Find an equation for the tangent to the graph of \(f(x) \) at the point \(P(2, f(2)) \) when
\[
f(x) = \frac{5}{1 - 3x}.
\]

1. \(y + \frac{3}{5}x + \frac{2}{5} = 0 \)
2. \(y = \frac{3}{5}x - \frac{11}{5} \) correct
3. \(y = \frac{1}{5}x - \frac{9}{5} \)
4. \(y = 3x - 7 \)
5. \(y + \frac{1}{5}x + \frac{3}{5} = 0 \)

Explanation:
If \(x = 2 \), then \(f(2) = -1 \), so we have to find an equation for the tangent line to the graph of
\[
f(x) = \frac{5}{1 - 3x}
\]
at the point \((2, -1) \). Now the Newtonian quotient for \(f \) at a general point \((x, f(x)) \) is given by
\[
\frac{f(x + h) - f(x)}{h}.
\]
First let’s compute the numerator of the Newtonian Quotient:
\[
f(x + h) - f(x) = \frac{5}{1 - 3(x + h)} - \frac{5}{1 - 3x}
\]
\[
= \frac{5(1 - 3x) - 5(1 - 3(x + h))}{(1 - 3x)(1 - 3(x + h))}
\]
\[
= \frac{15h}{(1 - 3h)(1 - 3(x + h))}.
\]
Thus
\[
\frac{f(x + h) - f(x)}{h} = \frac{15}{(1 - 3x)(1 - 3(x + h))}.
\]

Hence
\[
f'(x) = \lim_{h \to 0} \frac{15}{(1 - 3(x + h))(1 - 3x)} = \frac{15}{(1 - 3x)^2}.
\]
At \(x = 2 \), therefore,
\[
f'(2) = \frac{15}{(1 - 6)^2} = \frac{3}{5},
\]
so by the point slope formula an equation for the tangent line at \((2, -1) \) is
\[
y + 1 = \frac{3}{5}(x - 2)
\]
which after simplification becomes
\[
y = \frac{3}{5}x - \frac{11}{5}.
\]

Find \(\frac{dy}{dx} \) when
\[
\frac{2}{\sqrt{x}} + \frac{3}{\sqrt{y}} = 5.
\]

1. \(\frac{dy}{dx} = \frac{3}{2}(x^{-3/2}) \)
2. \(\frac{dy}{dx} = -\frac{2}{3}(y^{-3/2}) \) correct
3. \(\frac{dy}{dx} = \frac{2}{3}(xy)^{1/2} \)
4. \(\frac{dy}{dx} = \frac{3}{2}(xy)^{1/2} \)
5. \(\frac{dy}{dx} = \frac{2}{3}(y^{3/2}) \)
6. \(\frac{dy}{dx} = -\frac{3}{2}(x^{3/2}) \)

Explanation:
Differentiating implicitly with respect to x, we see that
\[-\frac{1}{2} \left(\frac{2}{x\sqrt{x}} + \frac{3}{y\sqrt{y}} \frac{dy}{dx} \right) = 0.\]
Consequently,
\[
\frac{dy}{dx} = -\frac{2}{3} \left(\frac{y}{x} \right)^{3/2}.
\]

003 10.0 points

Determine the value of $\frac{dy}{dt}$ at $x = 3$ when
\[y = x^2 - 3x \]
and $\frac{dx}{dt} = 3$.

1. $\frac{dy}{dt} \bigr|_{x=3} = 5$
2. $\frac{dy}{dt} \bigr|_{x=3} = 9$ correct
3. $\frac{dy}{dt} \bigr|_{x=3} = 3$
4. $\frac{dy}{dt} \bigr|_{x=3} = 1$
5. $\frac{dy}{dt} \bigr|_{x=3} = 7$

Explanation:
Differentiating implicitly with respect to t we see that
\[
\frac{dy}{dt} = (2x - 3) \frac{dx}{dt} = 3(2x - 3).
\]
At $x = 3$, therefore,
\[
\frac{dy}{dt} = 3(3) = 9.
\]

004 10.0 points

Determine $f'(x)$ when
\[f(x) = \frac{\sin(x) - 1}{\sin(x) + 4}. \]

1. $f'(x) = -\frac{3\cos(x)}{(\sin(x) + 4)^2}$
2. $f'(x) = \frac{5\sin(x)\cos(x)}{\sin(x) + 4}$
3. $f'(x) = -\frac{5\cos(x)}{(\sin(x) + 4)^2}$
4. $f'(x) = -\frac{3\sin(x)\cos(x)}{\sin(x) + 4}$
5. $f'(x) = \frac{5\cos(x)}{(\sin(x) + 4)^2}$ correct
6. $f'(x) = \frac{3\cos(x)}{\sin(x) + 4}$

Explanation:
By the Quotient Rule,
\[
f'(x) = \frac{(\sin(x) + 4)\cos(x) - (\sin(x) - 1)\cos(x)}{(\sin(x) + 4)^2}.
\]
But
\[
(\sin(x) + 4)\cos(x) - (\sin(x) - 1)\cos(x) = 5\cos(x).
\]
Thus
\[
f'(x) = \frac{5\cos(x)}{(\sin(x) + 4)^2}.
\]

keywords: derivative of trig functions, derivative, quotient rule

005 10.0 points

The points P and Q on the graph of
\[y^2 - xy - 5y + 10 = 0 \]
have the same x-coordinate $x = 2$. Find the point of intersection of the tangent lines to the graph at P and Q.

1. intersect at $= \left(\frac{5}{7}, \frac{20}{7} \right)$ correct
2. intersect at $= \left(\frac{10}{3}, \frac{20}{7} \right)$
3. intersect at $= \left(\frac{5}{7}, -\frac{20}{7} \right)$
4. intersect at $= \left(\frac{20}{7}, \frac{5}{3}\right)$

5. intersect at $= \left(\frac{5}{3}, \frac{20}{7}\right)$

Explanation:

The respective y-coordinates at P, Q are the solutions of

\[
y^2 - xy - 5y + 10 = 0
\]

at $x = 2$; i.e., the solutions of

\[
y^2 - 7y + 10 = (y - 5)(y - 2) = 0.
\]

Thus

\[
P = (2, 5), \quad Q = (2, 2).
\]

To determine the tangent lines we need also the value of the derivative at P and Q. But by implicit differentiation,

\[
2y \frac{dy}{dx} - (x + 5) \frac{dy}{dx} - y = 0.
\]

so

\[
\frac{dy}{dx} = \frac{y}{2y - x - 5}.
\]

Thus

\[
\frac{dy}{dx} \bigg|_P = \frac{5}{3}, \quad \frac{dy}{dx} \bigg|_Q = -\frac{2}{3}.
\]

By the point-slope formula, therefore, the equation of the tangent line at P is

\[
y - 5 = \frac{5}{3}(x - 2),
\]

while that at Q is

\[
y - 2 = -\frac{2}{3}(x - 2).
\]

Consequently, the tangent lines at P and Q are

\[
y = \frac{5}{3}x + \frac{5}{3}
\]

and

\[
y + \frac{2}{3}x = \frac{10}{3}
\]

respectively. These two tangent lines intersect at $= \left(\frac{5}{7}, \frac{20}{7}\right)$.

