A. Beilinson - On Langlands Correspondence in the de Rham setting I

Local Picture today. de Rham vers. differs from analytic setting, use methods unavailable locally...

Visual Langlands relates two seemingly unrelated objects.

G split reductive $G_\mathbb{A}$ \Rightarrow local field = $\mathbb{C}(F)$ for us
(usual Langlands: k finite)

Rep theory: $G(F)$ (locally compact group) & Reps of G

Galois theory: G^\vee Langlands dual: dual root data to G

(- consider $G_\mathbb{Q}$ or $G_\mathbb{C}$ or $G_\mathbb{R}$)

Reps $G(F) \to G_\mathbb{C}$ \leftrightarrow

G^\vee local systems on Spec F (Radic)

Expect decomposition of reps of $G(F)$ into series labelled by Galois data.
More precise: Bernstein center = Endo of identity functor of rep category, which is closed under Spec of the Bernstein center.

\Rightarrow expect Spec(Bernstein center) = Set of G^\vee-local systems

Principal methods are global - no direct dual local relation.

de Rham vers. k fixed field of char. 0 (e.g. \mathbb{C})

G^\vee-local systems: now in de Rham sense = G^\vee bundles with connection on Spec F.
- depend on continuous parameters
- formal differential egns (no Stokes parameters), arbitrary irregular singularities allowed!

Rep theory site: \mathfrak{g} split reductive Lie algebra

$\mathfrak{g}(F)$ = dim (topological) Lie algebra...

better consider reps of Kac-Moody central extension, or level Δ at \mathfrak{h}-invariant quadratic form on \mathfrak{g}: center \mathfrak{g}, $\Gamma = \mathbb{R}^\Delta$ giving central extension...
Note: everything here will be purely local - diagram of definition
(I will act as identity for our reps)
Rep theory depends on k. should consider
special K^v - integral & negative in strong
sense (less than critical). & nondegenerate
(e.g., \mathfrak{g} torus: nondegenerate integral scalar product
on corresponding lattice)

Format of conjecture: (rough)

$L^F = \text{module of } G^v$-local systems on $X\in F$
not algebraic (just know what families near)

(a)
Want to define an associative topological algebra (or O_x)
A on L^F together with map of Lie algebras
$\mathfrak{o}(F^x) \to A$

Given module over $A \to \text{"quasi-coherent" sheaf}$
on L^F, its global sections carry action of $\mathfrak{o}(F^x)$

\to functor A-modules $\text{\rightarrow} \mathfrak{o}(F^x)$-modules
Want this to be an equivalence of categories

... so modules on $\mathfrak{o}(F^x)$ decomposed wrt
"Spectral parameters" L^F

Very natural construction (e.g., wrt $\mathfrak{o}(F)$-action)

(b)
Given local system L^F can ask which $\mathfrak{o}(F^x)$-modules
are supported here? want explicit geometric
description - at least for some local systems (regular sing.)

Comment: a. will come from natural vertex algebra
associate to G - e.g., torus \to lattice
terminology
- algebra will be equipped G^v-action...

so can twist vertex algebra by any G^v-local
system & \to new one fibers of X
- can't do on level of usual associative algebras
(mixing by L^F)
If modulus of L happens to be an affine variety, this would be seen as map $[L]_k \rightarrow \text{center of } \text{orbit}_k$ -- but both sides $[L]_k$, center are trivial! Hope version doesn't work.

Def of vertex algebra analogous to getting lattice from planar enveloping algebra -- add extra generators.

Center is somehow internal usually -- but can construct "external center" -- i.e. with access outside.

Part (5) (for some local systems with unipotent monodromy)

$G(F)$ is an Ind-scheme from PV of k (inductive limit of affine G-schemes)

$\varphi: G(F) / \text{Ind-proper Ind scheme: Affine Flag Space}$

$\text{category } \mathcal{M}(\varphi)$ of G-modules on φ: \text{right}$

union of f.d. varieties with closed embeddings, so look at union of G-submodules supported on f.d. space.

