On construction and analysis of sparse random matrices and expander graphs with applications to compressed sensing

Bubacarr Bah

École Polytechnique Fédérale de Lausanne (EPFL)

SUPERVISOR: Jared Tanner (University of Oxford, UK)

SampTA
Bremen, July 01, 2013
Compressed Sensing

- Signal $x \in \mathbb{R}^N$, k-sparse (sparse representation).
- Sensing matrix $A \in \mathbb{R}^{n \times N}$; measurements $y = Ax$, ($n \ll N$).
- Problem/solution: $\min_{x \in \mathbb{R}^N} \|x\|_0$ s.t. $Ax = y$.

Encoder, A: Deterministic/probabilistic; dense/sparse?
Decoder, Δ: l_q-minimizations & Greedy (SP, OMP, IHT, ...)

CS Applications
- Medical Imaging: MRI, Tomography, Radiology, ...
- Infrared spectroscopy & Seismic imaging
- Single pixel camera & Analog-to-digital converters
- DNA micro-arrays, radar, wireless communications, ...
Compressed Sensing

- Signal \(x \in \mathbb{R}^N, \ k\)-sparse (sparse representation).
- Sensing matrix \(A \in \mathbb{R}^{n \times N} \); measurements \(y = Ax, (n \ll N) \).
- Problem/solution: \(\min_{x \in \mathbb{R}^N} \|x\|_0 \) s.t. \(Ax = y \).
- Encoder, \(A \): Deterministic/probabilistic; dense/sparse?
- Decoder, \(\Delta \): \(l_q \)-minimizations & Greedy (SP, OMP, IHT, ...)

Compressed Sensing (CS)

- Restricted Isometry Property - RIP-\(p \)
- RIP-1 and Expander graphs

Introduction

- Construction of sparse random matrices
- Numerical results
- Conclusions

Compressed Sensing Applications

- Medical Imaging: MRI, Tomography, Radiology, ...
- Infrared spectroscopy & Seismic imaging
- Single pixel camera & Analog-to-digital converters
- DNA micro-arrays, radar, wireless communications, ...
Compressed Sensing

- Signal $x \in \mathbb{R}^N$, k-sparse (sparse representation).
- Sensing matrix $A \in \mathbb{R}^{n \times N}$; measurements $y = Ax$, $(n \ll N)$.
- Problem/solution: $\min_{x \in \mathbb{R}^N} \|x\|_0 \quad \text{s.t.} \quad Ax = y$.
- Encoder, A: Deterministic/probabilistic; dense/sparse?
- Decoder, Δ: l_q-minimizations & Greedy (SP, OMP, IHT, ...)

CS Applications

- Medical Imaging: MRI, Tomography, Radiology, ...
- Infrared spectroscopy & Seismic imaging
- Single pixel camera & Analog-to-digital converters
- DNA micro-arrays, radar, wireless communications, ...
Design and analysis of \((A, \Delta)\) with small \(n\) is key in CS, \(n = \mathcal{O}(k \log (N/k))\) is optimal.
Design and analysis of \((A, \Delta)\) with small \(n\) is key in CS,
\(n = \mathcal{O}(k \log (N/k))\) is optimal.

CS Tools of Analysis

- Coherence [Donoho & Huo; Elad & Bruckstein]
- Restricted isometry property (RIP) [Candès & Tao]
- Nullspace property [Donoho & Huo]
- Stochastic geometry [Donoho; Donoho & Tanner]
• Design and analysis of \((A, \Delta)\) with small \(n\) is key in CS,
\[n = \mathcal{O}(k \log(N/k)) \] is optimal

CS Tools of Analysis

- Coherence [Donoho & Huo; Elad & Bruckstein]
- Restricted isometry property (RIP) [Candès & Tao]
- Nullspace property [Donoho & Huo]
- Stochastic geometry [Donoho; Donoho & Tanner]

Definition (\(\ell_p\)-norm restricted isometry property)

\[A \] has RIP-\(p\) of order \(k\) if, for all \(k\)-sparse \(x\)

\[(1 - L(k, n, N; A))\|x\|_p^p \leq \|Ax\|_p^p \leq (1 + U(k, n, N; A))\|x\|_p^p. \]