006 10.0 points

At noon, ship A is 150 miles due west of ship B. Ship A is sailing south at 30 mph while ship B is sailing north at 10 mph.

At what speed is the distance between the ships changing at 5:00 pm?

1. speed = 34 mph
2. speed = 38 mph
3. speed = 32 mph **correct**
4. speed = 30 mph
5. speed = 36 mph

Explanation:

Let $a = a(t)$ be the distance travelled by ship A up to time t and $b = b(t)$ the distance travelled by ship B. Then, if $s = s(t)$ is the distance between the ships, the relative positions and directions of movement of the ships are shown in
By Pythagoras, therefore,
\[s^2 = (a + b)^2 + (150)^2. \]

Thus, after implicit differentiation,
\[2s \frac{ds}{dt} = 2(a + b) \left(\frac{da}{dt} + \frac{db}{dt} \right), \]
in which case,
\[\frac{ds}{dt} = (30 + 10) \left(\frac{a + b}{s} \right) = 40 \left(\frac{a + b}{s} \right) \]
when ships A and B are travelling at respective speeds 30 mph and 10 mph.

But at 5:00 pm,
\[a = 150, \quad b = 50, \quad s = 250 \]

Consequently, at 5:00 pm, the distance between the ships is increasing at a speed \[\frac{ds}{dt} \big|_{t=5} = 32 \text{ mph}. \]

007 10.0 points

Determine \(\frac{dy}{dx} \) when
\[y \cos(x^2) = 5. \]

1. \(\frac{dy}{dx} = 2xy \cos(x^2) \)
2. \(\frac{dy}{dx} = 2xy \tan(x^2) \) correct
3. \(\frac{dy}{dx} = -2xy \tan(x^2) \)
4. \(\frac{dy}{dx} = 2xy \cot(x^2) \)
5. \(\frac{dy}{dx} = -2xy \cot(x^2) \)
6. \(\frac{dy}{dx} = -2xy \sin(x^2) \)

Explanation:

We have to express \(dy/dt \) in terms of \(x, y \) and \(dx/dt \). But by Pythagoras’ theorem,
\[x^2 + y^2 = 25, \]

After implicit differentiation with respect to \(x \) we see that
\[-2xy \sin(x^2) + y' \cos(x^2) = 0. \]

Consequently,
\[\frac{dy}{dx} = \frac{2xy \sin(x^2)}{\cos(x^2)} = 2xy \tan(x^2). \]

008 10.0 points

A 5 foot ladder is leaning against a wall. If the foot of the ladder is sliding away from the wall at a rate of 12 ft/sec, at what speed is the top of the ladder falling when the foot of the ladder is 4 feet away from the base of the wall?

1. speed = 16 ft/sec correct
2. speed = 15 ft/sec
3. speed = \(\frac{49}{3} \) ft/sec
4. speed = \(\frac{46}{3} \) ft/sec
5. speed = \(\frac{47}{3} \) ft/sec

Explanation:

Let \(y \) be the height of the ladder when the foot of the ladder is \(x \) feet from the base of the wall as shown in figure.

We have\[x^2 + y^2 = 25, \]
so by implicit differentiation,
\[2x \frac{dx}{dt} + 2y \frac{dy}{dt} = 0. \]

In this case
\[\frac{dy}{dt} = -\frac{x}{y} \frac{dx}{dt}. \]

But again by Pythagoras, if \(x = 4 \), then \(y = 3 \). Thus, if the foot of the ladder is moving away from the wall at a speed of
\[\frac{dx}{dt} = 12 \text{ ft/sec}, \]
and \(x = 4 \), then the velocity of the top of the ladder is given by
\[\frac{dy}{dt} = -\frac{4}{3} \frac{dx}{dt}. \]

Consequently, the speed at which the top of the ladder is falling is
\[\text{speed} = \left| \frac{dy}{dt} \right| = 16 \text{ ft/sec}. \]

The slope, \(m \), of the tangent line at the point \(P(2, f(2)) \) on the graph of \(f \) is the value of the derivative
\[f'(x) = 2x + 3 \]
at \(x = 2 \), i.e., \(m = 7 \). On the other hand, \(f(2) = 12 \).

Thus by the point-slope formula, an equation for the tangent line at \(P(2, f(2)) \) is
\[y - 12 = 7(x - 2), \]
which after simplification becomes
\[y = 7x - 2. \]

Consequently, the tangent line at \(P \) has
\[y\text{-intercept} = -2 \] .

10 10.0 points

Determine the derivative of
\[f(x) = 2 \arcsin \left(\frac{x}{3} \right). \]

1. \(f'(x) = \frac{6}{\sqrt{9 - x^2}} \)
2. \(f'(x) = \frac{3}{\sqrt{9 - x^2}} \)
3. \(f'(x) = \frac{2}{\sqrt{1 - x^2}} \)
4. \(f'(x) = \frac{6}{\sqrt{1 - x^2}} \)
5. \(f'(x) = \frac{2}{\sqrt{9 - x^2}} \) correct
6. \(f'(x) = \frac{3}{\sqrt{1 - x^2}} \)

Explanation:
Use of
\[\frac{d}{dx} \arcsin(x) = \frac{1}{\sqrt{1 - x^2}}, \]
together with the Chain Rule shows that
\[f'(x) = \frac{2}{\sqrt{1 - (x/3)^2}} \left(\frac{1}{3} \right). \]
Consequently,
\[
f'(x) = \frac{2}{\sqrt{9 - x^2}}.
\]

011 10.0 points

Find the derivative of
\[f(x) = \sin^{-1}(e^{3x}).\]

1. \(f'(x) = \frac{3e^{3x}}{\sqrt{1 - e^{6x}}} \text{ correct}\)

2. \(f'(x) = \frac{3}{\sqrt{1 - e^{6x}}}\)

3. \(f'(x) = \frac{3e^{3x}}{1 + e^{6x}}\)

4. \(f'(x) = \frac{3}{1 + e^{6x}}\)

5. \(f'(x) = \frac{e^{3x}}{1 + e^{6x}}\)

6. \(f'(x) = \frac{1}{1 + e^{6x}}\)

7. \(f'(x) = \frac{1}{\sqrt{1 - e^{6x}}}\)

8. \(f'(x) = \frac{e^{3x}}{\sqrt{1 - e^{6x}}}\)

Explanation:
Since
\[
d x \sin^{-1} x = \frac{1}{\sqrt{1 - x^2}}, \quad d e^{ax} = ae^{ax},
\]
the Chain Rule ensures that
\[
f'(x) = \frac{3e^{3x}}{\sqrt{1 - e^{6x}}}.
\]

012 10.0 points

The height of a triangle is increasing at a rate of 4 cm/min while its area is increasing at a rate of 3 sq. cms/min.

At what speed is the base of the triangle changing when the height of the triangle is 3 cms and its area is 15 sq. cms?