Right G-nodes make sense as sheaves here; these embed into pushforward each other to give unlike left (need to twist).

$\Gamma: \mathcal{M}(\varphi) \rightarrow G(F)$-modules

really should twist by appropriate line bundle!

K defines central extension of $G(F)$ by G_m

$G(F)_k = \text{look at equivariant line bundles for } G(F) \otimes_k \varphi$: their form a tensor

over weight lattice of G (after considering, looks by 1) -- comes from choice of affine way
Pick ample line bundle \(L \) from any \(\mathbb{P}^1 \)-orbit

In every way possible

\[\Gamma \colon M \to \Gamma(\phi, \mathcal{M}_L) \text{ \(\mathcal{O}(L) \)-module} \]

\[\text{with: } \Gamma \text{ produces equivalence of categories} \]

\[\phi \text{ \(\mathcal{O}(L) \)-module supported on } \Gamma \text{ \(\mathcal{O}(L) \)-module supported on } \]

\[\text{all orbits } \]

\[\text{by } \phi \text{ all \(\mathcal{O}(L) \)-category } \]

\[\text{Venus et acra two way } (\text{from the local system}) \]

\[\text{Venus } \Gamma \text{ depend on choice of } \mathcal{L} \text{ but have some constraints} \]

Case \(G = T \) torus

\[A = \text{ lattice Heisenberg } \& \text{ its lifts by local system } \]

\[\text{Rep heavy side! reps of Lie Heisenberg algebra } \]

\[\text{decompose its reps wrt reps of all twisted lattice Heisenberg algebras!} \]

Very brief introduction to vertex algebras:

Work over a curve \(X \) (eventually look at a disk)

\[A = \text{ quasi-coahed } \mathcal{Q} \text{-module} \]

Def. “Factorization structure” on \(A = \text{ collection of } \mathcal{Q} \text{-modules} \] \(\text{all in } \{ A, \ldots \} \) with compatibility data.

Identity: \(A_x = A \), key property! \(\forall (x_1, \ldots, x_n) \in X^n \)

Consider fiber \(A_{(x_1, \ldots, x_n)} \), demand that it equals \(\otimes A \)

Where we consider \((x_1, \ldots, x_n) \) as \(\text{open subset of } \)

\[X \text{ -- no multiplicity! (one copy for each distinct part).} \]

Precisely on \(X^2 \)

\[\Delta A^2 \xrightarrow{\Delta} X \]

\[\text{fused } \Delta A^2 = A \]

\[\text{j*-action of switching fuses compatible with } \Delta A^2, \]

\[\text{plus action of switching fuses compatible with } \Delta A^2, \]

\[U = X \times X \]

\[j^* A^2 = j^*(A \otimes A) \]
Structure is completely local: glue of $\Delta x A$ off Δ to A or Δ.

Def. A chiral algebra structure on A is a factorization
structure s.t. 1. all Ax flat transversal
direction to diagonal 2. A has a unit ϕ_0 such that $\forall a \in A$, $a \phi_0$ off Δ extends to diagonal $\Rightarrow \exists \phi_1 \in A^2$ s.t. $\phi_1 \phi_0 A \phi_0 = a$.

Note: such structure yields canonically a Δ-mod structure on A:

$p_1^* A x \cong P_2^* A x$ pullback back to diagonal.

These maps are isomorphisms so $A x$ off Δ are flat transversally to diagonal get isomorphisms on formal neighborhoods of diagonal $\cong \Delta$-mod structure.

Operator Product Expansion:

$A x \otimes A x \mapsto j x j x A x \otimes A x = j x j x A x^2$.

$[1, f] \langle a, \phi_0 x \rangle \underset{\text{OPE}}{\mapsto} \langle a_0, \phi_0 x \rangle \rightarrow A x (p_{1,2}) \underset{\text{in local parameter}}{\mapsto} \langle j x j x A x^2 \rangle$.

Algebraic part: take only polar part.

OPE completely determines $A x^2$ hence everything.

Just glue data.