A. Belavin - Quantization of Hitchin Hamiltonians & Hecke Eigensheaves

(c. Drinfeld) \(\text{Objective (D.)} \) - construct Demons on moduli from operas using CFT, which are Hecke eigensheaves...

Local picture - Feigin-Frenkel strange from geometric P.C.V., remainder of special duality of quantum \(W \)-algebras, specified at critical level.

I have given geometric picture only for closed rank...

Operator, \(K = \mathcal{O}([H]), \mathcal{O} = \mathbb{C}[[t]] \), central exts of \(\mathcal{O} \) labeled by symmetric forms on \(\mathfrak{g} \) by \(\mathfrak{c} = \mathfrak{g} / (\mathfrak{g} \circ \mathfrak{r}) \implies X(\mathfrak{c}) \). (Fix \(B \in \mathfrak{c} \))

\(\mathfrak{c} = \mathfrak{h} \) - Killing critical level (not simple) - huge center

So take \(c = -\frac{1}{2} \text{Tr}(\text{adj} \circ \mathfrak{c}) \), \(\mathfrak{c} = \text{center} \).

Final estimate \(\mathfrak{g} \mathfrak{r}_0^\mathfrak{c} \subset (\mathfrak{g} \circ \mathfrak{r})^\mathfrak{c} = \mathfrak{g} \mathfrak{r} + \mathfrak{g} \mathfrak{r}_0^\mathfrak{c} \)

- using regular orbits \(G \) corresponding group \(\mathcal{M}(B, \mathcal{E}) \)

\(\mathcal{E} : \) the above embedding is iso...

\(B \) is deformation of \(\mathfrak{g} \mathfrak{r}_0^\mathfrak{c}

Consider \(\mathcal{V} \mathcal{E}_c = \text{Ind}_{\mathfrak{g} \mathfrak{r}_0}^{\mathfrak{g} \mathfrak{r}} \mathcal{E}_c \), \(\mathfrak{g} \mathfrak{r} \) acts on \(\mathcal{V} \mathcal{E}_c \), so does \(B \) - huge ideal kills this vacuum \(\implies \) ideal \(I \subset B \) annihilates \(\mathcal{V} \mathcal{E}_c \).

\(\mathcal{E} : \) image of \(B \) in \(\mathcal{E} \mathcal{D}(\mathcal{V} \mathcal{E}_c) \) is all \(X / I \cong \text{End}_{\mathfrak{g} \mathfrak{r}_0} \mathcal{E}_c \)

\(\mathcal{E} = \mathcal{E}/I \), get \(\mathfrak{g} \mathfrak{r}_0^\mathfrak{c} = \text{Funct} on \mathfrak{g} \mathfrak{r}/(\mathfrak{g} \circ \mathfrak{r}) \mathfrak{r}_0^\mathfrak{c} \)

\(\text{Operas} \) \(X \) - curve, \(\mathcal{O} \) oper over \(X \) is a triple \((\mathcal{F}_1, \mathcal{F}_2, \mathcal{V}) \)

\(\mathcal{F}_1 \) oper over \(X \), \(\mathcal{V} \) connection on \(\mathcal{F}_0 \), \(\mathcal{B} \) \(\mathcal{B} \)-structure on \(\mathcal{F}_0 \)

Standard way of going from system of order-\(c \) opers to order-\(n \) eq.

Very rigid object - no non-trivial auto (besides on \(\mathcal{V} \) - \(\mathcal{V} \)) - i.e. \(\mathcal{O} \) opers are rigid.

\(\text{Description} \) \begin{equation} \text{locally principle} \end{equation} \(B \) \(\rightarrow B \)

\(\mathcal{O} \) opers on rank \(\mathfrak{g} \) - have obstruction to \(\mathcal{P} \) monad \(\mathcal{O} = (\mathfrak{g}/\mathfrak{h})_B \circ \mathfrak{r}_0 \)

Carries obstruction, \(\text{we want our obstruction to } \mathcal{F}_0 \mathcal{B} = \mathfrak{g}/\mathfrak{h} \circ \mathfrak{r}_0 \)

Want to express every \(\mathcal{O} \) oper as related \(\mathcal{O}_2 \) oper + standard correction...