1. speed = \(\frac{32}{3}\) cms/min

2. speed = 11 cms/min

3. speed = 12 cms/min

4. speed = \(\frac{35}{3}\) cms/min

5. speed = \(\frac{34}{3}\) cms/min \text{ correct}

Explanation:
Let \(b\) be the length of the base and \(h\) the height of the triangle. Then the triangle has
\[\text{area} = A = \frac{1}{2}bh.\]

Thus by the Product Rule,
\[
\frac{dA}{dt} = \frac{1}{2} \left(b \frac{dh}{dt} + h \frac{db}{dt} \right),
\]
and so
\[
\frac{db}{dt} = \frac{1}{h} \left(2 \frac{dA}{dt} - b \frac{dh}{dt} \right) = \frac{2}{h} \left(\frac{dA}{dt} - \frac{A}{h} \frac{dh}{dt} \right),
\]

since \(b = 2A/h\). Thus, when
\[
\frac{dh}{dt} = 4, \quad \text{and} \quad \frac{dA}{dt} = 3,
\]
we see that
\[
\frac{db}{dt} = \frac{2}{h} \left(3 - \frac{4A}{h} \right) \text{ cms/min}.
\]

Consequently, at the moment when \(h = 3\) and \(A = 15\),

the base length is changing at a
\[
\text{speed} = \frac{34}{3} \text{ cms/min}
\]
Use linear approximation with \(a = 16 \) to estimate the number \(\sqrt{16.2} \) as a fraction.

1. \(\sqrt{16.2} \approx 4 \frac{1}{40} \) correct
2. \(\sqrt{16.2} \approx 4 \frac{1}{80} \)
3. \(\sqrt{16.2} \approx 4 \frac{3}{80} \)
4. \(\sqrt{16.2} \approx 4 \frac{1}{20} \)
5. \(\sqrt{16.2} \approx 4 \frac{1}{16} \)

Explanation: For a general function \(f \), its linear approximation at \(x = a \) is defined by

\[
L(x) = f(a) + f'(a)(x-a)
\]

and for values of \(x \) near \(a \)

\[
f(x) \approx L(x) = f(a) + f'(a)(x-a)
\]

provides a reasonable approximation for \(f(x) \).

Now set

\[
f(x) = \sqrt{x}, \quad f'(x) = \frac{1}{2\sqrt{x}}.
\]

Then, if we can calculate \(\sqrt{a} \) easily, the linear approximation

\[
\sqrt{a+h} \approx \sqrt{a} + \frac{h}{2\sqrt{a}}
\]

provides a very simple method via calculus for computing a good estimate of the value of \(\sqrt{a+h} \) for small values of \(h \).

In the given example we can thus set

\[
a = 16, \quad h = \frac{2}{10}.
\]

For then

\[
\sqrt{16.2} \approx 4 \frac{1}{40}.
\]
B. If $F_2(x) = f(x)g(x)$, then
$$F'_2(x) = f'(x)g(x) + f(x)g'(x).$$

C. If $F_3(x) = f(x)/g(x)$, then
$$F'_3(x) = \frac{f'(x)g(x) + f(x)g'(x)}{g(x)^2}.$$

Which of these statements are true?

1. C only
2. B and C only
3. A and B only
4. A only
5. all of them
6. B only correct
7. none of them
8. A and C only

Explanation:

By the respective Product and Quotient Rules,
$$\frac{d}{dx} f(x)g(x) = f'(x)g(x) + f(x)g'(x)$$
while
$$\frac{d}{dx} \frac{f(x)}{g(x)} = \frac{f'(x)g(x) - g'(x)f(x)}{g(x)^2}.$$

Applying these to
$$F(x) = \left(f(x) - \frac{1}{f(x)} \right)^2$$
we see that
$$F'(x) = 2f'(x) \left(f(x) - \frac{1}{f(x)^2} \right),$$

Consequently,

A. Not True
B. True
C. Not True

016 10.0 points

Find the derivative of f when
$$f(x) = \sqrt{x}(2x + 7).$$

1. $f'(x) = \frac{4x + 7}{x\sqrt{x}}$
2. $f'(x) = \frac{6x + 7}{2\sqrt{x}}$ correct
3. $f'(x) = \frac{6x - 7}{2\sqrt{x}}$
4. $f'(x) = \frac{4x - 7}{x\sqrt{x}}$
5. $f'(x) = \frac{6x - 7}{x\sqrt{x}}$
6. $f'(x) = \frac{4x + 7}{2\sqrt{x}}$

Explanation:

By the Product Rule
$$f'(x) = \frac{2x + 7}{2\sqrt{x}} + 2\sqrt{x}.$$

After simplification this becomes
$$f'(x) = \frac{2x + 7 + 4x}{2\sqrt{x}} = \frac{6x + 7}{2\sqrt{x}}.$$

017 10.0 points

Find the derivative of
$$f(x) = (\sin^{-1}(3x))^2.$$

1. $f'(x) = \frac{3}{\sqrt{1 - 9x^2}} \sin^{-1}(3x)$
2. $f'(x) = \cos(3x) \sin(3x)$

3. $f'(x) = \frac{6}{\sqrt{9-x^2}} \sin^{-1}(3x)$

4. $f'(x) = 6\cos(3x) \sin(3x)$

5. $f'(x) = \frac{3}{\sqrt{9-x^2}} \sin^{-1}(3x)$

6. $f'(x) = \frac{6}{\sqrt{1-9x^2}} \sin^{-1}(3x)$ correct

Explanation:

The Chain Rule together with

$$\frac{d}{dx} (\sin^{-1}(ax)) = \frac{a}{\sqrt{1-a^2x^2}}$$

shows that

$$f'(x) = \frac{6}{\sqrt{1-9x^2}} \sin^{-1}(3x).$$

Thus the slope of the tangent line at P is

$$f'\left(\frac{\pi}{4}\right) = 9\sec^2\left(\frac{\pi}{4}\right) = 18.$$

By the point-slope formula, therefore, an equation for the tangent line at P is given by

$$y - 9 = 18\left(x - \frac{\pi}{4}\right),$$

which after simplification becomes

$$y = 18x + 9\left(1 - \frac{\pi}{2}\right).$$

018 10.0 points

Find an equation for the tangent line to the graph of f at the point $P\left(\frac{\pi}{4}, f\left(\frac{\pi}{4}\right)\right)$ when $f(x) = 9\tan(x)$.

1. $y = 10x + 2\left(1 - \frac{\pi}{4}\right)$

2. $y = 18x + 9\left(1 - \frac{\pi}{2}\right)$ correct

3. $y = 13x + 18\left(1 - \frac{\pi}{4}\right)$

4. $y = 14x + 3\left(1 - \frac{\pi}{4}\right)$

5. $y = 17x + 14\left(1 - \frac{\pi}{2}\right)$

Explanation:

When $x = \frac{\pi}{4}$, then $f(x) = 9$, so $P = \left(\frac{\pi}{4}, 9\right)$. Now

$$f'(x) = 9\sec^2(x).$$

We see that

$$f'(\frac{\pi}{4}) = 9\sec^2\left(\frac{\pi}{4}\right) = 18.$$

Consequently,

$$f'(x) = \frac{1}{(5x-1)^2}.$$
A circle of radius \(r \) has area \(A \) and circumference \(C \) are given respectively by

\[
A = \pi r^2, \quad C = 2\pi r.
\]

If \(r \) varies with time \(t \), for what value of \(r \) is the rate of change of \(A \) with respect to \(t \) twice the rate of change of \(C \) with respect to \(t \)?