• RIP-\(p\) shows how close to isometry \(A\) is for \(k\)-sparse \(x\) in \(\| \cdot \|_p\)
RIP gives a sufficient guarantees for exact recovery, e.g. a subgaussian A satisfies RIP-2 with $n = O(k \log (N/k))$ and if $R_k = \max [L(k, n, N; A), U(k, n, N; A)]$ using such A

ℓ_1-minimization) works if:

- $R_{3k} + 3R_{4k} < 2$, [Candès, Romberg & Tao, 2006]
- $R_{2k} < 2/(3 + \sqrt{7/4}) \approx 0.4627$, [S. Foucart, 2010]
RIP gives a sufficient guarantees for exact recovery, e.g. a subgaussian A satisfies RIP-2 with $n = O(k \log (N/k))$ and if $R_k = \max \{L(k, n, N; A), U(k, n, N; A)\}$ using such A.

\(\Delta (\ell_1\text{-minimization})\) works if:

1. $R_{3k} + 3R_{4k} < 2$, \cite{Candes-Romberg-Tao-2006}
2. $R_{2k} < 2/(3 + \sqrt{7/4}) \approx 0.4627$, \cite{Foucart-2010}

- A above is dense which is a computational bottleneck
- Sparse A: fast computation & low storage complexity
- Sparse A do not satisfy RIP-2 with optimal n; e.g. for $A \in \{0, 1\}^{n \times N}$ we need $n = \Omega(k^2)$ \cite{Chandar-2007}
Sparse matrices of expander graphs satisfy RIP-1

Theorem (RIP-1 - Berinde et. al., 2008)

Consider Φ as the adjacency matrix of (k, d, ϵ)-lossless expander such that $\{1/\epsilon, d\} < N$, then $A = d^{-1}\Phi$ satisfies RIP-1 with $L(k, n, N; A) = 2\epsilon$ and $U(k, n, N; A) = 0$
Sparse matrices of expander graphs satisfy RIP-1

Theorem (RIP-1 - Berinde et. al., 2008)

Consider Φ as the adjacency matrix of (k, d, ϵ)-lossless expander such that $\{1/\epsilon, d\} < N$, then $A = d^{-1}\Phi$ satisfies RIP-1 with $L(k, n, N; A) = 2\epsilon$ and $U(k, n, N; A) = 0$
- Objects well-studied in theoretical computer science but there are construction issues

- **Probabilistic** construction with \(d = O \left(\log \left(\frac{N}{k} \right) / \varepsilon \right) \) and \(n = O \left(k \log \left(\frac{N}{k} \right) / \varepsilon^2 \right) \)

- **Explicit** construction with \(d = O \left(\left(\log N \right) \left(\log k \right) / \varepsilon \right)^{1+1/\alpha} \) and right set size \(\left(d^2 k^{1+\alpha} \right) \), for any \(\alpha > 0 \)
 \[\text{[Guruswami et. al., 2007]}\]
• Objects well-studied in theoretical computer science but there are construction issues

• Probabilistic construction with \(d = \mathcal{O} \left(\log \left(\frac{N}{k} \right) / \epsilon \right) \) and \(n = \mathcal{O} \left(k \log \left(\frac{N}{k} \right) / \epsilon^2 \right) \)

• Explicit construction with \(d = \mathcal{O} \left((\log N)(\log k) / \epsilon \right)^{1+1/\alpha} \) and right set size \((d^2 k^{1+\alpha}) \), for any \(\alpha > 0 \) \[Guruswami et. al., 2007\]

Goal of this work

Probabilistically construct expander graphs using a novel dyadic splitting technique to compute better constants to be used in sampling theorems for

• existence of expander graphs and their adjacency matrices
• quantitative comparison of recovery algorithms
Note \(\text{Prob} \left(\|Ax\|_1 \leq (1 - 2\epsilon)d\|x\|_1 \right) \equiv \text{Prob} \left(|A_k| \leq (1 - \epsilon)dk \right) \)
• **Note** $\text{Prob } (\|Ax\|_1 \leq (1 - 2\epsilon)d\|x\|_1) \equiv \text{Prob } (|A_k| \leq (1 - \epsilon)dk)$