- take \(L_{\mathfrak{g}/\mathfrak{h}} \), generator of \(\mathfrak{g} \mathfrak{r} / \mathfrak{g} \mathfrak{r}_0^\mathfrak{c} \)

\(\mathfrak{g} \mathfrak{r} \mathfrak{r}_0^\mathfrak{c} \) spanned by \(\mathfrak{g} \mathfrak{r}_0^\mathfrak{c} \), \(\mathfrak{g} \mathfrak{r} \mathfrak{r}_0^\mathfrak{c} \)

\(\text{dim} = \text{rank of the algebra} \)

So add to each induced a correction in \(\mathcal{V} \mathcal{O} \)...

\(\text{Fact} \) \(\Gamma(X, (\mathfrak{g}/\mathfrak{h})_B \mathfrak{r}_0^\mathfrak{c}) \rightarrow \mathcal{O} \)-opers (\(\mathcal{V} \mathcal{O} \) twisted by \(\mathfrak{B}_1) \), \(\mathcal{V} \mathcal{O} \) is \(\mathfrak{B}_1 \)-module.

So start with a \(\mathfrak{B}_2 \)-oper, get this map \(B \) on \(\mathfrak{B}_2 \), etc.

- induce, then change the connection by adding this \(B \) part...
Local situation - functions on moduli space of opers have canonical filtration, whose generic graded is \(l \cdot 3 \).
Standard projection (Kostant \(\theta \)) \(\text{Vol} \rightarrow \text{character} \).
\(V \rightarrow \text{class of } L \cdot V \) (\(L \) opposite nilpotent to \(V \) in \(\mathfrak{g} \)).
So up to translation, any opers are h, \(\omega \), or \(\mathcal{E} \) elements of \(\text{Vol} \). \(
\) \(C \) is \(\mathbb{P}^1 \) for formal punctured disc.)
Now since \(H \) is a \(\mathbb{P}^1 \) space, \(\mathcal{O} \) is a deformation of \(C \).
The \(C \) is a canonical isomorphism between these deformations.
Since \(\mathcal{O} \) is moduli of log opers on \(\text{Spec } \mathcal{O} \), \(\mathcal{O} \) is a deformation of \(\mathcal{O} \).
Canonical - symmetry of \(\text{Spec } \mathcal{O} \) and \(\mathcal{O} \) are on whole picture, and the isomorphism is \(\text{Aut } \mathcal{O} \)-equivariant.
We will define the arrow \(\text{Spec } \mathcal{O} \rightarrow \mathcal{O} \) on \(\text{Spec } \mathcal{O} \).

Prop. 2: Satake equivalence (geometric version of \(\mathfrak{g} \)) - [H. H. Shintani, B. Gross, M. V. Barlow, realizing Satake, etc.]

Visual Satake - \(G \) split semisimple \(\mathfrak{g} \), take Hecke \((C) = \text{mesures with cusp form} \).
\(\text{Cusp form, } \mathcal{G}(C) \) bi-invariant, perfect ring (commutative) and it's convolution.
Satake identifying this with \(\mathbb{H} \) via \(\text{Rep } \mathbb{R} \cdot \text{rig } \mathfrak{g} \) \(\rightarrow \text{character } \).
Satake - Harish-Chandra (consider unbalanced principal series of \(\mathcal{G}(C) \)), character is \(\text{canon } \mathcal{G}(C) \), canonical vacuum vector, elt of Hecke \(\rightarrow \).

Replace algebras with categories, \(\text{Rep } \mathbb{R} \cdot \mathfrak{g} \) \(\rightarrow \mathcal{G}(C) \) category, \(\text{Rep } \mathbb{R} \cdot \mathfrak{g} \) perverse on dg-sheaves \(\rightarrow \mathcal{G}(C) \).

Replace \(\mathcal{G}(C) \) by \(\mathcal{G}(\mathbb{C}) \) - \(\mathfrak{g} \) points of a group of finite type \(\mathcal{G}(C) \).
\(\mathcal{G}(C) \) principal group, take affine Grass = \(\mathcal{G}(C)/\mathcal{G}(C) \).
\(\text{Perv } \mathcal{G}(C) \) \(\rightarrow \text{cat } \mathcal{G}(C) \) equiv perverse sheaves on \(\mathcal{G}(C)/\mathcal{G}(C) \).