1. \(r = \frac{1}{2} \)
2. \(r = 2\pi \)
3. \(r = 2 \) correct
4. \(r = 1 \)
5. \(r = \frac{\pi}{2} \)
6. \(r = \pi \)

Explanation:
Differentiating

\[
A = \pi r^2, \quad C = 2\pi r
\]

implicitly with respect to \(t \) we see that

\[
\frac{dA}{dt} = 2\pi r \frac{dr}{dt}, \quad \frac{dC}{dt} = 2\pi \frac{dr}{dt}.
\]

Thus the rate of change, \(dA/dt \), of area is twice the rate of change, \(dC/dt \), of circumference when

\[
\frac{dA}{dt} = 2 \frac{dC}{dt},
\]

i.e., when

\[
2\pi r \frac{dr}{dt} = 2 \left(2\pi \frac{dr}{dt}\right).
\]

This happens when

\[
\boxed{r = 2}.
\]

022 10.0 points

Determine \(f'(x) \) when

\[
f(x) = \tan^{-1}\left(\frac{x}{\sqrt{3-x^2}}\right).
\]

(Hint: first simplify \(f(x) \).)

1. \(f'(x) = \frac{\sqrt{3}}{\sqrt{3+x^2}} \)
2. \(f'(x) = \frac{x}{\sqrt{x^2-3}} \)

Explanation:
By the Quotient Rule,

\[
f'(x) = \frac{(\sin x) \sin x - (\cos x)(2 - \cos x)}{\sin^2 x}
\]

\[
= \frac{(\cos^2 x + \sin^2 x) - 2 \cos x}{\sin^2 x}.
\]

But

\[
\cos^2 x + \sin^2 x = 1.
\]

Consequently,

\[
\boxed{f'(x) = \frac{1 - 2 \cos x}{\sin^2 x}}.
\]

keywords: DerivTrig, DerivTrigExam, quotient rule

021 10.0 points

Find the derivative of

\[
f(x) = \frac{2 - \cos x}{\sin x}.
\]

1. \(f'(x) = \frac{1 - 2 \cos x}{\sin^2 x} \) correct
2. \(f'(x) = \frac{2 + \sin x}{\cos^2 x} \)
3. \(f'(x) = \frac{1 + 2 \cos x}{\sin^2 x} \)
4. \(f'(x) = \frac{2 - \sin x}{\cos x} \)
5. \(f'(x) = \frac{1 + 2 \cos x}{\sin x} \)
6. \(f'(x) = \frac{2 - \sin x}{\cos^2 x} \)
3. \(f'(x) = \frac{1}{\sqrt{3 - x^2}} \) correct

4. \(f'(x) = \frac{\sqrt{3}}{\sqrt{3 - x^2}} \)

5. \(f'(x) = \frac{x}{x^2 + 3} \)

Explanation:
If \(\tan \theta = \frac{x}{\sqrt{3 - x^2}} \),
then by Pythagoras' theorem applied to the right triangle

\[\sqrt{3} \quad \theta \]
\[\sqrt{3 - x^2} \quad x \]

we see that
\[\sin \theta = \frac{x}{\sqrt{3}}. \]

Thus
\[f(x) = \sin^{-1}\left(\frac{x}{\sqrt{3}} \right). \]
Consequently,
\[f'(x) = \frac{1}{\sqrt{3 - x^2}}. \]

Alternatively, we can differentiate \(f \) using the Chain Rule and the fact that
\[\frac{d}{dx} \tan^{-1} x = \frac{1}{1 + x^2}. \]

2. \(f'(x) = -\frac{\sec^2(x)}{(8 + 3 \sec(x) \tan(x))^2} \)

3. \(f'(x) = \frac{8 \sec(x) + 3}{(8 + 3 \sec(x))^2} \)

4. \(f'(x) = \frac{8 \cos(x) + 3}{(8 \cos(x) + 3)^2} \)

5. \(f'(x) = \frac{8 + 3 \cos(x)}{(8 \cos(x) + 3)^2} \) correct

6. \(f'(x) = \frac{8 \sin(x) + 3 \cos(x)}{(8 \cos(x) + 3)^2} \)

Explanation:
Now,
\[\frac{\tan(x)}{8 + 3 \sec(x)} = \frac{\sin(x)}{8 + \frac{3}{\cos(x)}} = \frac{\sin(x)}{8 \cos(x) + 3}. \]

Thus
\[f'(x) = \frac{\cos(x)}{8 \cos(x) + 3} + \frac{8 \sin^2(x)}{(8 \cos(x) + 3)^2} \]
\[= \frac{\cos(x)(8 \cos(x) + 3) + 8 \sin^2(x)}{(8 \cos(x) + 3)^2}. \]
Consequently,
\[f'(x) = \frac{8 + 3 \cos(x)}{(8 \cos(x) + 3)^2}, \]

since \(\cos^2(x) + \sin^2(x) = 1 \).

024 10.0 points

If \(y = y(x) \) is defined implicitly by
\[6e^{5y} = 3xy + 6x, \]
find the value of \(dy/dx \) at \((x, y) = (1, 0)\).

1. \(\frac{dy}{dx} = -\frac{2}{9} \)
2. \(\frac{dy}{dx} = \frac{2}{9} \) correct
3. \(\frac{dy}{dx} = \frac{5}{27} \)
4. \(\frac{dy}{dx} = -\frac{7}{27} \)

5. \(\frac{dy}{dx} = -\frac{2}{11} \)

6. \(\frac{dy}{dx} = \frac{2}{11} \)

Explanation:
Differentiating

\[6e^{5y} = 3xy + 6x \]

implicitly with respect to \(x \) we see that

\[30e^{5y} \frac{dy}{dx} = 3y + 3x \frac{dy}{dx} + 6. \]

In this case,

\[\frac{dy}{dx} \left(30e^{5y} - 3x \right) = 3y + 6. \]

Consequently, at \((x, y) = (1, 0) \) we see that

\[\frac{dy}{dx} = \frac{2}{9} \]

keywords: implicit differentiation, exponential function,

025 10.0 points

Boyle’s Law states that when a sample of gas is compressed at a constant temperature, the pressure and volume satisfy the equation \(PV = C \), where \(C \) is a constant. Suppose that at a certain instant the volume is 400 ccs, the pressure is 80 kPa, and the pressure is increasing at a rate of 8 kPa/min.

At what rate is the volume decreasing at this instant?

1. rate = 36 ccs/min
2. rate = 40 ccs/min correct
3. rate = 42 ccs/min
4. rate = 38 ccs/min
5. rate = 34 ccs/min

Explanation:
After differentiation of \(PV = C \) with respect to \(t \) using the Product Rule we see that

\[\frac{d(PV)}{dt} = P\frac{dV}{dt} + V\frac{dP}{dt} = 0, \]

which after rearrangement becomes

\[\frac{dV}{dt} = -\frac{V}{P} \frac{dP}{dt}. \]

When

\(V = 400, \quad P = 80, \quad \frac{dP}{dt} = 8, \)

therefore,

\[\frac{dV}{dt} = -\frac{400 \cdot 8}{80} = -40. \]

Consequently, the volume is decreasing at a rate of 40 ccs/min.

