares to the fermion-counting number), one has a Z/2 in dimensions 3 and 4
for the free-fermion groups, which turns out to be the Kane-Mele-Fu invariant that has been of considerable
interest. Metlitski [Met15] asked about the classification of 4-dimensional Pinc̃+-phases versus bordism
computations, which were also studied (through non bordism-theoretic means) in [WPS14].

The computations for symmetry group Pin+ ×µ2
SU2 also confirm a conjecture of Wang-Senthil [WS14]

that was obtained in non-homotopical ways. But there also also new predictions of topological phases that
might not yet be in the condensed-matter literature. Jonathan Campbell’s paper [Cam17] includes even more
computations, which have also been checked against the physics literature.

Wrapping up. We’ve covered a lot this week. The first thing we needed in order to do anything is an axiom
system. And the fact that these methods agree with very different calculations is, well, not a controlled
experiment, but certainly is a good sign that the axiom system works: functorial TFT captures something
essential, just as “complete ordered field” somehow captures the essentials of calculus. The fact that Wick
rotation and the restriction to compact manifolds captures long-range behavior is another a priori surprise,
and we have evidence that it works.

Extended TFT was also essential: if you don’t do this, you obtain different answers, and so the extensions
of the axioms are also important.

Finally, the basic idea of the two physical principles turning a lattice system into a long-range theory has
been bolstered by these verifications.
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