Irreps are numbered by orbits, here are no nontrivial exs between torus, so \(\mathcal{G}(C)/\mathcal{G}(C) \) orbits.
This is a tensor category (moduli on categories of \(\text{Perv } \mathcal{G}(C) \).
\(\mathcal{G}(C) \) monoidal tensor category...

From Lustzig, \(\mathcal{P} \) \(\rightarrow \) \(\text{semi-simple } \), \(\mathcal{P} \) \(\rightarrow \) \(\text{orbits } \), numbered by high weight of irreps.
Fiber functor \(\Phi^* : \text{H}^{-1}(G(k)/G(0), \ast): \mathcal{P} \to \text{Vec} \) (just Hope on D-maps.) \(\Rightarrow \) group of automorphisms of \(\Phi^* \) is canonically \(\mathbb{G}_m \) \(\Rightarrow \) Langlands dual group, via a subtle duality.

What is the distinguished base? Of \(\mathcal{P} \) in this picture?
\(\Rightarrow \) finding a line of principal vectors for each \(\mathcal{P} \to \text{Rep} \).
But corresp are IC sheaves, so not unique — lowest \(\text{IC} \) is \(\mathcal{O} \), so gives a line. \(\Rightarrow \) Base \(\mathcal{O} \) is canonical.

(Twisted) D-modules on \(G(k)/G(0) \): or perverse sheaves at \(\infty \) (and in part, carry through Riemann-Hilbert...). What is a D-module on a scheme, especially, how to limit of singular schemes?

Embed singular \(\to \) smoothy define via Kashiwara equivalence. What are sections of D-module (right)? \(\gamma \to \gamma \) singular \(\text{V smooth} \)

D-module \(\mathcal{M} \) \(\Rightarrow \mathcal{M}(V) \) is same canonical data on singular variety (order of \(\mathcal{M} \), canonically these are crystals (without embedding) ...)

For \(\mathcal{O} \) on glob sections defined inductively via support on limits etc etc etc.

Half-forms on \(G(k)/G(0) \) \(\lambda \)-defined canonically as follows: fix \(\mathcal{L}_0 = \mathcal{O}^*_k \) on \(\text{Spec} \mathcal{O} \), unique up to sign.

Fix \(\gamma \) non-deg scalar product on \(\gamma \) - space \(\text{Vec}(k) \). \(\mathcal{L}_0 \) carries canonical scalar product: twist \(\gamma \) on \(\mathcal{L}_0 \).

If \(\gamma \) \(\mathcal{L}_0 \to \gamma \) gives on \(\text{Vec}(k) \) take \(\mathcal{O}(\gamma) \).

Now define fiber \(\gamma \) of \(\lambda \): \(\gamma = \text{det}(\text{Ad}(\gamma)/\text{Ad}(\mathcal{O}(\gamma))) \).

- relative Pfaffian of two subspaces; depends continuously on \(\gamma \) even though inside spaces jump...
- makes perfect sense on each orbit \(\Rightarrow \) (at finite-dimensional)

Fact The restriction of \(\gamma \) to any orbit \(C \) coincide with \(\mathcal{O}(\gamma) \) on that orbit.

\[\mathcal{O}(\gamma) \to \mathcal{O}(\gamma) \text{ is an isomorphism} \]

\[\text{restriction of } \lambda \text{ to any orbit } C \]

\[\text{now twist by } \lambda : \]

\[\text{spec } \mathcal{M} = H^0 \text{ of } \mathcal{O}(\gamma) \text{ on } (\text{Spec } \mathcal{O}(\gamma)). \]
\[M_c \times \mathcal{L}^+ = \mathcal{L}(\mathcal{C}) \mathcal{O} = C \] canonical line of section, \(f \)-function corresponding to orbit \(\mathcal{L}(\mathcal{C}) \in \mathcal{G}(M_c \times \mathcal{L}^+) \)