026 10.0 points

Determine \(f'(x) \) when

\[f(x) = \sin^{-1}\left(\frac{x}{\sqrt{2 + x^2}} \right). \]

(Hint: first simplify \(f \).)

1. \(f'(x) = \frac{x}{\sqrt{2 + x^2}} \)
2. \(f'(x) = \frac{\sqrt{2}}{2 + x^2} \) correct
3. \(f'(x) = \frac{x}{x^2 + 2} \)
4. \(f'(x) = \frac{1}{2 + x^2} \)
5. \(f'(x) = \frac{\sqrt{2}}{\sqrt{2 + x^2}} \)

Explanation:
If \(\sin \theta = \frac{x}{\sqrt{2 + x^2}} \), then by Pythagoras’ theorem applied to the right triangle

we see that

\[\tan \theta = \frac{x}{\sqrt{2}}. \]

Thus

\[f(x) = \theta = \tan^{-1} \left(\frac{x}{\sqrt{2}} \right). \]

Consequently,

\[f'(x) = \frac{\sqrt{2}}{2 + x^2}. \]

Alternatively, we can differentiate \(f \) using the Chain Rule and the fact that

\[\frac{d}{dx} \sin^{-1} x = \frac{1}{\sqrt{1 - x^2}}. \]

027 10.0 points

Find the linearization of \(f(x) = \frac{1}{\sqrt{2 + x}} \) at \(x = 0 \).

1. \(L(x) = \frac{1}{\sqrt{2}} - \frac{1}{2} x \) correct
2. \(L(x) = \frac{1}{\sqrt{2}} + \frac{1}{2} x \)
3. \(L(x) = \frac{1}{2} \left(1 - \frac{1}{2} x \right) \)
4. \(L(x) = \frac{1}{\sqrt{2}} - \frac{1}{2} x \)
5. \(L(x) = \frac{1}{\sqrt{2}} + \frac{1}{2} x \)
6. \(L(x) = \frac{1}{2} \left(1 - \frac{1}{2} x \right) \)

Explanation:

The linearization of \(f \) is the function

\[L(x) = f(0) + f'(0)x. \]

But for the function

\[f(x) = \frac{1}{\sqrt{2 + x}} = (2 + x)^{-1/2}, \]

the Chain Rule ensures that

\[f'(x) = -\frac{1}{2}(2 + x)^{-3/2}. \]

Consequently,

\[f(0) = \frac{1}{\sqrt{2}}, \quad f'(0) = -\frac{1}{4\sqrt{2}}, \]

and so

\[L(x) = \frac{1}{\sqrt{2}} \left(1 - \frac{1}{4} x \right). \]

028 10.0 points

Find the value of \(f'(a) \) when

\[f(t) = \frac{2t + 1}{t + 2}. \]

1. \(f'(a) = \frac{3}{a + 2} \) correct
2. \(f'(a) = \frac{3}{(a + 2)^2} \) correct
3. \(f'(a) = -\frac{4}{a + 2} \)
4. \(f'(a) = -\frac{4}{(a + 2)^2} \)
5. \(f'(a) = -\frac{3}{(a+2)^2} \)

6. \(f'(a) = \frac{4}{(a+2)^2} \)

Explanation:

By definition,

\[
 f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}.
\]

Now, for the given \(f \),

\[
f(a+h) = \frac{2(a+h) + 1}{a+h+2},
\]

while

\[
f(a) = \frac{2a + 1}{a+2}.
\]

Thus

\[
f(a+h) - f(a) = \frac{2(a+h) + 1}{a+h+2} - \frac{2a + 1}{a+2}
\]

\[
= \frac{(2(a+h) + 1)(a+2) - (a+h+2)(2a+1)}{(a+h+2)(a+2)}.
\]

But

\[
\{2(a+h) + 1\}(a+2) = 2h(a+2) + (2a + 1)(a+2),
\]

and

\[
(a+h+2)(2a+1) = h(2a+1) + (a+2)(2a+1).
\]

Consequently,

\[
\frac{f(a+h) - f(a)}{h} = \frac{h\{2(a+2) - (2a + 1)\}}{h(a+h+2)(a+2)}
\]

\[
= \frac{3}{(a+h+2)(a+2)},
\]

in which case

\[
f'(a) = \frac{3}{(a+2)^2}.
\]

029 10.0 points

Find the derivative of

\[
f(x) = x^2 \sin(x) + 2x \cos(x).
\]

1. \(f'(x) = (x^2 - 2) \cos(x) \)

2. \(f'(x) = (x^2 - 2) \sin(x) \)

3. \(f'(x) = (2 + x^2) \sin(x) \)

4. \(f'(x) = (2 - x^2) \cos(x) \)

5. \(f'(x) = (x^2 + 2) \cos(x) \) **correct**

6. \(f'(x) = (2 - x^2) \sin(x) \)

Explanation:

By the Product Rule

\[
\frac{d}{dx}(x^2 \sin(x)) = 2x \sin(x) + x^2 \cos(x),
\]

while

\[
\frac{d}{dx}(2x \cos(x)) = 2 \cos(x) - 2x \sin(x).
\]

Consequently,

\[
f'(x) = (x^2 + 2) \cos(x).
\]

keywords: DerivTrig, DerivTrigExam,

030 (part 1 of 2) 10.0 points

A point is moving on the graph of

\[
4x^3 + 5y^3 = xy.
\]

When the point is at

\[
P = \left(\frac{1}{9}, \frac{1}{9} \right),
\]

its \(x \)-coordinate is decreasing at a speed of 4 units per second.
What is the speed of the y-coordinate at that time?

1. speed y-coord = -3 units/sec
2. speed y-coord = 3 units/sec
3. speed y-coord = -2 units/sec
4. speed y-coord = 1 units/sec
5. speed y-coord = 2 units/sec **correct**

Explanation:
Differentiating $4x^3 + 5y^3 = xy$ implicitly with respect to t we see that

$$12x^2 \frac{dx}{dt} + 15y^2 \frac{dy}{dt} = y \frac{dx}{dt} + x \frac{dy}{dt}.$$

Thus

$$\frac{dy}{dt} = \left(\frac{12x^2 - y}{x - 15y^2}\right) \frac{dx}{dt}.$$

Now at $P\left(\frac{1}{9}, \frac{1}{9}\right)$,

$$12x^2 - y = \left(\frac{12}{(9)^2} - \frac{1}{9}\right) = \frac{1}{(9)^2}(3),$$
while

$$x - 15y^2 = \left(\frac{1}{9} - \frac{15}{(9)^2}\right) = -\frac{1}{(9)^2}(6).$$

Hence, at P,

$$\frac{dy}{dt} = -\frac{1}{2} \frac{dx}{dt}.$$

When the x-coordinate at P is decreasing at a rate of 4 units per second, therefore,

$$\frac{dy}{dt} = 4\left(\frac{1}{2}\right),$$

so the

speed y-coord = 2 units/sec.

031 (part 2 of 2) 10.0 points

In which direction is the y-coordinate moving at that time?

1. direction increasing y **correct**
2. direction decreasing y

Explanation:
Since

$$\frac{dy}{dt} = 2,$$

at P, the y-coordinate of the point is moving in the

direction increasing y.