• **Dyadic splitting** of sets: $|A_k| = \left| A\left\lceil \frac{k}{2}\right\rceil \cup A\left\lfloor \frac{k}{2}\right\rfloor \right|$ and

$$\text{Prob } (|A_k| \leq (1 - \epsilon)dk) = \text{Prob } \left(\left| A\left\lceil \frac{k}{2}\right\rceil \cup A\left\lfloor \frac{k}{2}\right\rfloor \right| \leq (1 - \epsilon)dk \right)$$
Note \(\text{Prob} \left(\|Ax\|_1 \leq (1 - 2\epsilon)d\|x\|_1 \right) \equiv \text{Prob} \left(|A_k| \leq (1 - \epsilon)dk \right) \)

Dyadic splitting of sets: \(|A_k| = \left| A\left\lceil \frac{k}{2} \right\rceil \cup A\left\lfloor \frac{k}{2} \right\rfloor \right| \) and

\[
\text{Prob} \left(|A_k| \leq (1 - \epsilon)dk \right) = \text{Prob} \left(\left| A\left\lceil \frac{k}{2} \right\rceil \cup A\left\lfloor \frac{k}{2} \right\rfloor \right| \leq (1 - \epsilon)dk \right)
\]

Given \(Z = X \cup Y \) s.t. \(|X| = x \) and \(|Y| = y \), then

(1) \(\text{Prob} \left(|X \cup Y| \leq z \right) = \sum_{l=\min(x,y)}^{\min(2\cdot\min(x,y),z)} \text{Prob} \left(|X \cup Y| = z \right) \)

(2) \(\text{Prob} \left(|X \cup Y| = z \right) = \text{Prob} \left(|X \cap Y| = x + y - z \right) \cdot \text{Prob} \left(|X| = x \right) \cdot \text{Prob} \left(|Y| = y \right) \)
Note $\text{Prob}\left(\|Ax\|_1 \leq (1 - 2\epsilon)d\|x\|_1\right) \equiv \text{Prob}\left(|A_k| \leq (1 - \epsilon)dk\right)$

Dyadic splitting of sets: $|A_k| = \left|A\left\lceil \frac{k}{2} \right\rceil \cup A\left\lfloor \frac{k}{2} \right\rfloor\right|$ and

$$\text{Prob}\left(|A_k| \leq (1 - \epsilon)dk\right) = \text{Prob}\left(\left|A\left\lceil \frac{k}{2} \right\rceil \cup A\left\lfloor \frac{k}{2} \right\rfloor\right| \leq (1 - \epsilon)dk\right)$$

Given $Z = X \cup Y$ s.t. $|X| = x$ and $|Y| = y$, then

$$\text{(1)} \quad \text{Prob}\left(|X \cup Y| \leq z\right) = \sum_{l=\min(x,y)}^{\min(2\cdot\min(x,y),z)} \text{Prob}\left(|X \cup Y| = z\right)$$

$$\text{(2)} \quad \text{Prob}\left(|X \cup Y| = z\right) = \text{Prob}\left(|X \cap Y| = x + y - z\right) \cdot \text{Prob}\left(|X| = x\right) \cdot \text{Prob}\left(|Y| = y\right)$$

Next split X and express $\text{Prob}\left(|X| = x\right)$ in terms of it’s children and their intersection, similarly Y
Repeat the splitting process until the last sets are made up of one column giving probability one since cardinalities are d.
Repeat the splitting process until the last sets are made up of one column giving probability one since cardinalities are d
End result: a product of nested sums of probabilities of the intersections which are computable
End result: a product of nested sums of probabilities of the intersections which are computable

Definition

Let $X \subset \Omega$ and $Y \subset \Omega$ s.t. $|X| = x$, $|Y| = y$ and $|\Omega| = n$, if X and Y are chosen uniformly at random independently then

$$\text{Prob} (|X \cap Y| = r) = \binom{x}{r} \binom{n-x}{y-r} \binom{n}{y}^{-1}$$
End result: a product of nested sums of probabilities of the intersections which are computable

Definition

Let \(X \subset \Omega \) and \(Y \subset \Omega \) s.t. \(|X| = x\), \(|Y| = y\) and \(|\Omega| = n\), if \(X \) and \(Y \) are chosen uniformly at random independently then

\[
\text{Prob}(|X \cap Y| = r) = \binom{x}{r}\binom{n - x}{y - r}\binom{n}{y}^{-1}
\]