Theorem. For any \(M \in \mathcal{P} \), the higher (pervasive) cohomology \(H^i(\mathcal{C}(\mathcal{C}) \setminus \mathcal{C}(\mathcal{C}), \mathcal{M}(\mathcal{L}^+)) \) vanish for \(i > 0 \), and \(\Gamma(\mathcal{C}(\mathcal{C}) \setminus \mathcal{C}(\mathcal{C}), \mathcal{M}(\mathcal{L}^+)) \) is isomorphic to a direct sum of \(\mathcal{C}(\mathcal{C}) \) many copies of \(\mathcal{V}_{\mathcal{C}} \) as a \(\mathcal{L} \)-module. Delta-funcions just give \(\mathcal{V}_{\mathcal{C}} \), and any other \(M \) will just be a direct sum of such \(\mathcal{C}(\mathcal{C}) \) copies of \(\mathcal{V}_{\mathcal{C}} \). [Some remarks about higher cohomology]

Birth of groups \(\phi(M) = \text{Hom}_\mathcal{C}(\mathcal{V}_{\mathcal{C}}, \Gamma(\mathcal{C}(\mathcal{C}) \setminus \mathcal{C}(\mathcal{C}), \mathcal{M}(\mathcal{L}^+))) \) for \(\mathcal{L} \)-module of finite type, \(\mathcal{C} \) being again \(\text{End}_\mathcal{C}(\mathcal{V}_{\mathcal{C}}) \).

Proposition. \(\phi : \mathcal{P} \to \text{finite free } \mathcal{L} \)-module is a fiber functor (everything finite, unique up to twisting by torsor which is \(\text{Hom}(\text{fiber, standard fiber}) = \text{de Rham cohomology} \).

Thus we defined a canonical \(\mathcal{L}(\mathcal{C}) \)-bundle \(\mathcal{F}_C \) on \(\text{Spec } \mathcal{C} \)

\[\phi(M) = \text{Hom}_\mathcal{C}(M, \mathcal{F}_C) \]

Extra structure 1. There is a canonical reduction \(\mathcal{F}_{\mathcal{C}} \) of \(\mathcal{F}_C \) to \(\mathcal{C} \)

- to do this we need to describe line in any \(\mathcal{F}_C \)-twisted case - this will come from \(\mathcal{C} \in \Gamma(\mathcal{C}(\mathcal{C}) \setminus \mathcal{C}(\mathcal{C}), \mathcal{M}(\mathcal{L}^+)) \).

ii) \(\text{Aut}(\mathcal{C}) \) acts on the picture (i.e., group where containing integrable part + Auto preserving a point + formal part shifting the pt.). \(\mathcal{F}_{\mathcal{C}} \) is \(\text{Aut}(\mathcal{C}) \)-equivariant. Now \(\text{Aut}(\mathcal{C}) \) still acts by \(\mathcal{C} \) if they don't fix point - formal part doesn't preserve \(\mathcal{C} \) - so the reduction \(\mathcal{F}_{\mathcal{C}} \) is only \(\text{Aut}^0(\mathcal{C}) \)-equivariant.

Our aim is to send \(\text{Spec } \mathcal{C} \to \text{functor of } \mathcal{L}(\mathcal{C}) \)-torsors on \(\text{Spec } \mathcal{O} \):

\[\mathcal{Z} \to \mathcal{C}, \text{ Aut}(\mathcal{C}) \to \text{Spec } \mathcal{C} \to \text{Spec } \mathcal{O} \to \mathcal{Z} \]

Pull back \(\mathcal{F}_{\mathcal{C}}, \mathcal{F}_{\mathcal{C}} \to \mathcal{F}_C, \mathcal{F}_{\mathcal{C}} \to \text{Aut}(\mathcal{C}) \)

\(\mathcal{F}_{\mathcal{C}} \) is equiv w/r.t. \(\text{Aut}(\mathcal{C}) \) - so gives constant (suitable to torsor)

\(\mathcal{F}_{\mathcal{C}} \) constant w/r.t. translations \(\text{Aut}^0(\mathcal{C}) / \text{Aut}(\mathcal{C}) \)-equivariant