032 10.0 points

Find $\frac{dy}{dx}$ when

$$2x^3 + y^3 - 9xy - 1 = 0.$$

1. $\frac{dy}{dx} = \frac{2x^2 - 3y}{y^2 - 3x}$
2. $\frac{dy}{dx} = \frac{2x^2 + 3y}{y^2 - 3x}$
3. $\frac{dy}{dx} = \frac{2x^2 - 3y}{y^2 + 3x}$
4. $\frac{dy}{dx} = \frac{3y - 2x^2}{y^2 - 3x}$ **correct**
5. $\frac{dy}{dx} = \frac{3y + 2x^2}{y^2 + 3x}$

Explanation:
We use implicit differentiation. For then

$$6x^2 + 3y^2 \frac{dy}{dx} - 9y - 9x \frac{dy}{dx} = 0,$$
which after solving for \(\frac{dy}{dx}\) and taking out the common factor 3 gives

\[
3 \left(2x^2 - 3y \right) + \frac{dy}{dx} (y^2 - 3x) = 0.
\]

Consequently,

\[
\frac{dy}{dx} = \frac{3y - 2x^2}{y^2 - 3x}.
\]

keywords: implicit differentiation, Folium of Descartes, derivative,

033 10.0 points

Use linear approximation to estimate the value of \(17^{1/4}\). \(\text{Hint: } (16)^{1/4} = 2.\)

1. \(17^{1/4} \approx \frac{31}{16}\)
2. \(17^{1/4} \approx \frac{63}{32}\)
3. \(17^{1/4} \approx \frac{33}{16}\)
4. \(17^{1/4} \approx 2\)
5. \(17^{1/4} \approx \frac{65}{32}\) correct

Explanation:

Set \(f(x) = x^{1/4}\), so that \(f(16) = 2\) as the hint indicates. Then

\[
\frac{df}{dx} = \frac{1}{4x^{3/4}}.
\]

By differentials, therefore, we see that

\[
f(a + \Delta x) - f(a) \approx \frac{df}{dx} \bigg|_{x=a} \Delta x = \frac{\Delta x}{4a^{3/4}}.
\]

Thus, with \(a = 16\) and \(\Delta x = 1\),

\[
17^{1/4} - 2 = \frac{1}{32}.
\]

Consequently,

\[
17^{1/4} \approx \frac{65}{32}.
\]

034 10.0 points

Find the derivative of \(g\) when

\[
g(x) = x^4 \cos(x).
\]

1. \(g'(x) = x^3 (4 \sin(x) - x \cos(x))\)
2. \(g'(x) = x^3 (4 \cos(x) - x \sin(x))\) correct
3. \(g'(x) = x^3 (4 \cos(x) + x \sin(x))\)
4. \(g'(x) = x^3 (4 \sin(x) + x \cos(x))\)
5. \(g'(x) = x^4 (3 \cos(x) - \sin(x))\)
6. \(g'(x) = x^4 (3 \sin(x) - \cos(x))\)

Explanation:

By the Product rule,

\[
g'(x) = x^4 (-\sin(x)) + (\cos(x)) \cdot 4x^3.
\]

Consequently,

\[
g'(x) = x^3 (4 \cos(x) - x \sin(x)).
\]

035 10.0 points

Find \(\frac{dy}{dx}\) when

\[
\tan(x - y) = 3x + 2y.
\]

1. \(\frac{dy}{dx} = \frac{\sec^2(x - y) + 3}{\sec^2(x - y) + 2}\)
2. \(\frac{dy}{dx} = \frac{2 - \sec^2(x - y)}{\sec^2(x - y) - 3}\)
3. \(\frac{dy}{dx} = \frac{2 + \sec^2(x - y)}{\sec^2(x - y) + 3}\)
4. \(\frac{dy}{dx} = \frac{\sec^2(x-y) - 3}{\sec^2(x-y) - 2} \)

5. \(\frac{dy}{dx} = \frac{\sec^2(x-y) - 3}{\sec^2(x-y) + 2} \) correct

6. \(\frac{dy}{dx} = \frac{2 - \sec^2(x-y)}{\sec^2(x-y) + 3} \)

Explanation:
Differentiating implicitly with respect to \(x \), we see that
\[\sec^2(x-y)(1 - \frac{dy}{dx}) = 3 + 2\frac{dy}{dx}. \]
After rearranging, this becomes
\[\frac{dy}{dx}(\sec^2(x-y) + 2) = \sec^2(x-y) - 3. \]
Consequently,
\[\frac{dy}{dx} = \frac{\sec^2(x-y) - 3}{\sec^2(x-y) + 2}. \]

keywords:
036 10.0 points

If the radius of a melting snowball decreases at a rate of 1 ins/min, find the rate at which the volume is decreasing when the snowball has diameter 4 inches.

1. rate = 16\(\pi\) cu.ins/min correct
2. rate = 18\(\pi\) cu.ins/min
3. rate = 17\(\pi\) cu.ins/min
4. rate = 15\(\pi\) cu.ins/min
5. rate = 14\(\pi\) cu.ins/min

Explanation:
The volume, \(V \), of a sphere of radius \(r \) is given by
\[V = \frac{4}{3}\pi r^3. \]
Thus by implicit differentiation,
\[\frac{dV}{dt} = 4\pi r^2 \frac{dr}{dt} = -4\pi r^2, \]

since \(dr/dt = -1 \) ins/min. When the snowball has diameter 4 inches, therefore, its radius \(r = 2 \) and
\[\frac{dV}{dt} = -4(4)\pi. \]
Consequently, when the snowball has diameter 4 inches, the volume of the snowball is decreasing at a rate = 16\(\pi\) cu.ins/min.

037 10.0 points

A point is moving on the graph of
\[6x^3 + 4y^3 = xy. \]
When the point is at
\[P = \left(\frac{1}{10}, \frac{1}{10} \right), \]
its \(y \)-coordinate is increasing at a speed of 7 units per second.

What is the speed of the \(x \)-coordinate at that time and in which direction is the \(x \)-coordinate moving?

1. speed = \(\frac{9}{4}\) units/sec, increasing \(x \)
2. speed = \(\frac{17}{8}\) units/sec, decreasing \(x \)
3. speed = \(\frac{9}{4}\) units/sec, decreasing \(x \)
4. speed = 2 units/sec, increasing \(x \)
5. speed = \(\frac{7}{4}\) units/sec, increasing \(x \)
6. speed = 2 units/sec, decreasing \(x \)
7. speed = \(\frac{7}{4}\) units/sec, decreasing \(x \) correct
8. speed = \(\frac{17}{8} \) units/sec, increasing \(x \)

Explanation:
Differentiating

\[6x^3 + 4y^3 = xy \]

implicitly with respect to \(t \) we see that

\[18x^2 \frac{dx}{dt} + 12y^2 \frac{dy}{dt} = y \frac{dx}{dt} + x \frac{dy}{dt}. \]

Thus

\[\frac{dx}{dt} = \left(\frac{x - 12y^2}{18x^2 - y} \right) \frac{dy}{dt}. \]

Now at \(P \),

\[x - 12y^2 = -\frac{1}{50}, \]

while

\[18x^2 - y = 2 \frac{25}{25}. \]

Hence, at \(P \),

\[\frac{dx}{dt} = -\frac{1}{4} \frac{dy}{dt}. \]

When the \(y \)-coordinate at \(P \) is increasing at a rate of 7 units per second, therefore,

\[\frac{dx}{dt} = -\frac{7}{4}. \]

Consequently, the \(x \)-coordinate is moving at

speed = \(\frac{7}{4} \) units/sec, and the negative sign indicates that it is moving in the direction of decreasing \(x \).