- Need to **quantify** the sets and their cardinalities at each level using our **splitting lemma**
- Leading to the **tail bound** of \(|A_s|\)
Definition (Existence of expanders: $\rho^{\text{exp}}(\delta)$)

For ϵ and d fixed, in the limit $(k, n, N) \to \infty$, $k/n \to \rho \in (0, 1)$ and $n/N \to \delta \in (0, 1)$, $\rho^{\text{exp}}(\delta)$ is the ρ which makes

$$\text{Prob}\left(\|Ax\|_1 \geq (1 - 2\epsilon)d\|x\|_1 \right) \to 1$$

for all k–sparse x.
Definition (Existence of expanders: $\rho^{\text{exp}}(\delta)$)

For ϵ and d fixed, in the limit $(k, n, N) \to \infty$, $k/n \to \rho \in (0, 1)$ and $n/N \to \delta \in (0, 1)$, $\rho^{\text{exp}}(\delta)$ is the ρ which makes $
abla \text{Prob}(\|Ax\|_1 \geq (1 - 2\epsilon)d\|x\|_1) \to 1$ for all k-sparse x.

- Approach is to upper bound $\text{Prob}(\|Ax\|_1 \leq (1 - 2\epsilon)d\|x\|_1)$ and choose $\rho^{\text{exp}}(\delta)$ based on bound, i.e.

 $$\text{Prob}(\|Ax\|_1 \leq (1 - 2\epsilon)d\|x\|_1) \leq P(n; d, \epsilon) \cdot \exp [n \cdot \Psi(\delta, \rho; d, \epsilon)]$$

and define $\rho^{\text{exp}}(\delta)$ such that $\Psi(\delta, \rho; d, \epsilon) = 0$

- For $\rho < \rho^{\text{exp}}(\delta)$, $\Psi(\delta, \rho; d, \epsilon) < 0$ the probability that a randomly generated bipartite graph with these parameters is not an expander goes zero exponentially in n
Phase transitions: $\rho^\text{exp}(\delta)$

Varying d
Phase transitions: $\rho^{\text{exp}}(\delta)$

- Varying d
- Comparison to earlier bounds

$\rho^{\text{exp}}(\delta)$

$n = 1024, \epsilon = 0.25$

$d = 8$
$d = 12$
$d = 16$
$d = 20$
Comparisons of algorithms using performance guarantees

ℓ_1 guarantees [Berinde et. al., 2008]

ℓ_1 recovery is guaranteed if $\epsilon \leq 1/6$
Comparisons of algorithms using performance guarantees

ℓ_1 guarantees [Berinde et. al., 2008]

ℓ_1 recovery is guaranteed if $\epsilon \leq 1/6$
Comparisons of algorithms using performance guarantees

\(\ell_1 \) guarantees [Berinde et. al., 2008]

\(\ell_1 \) recovery is guaranteed if \(\epsilon \leq 1/6 \)
Comparisons of algorithms using performance guarantees

ℓ_1 guarantees [Berinde et. al., 2008]

ℓ_1 recovery is guaranteed if $\epsilon \leq 1/6$

ℓ_1, SSMP, ER

Improved recovery more likely due to the closer match of the method of analysis

ℓ_1: Gaussian vs. expander
Summary:

- Probabilistic construction using dyadic splitting resulting into better order constants
- Better sampling theorems (phase transitions) of expanders
- ℓ_1 performance comparisons of algorithms
- Comparison of ℓ_1 performance of Gaussian vs. expanders
- Improved recovery more likely related to method of analysis
Summary:
- Probabilistic construction using dyadic splitting resulting into better order constants
- Better sampling theorems (phase transitions) of expanders
- ℓ_1 performance comparisons of algorithms
- Comparison of ℓ_1 performance of Gaussian vs. expanders
- Improved recovery more likely related to method of analysis

References:
- B. Bah and J. Tanner. On construction and analysis of sparse random matrices and expander graphs with applications to compressed sensing. *SAMPTA 2013*
- B. Bah and J. Tanner. Vanishingly Sparse Matrices and Expander Graphs, with application to compressed sensing. Accepted into *IEEE IT, May 2013*
THANK YOU