- IN OTHER WORDS, \(\mathcal{F}_{\mathcal{C}}, \mathcal{F}_{\mathcal{C}} \) come from the quotient \(\text{Aut}^0(\mathcal{C}) / \text{Aut}(\mathcal{C}) = \text{Spec } \mathcal{C} \) -

constant \(\mathcal{C} \)-bundle on \(\text{Spec } \mathcal{C} \leftrightarrow \text{bundle with connection} \)

Proof. This is a \(\mathcal{C} \)-torsor on \(\text{Spec } \mathcal{O} \).
Explanation of Commutativity:

Different def. of \mathcal{C} on \mathcal{P}_0 (which will agree with convolution):

reverse shows $G(\mathcal{C}) \setminus \mathcal{C}(\mathcal{D})$ as \mathcal{D} (co) action of even of disc

Now take $X = \text{curve}$ motion (or field)

for commutativity: take operators at different points commute

obviously... try to take pair of form $(x, x' = 0)$

get perverse sheaf on total space \mathcal{F}_x as family

Now take a finite set of points S_i... First rate $\mathcal{F}_{S} = \mathcal{C}(\mathcal{C})/\mathcal{C}(\mathcal{C})$

for X affine this doesn't change on formal neighborhood \Rightarrow

connection \Rightarrow horizontal section 1 - only horizontal

connection doesn't preserve stratification

Set $\mathcal{F}_x = \prod_{x \in S} \mathcal{F}_x = \mathcal{C}(\mathcal{C})/\mathcal{C}(\mathcal{C})$

bdl \mathcal{F}_x on X^* with fiber $\mathcal{F}_{x,\ldots, x}$

gives true, familiar perverse bundle... over diagonal this bundle is not product but only one copy of \mathcal{F}_x by convolution on the diagonal.

Canonical flat connection \Rightarrow Now before product

$\mathcal{F}_x \rightarrow \mathcal{F}_x \times \mathcal{F}_x = \mathcal{F}_x \times \mathcal{F}_x / U$, U complement of diagonal

Now say $M, M_2 \in \mathcal{F}_x$ (order $M, \mathcal{M}_2 \Rightarrow$ rest shft over U on $\mathcal{F}_x \times \mathcal{F}_x / U$)

Now extend, set $\mathcal{J}_x (M \otimes \mathcal{M}_2 / U)$, perverse sheaf on X, whose pullback $\mathcal{J}_x (M \otimes \mathcal{M}_2 / U)$ is

perverse sheaf on $X \Rightarrow M \otimes \mathcal{M}_2$, obvious commutativity

I assoc (like \mathcal{L}^x is intro of Springer convs.)

This agrees w/ convolution...

Small projection $\mathcal{F}_x \rightarrow \mathcal{F}_x$

(consider $\mathcal{F}_x \rightarrow \mathcal{F}_x$, classes on X, \mathcal{F}_x horiz.

and there are

isom on $X \times \mathcal{F}_x^2$ - classes of such data are same as $\mathcal{C}(\mathcal{C}) / \mathcal{C}(\mathcal{C})$. Now take a pair at pts x, y, consider triple ($\mathcal{F}_x \times \mathcal{F}_y \rightarrow \mathcal{F}_x \times \mathcal{F}_y$)

These give idsh on $X \times X$, which is $\mathcal{F}_x \times \mathcal{F}_y$ with projection to \mathcal{F}_x which is composition $\mathcal{F}_x \rightarrow \mathcal{F}_x$

This way b correct def of $\mathcal{C}(\mathcal{C}) / \mathcal{C}(\mathcal{C})$ as composition -

i.e. in get convolution... twisted (by \mathcal{F}) version of $\mathcal{F}_x \times \mathcal{F}_x ...$

$\mathcal{J}_x (M \otimes \mathcal{M}_2) \rightarrow \mathcal{F}_x$ pushes forward b/c on X^2 by smallness...

This is geometric generalization of ODE of V_α. V_α is \mathbb{Z}-analyzing at part x^2 -

sections of sheaf of α function - \Rightarrow given two sections of V_α assign

a single section over x^2 - i.e. ODE...
Hitchin system - globally uniform on a curve of the center
Gives Hitchin Hamiltonian, passing from quantum objects
to global orbit quantization of Hitchin system as bundles
- which are automatically Hecke eigenstates from anyeway