2. speed = \(15\pi \) sq. ft/sec
3. speed = 19 sq. ft/sec
4. speed = 16\(\pi \) sq. ft/sec **correct**
5. speed = 16 sq. ft/sec
6. speed = 15 sq. ft/sec
7. speed = 18 sq. ft/sec
8. speed = 17\(\pi \) sq. ft/sec

Explanation:
The area, \(A \), of a circle having radius \(r \) is given by \(A = \pi r^2 \). Differentiating implicitly with respect to \(t \) we thus see that

\[\frac{dA}{dt} = 2\pi r \frac{dr}{dt}. \]

When

\[r = 2, \quad \frac{dr}{dt} = 4, \]

therefore, the speed at which the area of the ripple is increasing is given by

speed = 16\(\pi \) sq. ft/sec.

039 10.0 points

Find \(\frac{dy}{dx} \) when

\[\tan(xy) = x - 3y. \]

1. \(\frac{dy}{dx} = \frac{1 + y \sec^2(xy)}{x \sec^2(xy) + 3} \)
2. \(\frac{dy}{dx} = \frac{1 - y \sec^2(xy)}{x \sec^2(xy) + 3} \) **correct**
3. \(\frac{dy}{dx} = \frac{3 + x \sec^2(xy)}{y \sec^2(xy) - 1} \)
4. \(\frac{dy}{dx} = \frac{3 - x \sec^2(xy)}{y \sec^2(xy) - 1} \)

038 10.0 points

A rock is thrown into a still pond and causes a circular ripple. If the radius of the ripple is increasing at a rate of 4 ft/sec, at what speed is the area of the ripple increasing when its radius is 2 feet?

1. speed = 18\(\pi \) sq. ft/sec
5. \(\frac{dy}{dx} = \frac{1 - y \sec^2(xy)}{x \sec^2(xy) - 3} \)

6. \(\frac{dy}{dx} = \frac{3 - x \sec^2(xy)}{y \sec^2(xy) + 1} \)

Explanation:
Differentiating implicitly with respect to \(x \), we see that
\[
\sec^2(xy) \left(y + x \frac{dy}{dx} \right) = 1 - 3 \frac{dy}{dx}.
\]
After rearranging, this becomes
\[
\frac{dy}{dx} \left(x \sec^2(xy) + 3 \right) = 1 - y \sec^2(xy).
\]
Consequently,
\[
\frac{dy}{dx} = \frac{1 - y \sec^2(xy)}{x \sec^2(xy) + 3}.
\]

keywords:

<table>
<thead>
<tr>
<th>040</th>
<th>10.0 points</th>
</tr>
</thead>
</table>

Find the derivative of
\[
g(x) = \left(\frac{x + 2}{x + 3} \right) (2x - 3).
\]

1. \(g'(x) = \frac{2x^2 - 12x - 9}{x + 3} \)

2. \(g'(x) = \frac{2x^2 + 12x + 9}{x + 3} \)

3. \(g'(x) = \frac{x^2 - 12x + 9}{x + 3} \)

4. \(g'(x) = \frac{x^2 + 12x - 9}{(x + 3)^2} \)

5. \(g'(x) = \frac{2x^2 + 12x + 9}{(x + 3)^2} \) correct

6. \(g'(x) = \frac{2x^2 - 12x - 9}{(x + 3)^2} \)

Explanation:

By the Quotient and Product Rules we see that
\[
g'(x) = 2 \left(\frac{x + 2}{x + 3} \right) + (2x - 3) \left(\frac{(x + 3) - (x + 2)}{(x + 3)^2} \right)
\]
\[
= 2 \left(\frac{x + 2}{x + 3} \right) + \left(\frac{2x - 3}{(x + 3)^2} \right)
\]
\[
= \frac{2(x + 2)(x + 3) + (2x - 3)}{(x + 3)^2}.
\]
But
\[
2(x + 2)(x + 3) + (2x - 3)
\]
\[
= 2x^2 + 12x + 9.
\]
Consequently
\[
g'(x) = \frac{2x^2 + 12x + 9}{(x + 3)^2}.
\]

<table>
<thead>
<tr>
<th>041</th>
<th>10.0 points</th>
</tr>
</thead>
</table>

Find \(dy/dx \) when
\[
3x^2 + 2y^2 = 5.
\]

1. \(\frac{dy}{dx} = \frac{x}{2y} \)

2. \(\frac{dy}{dx} = \frac{3x}{2y} \)

3. \(\frac{dy}{dx} = -\frac{3x}{2y} \) correct

4. \(\frac{dy}{dx} = -\frac{3x}{y} \)

5. \(\frac{dy}{dx} = -3xy \)

6. \(\frac{dy}{dx} = 2xy \)

Explanation:

Differentiating
\[
3x^2 + 2y^2 = 5
\]
implicitly with respect to \(x \) we see that

\[
6x + 4y \frac{dy}{dx} = 0.
\]

Consequently,

\[
\frac{dy}{dx} = -\frac{6x}{4y} = -\frac{3x}{2y}.
\]

042 10.0 points

A balloon is released 3 feet away from an observer. The balloon is rising vertically at a rate of 3 ft/sec and at the same time the wind is carrying it horizontally away from the observer at a rate of 2 ft/sec. At what speed is the angle of inclination of the observer's line of sight changing 3 seconds after the balloon is released?

1. speed = \(\frac{2}{27} \) rads/sec
2. speed = \(\frac{1}{27} \) rads/sec
3. speed = \(\frac{5}{54} \) rads/sec
4. speed = \(\frac{1}{18} \) rads/sec correct
5. speed = \(\frac{1}{9} \) rads/sec

Explanation:
Let \(y = y(t) \) be the height of the balloon \(t \) seconds after release and let \(x = x(t) \) be its horizontal distance from the point of release as shown in the figure.

Then by right triangle trigonometry, the angle of inclination \(\theta \) satisfies the equation

\[
\tan(\theta) = \frac{y}{x + 3}.
\]

Differentiating this equation implicitly with respect to \(t \) we see that

\[
\sec^2(\theta) \frac{d\theta}{dt} = \frac{(x + 3)\frac{dy}{dt} - y\frac{dx}{dt}}{(x + 3)^2}.
\]

But \(\sec^2(\theta) = 1 + \tan^2(\theta) \). Thus

\[
\frac{d\theta}{dt} = \frac{(x + 3)\frac{dy}{dt} - y\frac{dx}{dt}}{(x + 3)^2 + y^2} = \frac{3(x + 3) - 2y}{(x + 3)^2 + y^2} \text{ rads/sec}.
\]

Now after 3 seconds,

\[
x(3) = 3 \frac{dx}{dt} = 6 \text{ ft/sec},
\]

while

\[
y(3) = 3 \frac{dy}{dt} = 9 \text{ ft/sec}.
\]

Hence after 3 seconds the speed at which the angle of inclination is changing is given by

\[
\text{speed} = \frac{1}{18} \text{ rads/sec}.
\]

043 10.0 points

The dimensions of a cylinder are changing, but the height is always equal to the diameter of the base of the cylinder. If the height is increasing at a speed of 5 inches per second, determine the speed at which the volume, \(V \), is increasing (in cubic inches per second) when the height is 2 inches.

1. \(\frac{dV}{dt} = 14 \pi \text{ cub. ins./sec} \)
2. \[\frac{dV}{dt} = 16\pi \text{ cub. ins./sec} \]

3. \[\frac{dV}{dt} = 12\pi \text{ cub. ins./sec} \]

4. \[\frac{dV}{dt} = 15\pi \text{ cub. ins./sec correct} \]

5. \[\frac{dV}{dt} = 13\pi \text{ cub. ins./sec} \]

Explanation:
Since the height \(h \) of the cylinder is equal to its diameter \(D \), the radius of the cylinder is \(r = \frac{1}{2}h \). Thus, as a function of \(h \), the volume of the cylinder is given by

\[V(h) = \pi r^2 h = \frac{\pi}{4} h^3. \]

The rate of change of the volume, therefore, is

\[\frac{dV}{dt} = \frac{3\pi}{4} \left(h^2 \frac{dh}{dt} \right). \]

Now

\[\frac{dh}{dt} = 5 \text{ ins./sec.} \cdot \]

Consequently, when \(h = 2 \text{ ins.} \),

\[\frac{dV}{dt} = 15\pi \text{ cub. ins./sec}. \]

Find \(dy/dx \) when \(y + x = 6\sqrt{xy} \).

1. \[\frac{dy}{dx} = \frac{\sqrt{\frac{y}{x}} - 3}{6 + \sqrt{\frac{x}{y}}} \]

2. \[\frac{dy}{dx} = \frac{3\sqrt{\frac{y}{x}} + 1}{1 - 3\sqrt{\frac{x}{y}}} \]

3. \[\frac{dy}{dx} = \frac{3\sqrt{\frac{y}{x}} - 1}{1 - 3\sqrt{\frac{x}{y}}} \text{ correct} \]

4. \[\frac{dy}{dx} = \frac{3\sqrt{\frac{y}{x}} - 1}{1 + 3\sqrt{\frac{x}{y}}} \]

5. \[\frac{dy}{dx} = \frac{\sqrt{\frac{y}{x}} + 3}{6 - \sqrt{\frac{x}{y}}} \]

6. \[\frac{dy}{dx} = \frac{\sqrt{\frac{y}{x}} + 3}{6 + \sqrt{\frac{x}{y}}} \]

Explanation:
Differentiating implicitly with respect to \(x \), we see that

\[\frac{dy}{dx} + 1 = 3 \left(\sqrt{\frac{y}{x}} + \sqrt{\frac{x}{y}} \frac{dy}{dx} \right), \]

so

\[\frac{dy}{dx} \left(1 - 3\sqrt{\frac{x}{y}} \right) = 3\sqrt{\frac{y}{x}} - 1. \]

Consequently,

\[\frac{dy}{dx} = \frac{3\sqrt{\frac{y}{x}} - 1}{1 - 3\sqrt{\frac{x}{y}}}. \]

Find an equation for the tangent line to the graph of \(f(x) = \sec(x) + 2\cos(x) \) at the point \(\left(\frac{1}{3}\pi, f\left(\frac{1}{3}\pi \right) \right) \).

1. \(2y - 3\sqrt{3}x = 1 - \sqrt{3}\pi \)

2. \(2y + 3\sqrt{3}x = \sqrt{3}\pi - 1 \)

3. \(2y - \sqrt{3}x = 3 - \frac{1}{\sqrt{3}}\pi \)
4. \(y - \sqrt{3}x = 3 - \frac{1}{\sqrt{3}}\pi \) correct

5. \(y - 3\sqrt{3}x = 1 - \sqrt{3}\pi \)

6. \(y + 3\sqrt{3}x = \sqrt{3}\pi - 1 \)

Explanation:
Since \(f\left(\frac{1}{3}\pi\right) = 3 \), we have to find an equation for the tangent line to the graph of \(f \) at the point \(P\left(\frac{1}{3}\pi, 3\right) \). Now
\[
f'(x) = \sec(x)\tan(x) - 2\sin(x),
\]
so the slope at \(P \) is
\[
f'(\frac{1}{3}\pi) = \sqrt{3}.
\]
By the point-slope formula, therefore, an equation for the tangent line at \(P \) is given by
\[
y - 3 = \sqrt{3}\left(x - \frac{1}{3}\pi\right),
\]
which after rearrangement and simplification becomes
\[
y - \sqrt{3}x = 3 - \frac{1}{\sqrt{3}}\pi.
\]

046 10.0 points

Find the derivative of
\[
f(x) = \frac{1}{3}\left(\arctan(3x)\right)^2.
\]

1. \(f'(x) = \frac{1}{1 + 9x^2} \arctan(3x) \)
2. \(f'(x) = \frac{2}{1 + 9x^2} \arctan(3x) \) correct
3. \(f'(x) = \frac{1}{9 + x^2} \arctan(3x) \)
4. \(f'(x) = \frac{2}{9 + x^2} \arctan(3x) \)
5. \(f'(x) = \frac{1}{3} \sec^2(3x) \tan(3x) \)

6. \(f'(x) = 2\sec^2(3x) \tan(3x) \)

Explanation:
Since
\[
\frac{d}{dx} \arctan(x) = \frac{1}{1 + x^2},
\]
the Chain Rule gives
\[
\frac{d}{dx} \arctan(3x) = \frac{3}{1 + 9x^2}.
\]
Using the Chain Rule yet again, therefore, we see that
\[
f'(x) = \frac{2}{1 + 9x^2} \arctan(3x).
\]

keywords: derivative, inverse tan, Chain Rule,

047 10.0 points

A street light is on top of a 12 foot pole. A person who is 5 feet tall walks away from the pole at a rate of 3 feet per second. At what speed is the length of the person’s shadow growing?

1. speed = 2 ft/sec
2. speed = \(\frac{15}{7} \) ft/sec correct
3. speed = \(\frac{16}{7} \) ft/sec
4. speed = \(\frac{17}{7} \) ft/sec
5. speed = \(\frac{18}{7} \) ft/sec

Explanation:
If \(x \) denotes the length of the person’s shadow and \(y \) denotes the distance of the person from the pole, then shadow and the lightpole are related in the following diagram
By similar triangles,

\[
\frac{5}{x} = \frac{12}{x+y},
\]

so \(5y = (12 - 5)x\). Thus, after implicit differentiation with respect to \(t\),

\[
5\frac{dy}{dt} = (12 - 5)\frac{dx}{dt}.
\]

When \(dy/dt = 3\), therefore, the length of the person’s shadow is growing with

\[
\text{speed} = \frac{15}{7} \text{ ft/sec}.
\]