$\mathcal{X} - \text{smooth}/\mathbb{C}$

$\mathcal{D}^{\mathcal{X}} - \text{ring of diff. operators}$

$\mathcal{M}^{\mathcal{D}}(\mathcal{X}) = \mathcal{M}^{\mathcal{D}}(\mathcal{X}) - \text{category of left } \mathcal{D} \text{-mod}$

Example (i) $\mathcal{X} = \text{Spec} A$, $\mathcal{D}_A = \Gamma(\mathcal{X}, \mathcal{D})$

$\Gamma : \mathcal{M}^{\mathcal{D}}(\mathcal{X}) \rightarrow \mathcal{D}_A - \text{mod}$

- Coherent \mathcal{D}-module $: = \text{loc. fin. gen. } \mathcal{D} \text{-module}$
- Locally free of finite rank \mathcal{D}_X-mod.

(ii) $\mathcal{M}^{\mathcal{D}}(\mathcal{X}) \leftrightarrow \mathcal{M}^{\mathcal{O}_X}(\mathcal{X})$

Quasicoherent sheaves

(iii) $\Gamma^\nabla : \mathcal{M}^{\mathcal{D}}(\mathcal{X}) \rightarrow \text{Vect}$

$\Gamma^\nabla(M) = \text{Hom}(\mathcal{O}_X, M)$

$\mathcal{M}^{\mathcal{D}}(\mathcal{X})$ is an abelian tensor category

$M_1 \otimes M_2 \quad \mathcal{O}_X$ is a unit

(i) $\mathcal{X} = \text{Spec} A \quad \mathcal{M}^{\mathcal{D}}(\mathcal{X}) = \mathcal{D}_A - \text{mod}$

(ii) \otimes does not preserve coherence

(iii) Lack of duals

\text{Ex}! M has dual iff M is smooth
\[O_n = \mathbb{C}[t_1, \ldots, t_n] \]

\[\text{Aut}_C(O_n) \] is the group of \(\mathbb{C}\)-points of an affine pro-algebraic group \[= \text{Aut}^0(\mathcal{O}_n) \]

\[\text{ieAut}^0(\mathcal{O}_n) = \text{Der}^0(\mathcal{O}_n) = \text{Der}(\mathcal{O}_n) \]

\[\text{Aut}(\mathcal{O}_n) = \text{group ind-scheme} \]

\[\text{Aut}(\mathcal{O}_n) = (\text{Der}(\mathcal{O}_n), \text{Aut}^0(\mathcal{O}_n)) \]

\[\text{Kaneva-Vasquez pair} \quad (\mathcal{G}, \mathcal{K}) \quad \text{Lie} \mathcal{K} \hookrightarrow \text{G} \quad \text{action of } \mathcal{K} \text{ on } \mathcal{G} \]

\[\text{Aut}(\mathcal{O}_n)(\mathcal{R}) = \text{Aut}_{\text{top} \text{c-alg}} \mathcal{R}[[t_1, \ldots, t_n]] \]

\[\text{it is represented by ind-scheme} \]

\[\text{Aut}^0(\mathcal{O}_n)-\text{mod} \xleftarrow{\text{ind}} \text{Aut}\mathcal{O}_n-\text{mod} \xrightarrow{\text{X-\mathcal{U}-mod}} \]

\[\text{Ind}(V) = U(\text{Der}(\mathcal{O}_n)) \otimes V \]

\[U(\text{Der}^0(\mathcal{O}_n)) \]

\[\dim X = n \]

\[(x, x') = (\text{Spec} O_n \to X) \]

\[X \xrightarrow{\text{formal coord. system at } x} \]

\[\tilde{x} \to X \quad \text{Aut}^0(\mathcal{O}_n) \text{-action on } \tilde{x} \]

\[\tilde{x} \text{ is a principal } \text{Aut}^0(\mathcal{O}_n) \text{-bundle over } X. \]
\[\text{Aut}^0(\mathcal{O}_n)\text{-mod} \leftrightarrow \Gamma_\sim \xrightarrow{\Delta_\sim} M^2_\mathcal{D}(X) \]

\(\Delta_\sim\) is left adj. to \(\Gamma_\sim\)
\[\Gamma_\sim(N) := \Gamma(X_\sim, \pi^*N) \]
\[\Delta_\sim(V) := V_{X_\sim} = (V \otimes \pi^*_X \mathcal{O}_X)_{\text{Aut}^0(\mathcal{O}_n)} \]

\(\Delta_\sim\) is a tensor functor

Claim: The \(\text{Aut}^0(\mathcal{O}_n)\) action extends canonically to an \(\text{Aut} (\mathcal{O}_n)\)

Important: \(\text{Der} \mathcal{O}_n\) action on \(X_\sim\) is formally simply trans.

\[\text{Remark} \quad (\alpha, K) \]
\[X \text{ dim } X = \text{dim} (\alpha / \text{Lie } K) \]

Definition: \(A(\alpha, K)\) - str. on \(X\) is a fibration \(X^\sim \to X\) together with \(\alpha\) - action on \(X^\sim\) s.t. \(X^\sim\) is a prime \(K\) - bundle over \(X\) and \(\alpha\) acts simply trans.

\[\text{Aut} (\mathcal{O}_n)\text{-mod} \leftrightarrow \Gamma_\sim \xrightarrow{\Delta_\sim} M^2_\mathcal{D}(X) \]

Those \(\mathcal{D}\) - modules which appear this way are called "Natural."
A. Beilinson - Vertex Operator Algebras

Fall '95

Let X be a smooth algebraic variety, $\dim n$.

$(O_{X/k}, K)$ a H-Ch. pair.

$\dim (O_{X/k}) = n$.

$(O_{X/k})$ structure on X.

\mathfrak{g} acts transitively on X.

$(O_{X/k}, K)$ action on X, X K-torsor $/X$, \mathfrak{g} acts simply transitively on X. \mathfrak{g} acts simply transitively on $\text{Alt} X$.

Example:

1) $\mathfrak{g} = \mathfrak{gl}_6$, $\mathfrak{g}_{2x} :$ take $X = K \setminus \mathcal{G}$, $\mathfrak{g} = 6$. "Integrable example."

2) $(O_{X/k}) = \text{Alt} \mathfrak{g}$.

3) $(O_{X/k}) = \text{Der} \mathfrak{g}$.

4) $(O_{X/k}) = \text{Alg} \mathfrak{g}$.

$(O_{X/k}, K)$ structure on any smooth X.

To any $(O_{X/k}, K)$ structure on X assign sheaf of Lie algebras \mathfrak{O} on X acting on X — i.e., morphism $\hat{\Theta} \rightarrow \Theta X$.

$\Theta (U) = \mathfrak{O}_X (U)$ — vector fields in U, $(O_{X/k}, K)$ acts — commute with \mathfrak{g} action.

inf. symmetries of the $(O_{X/k}, K)$ structure

1) $\hat{\Theta} = \mathfrak{g}$ via right translations.

2) $\hat{\Theta} = \mathfrak{g} X$.

\Rightarrow D-modules on X from H-Ch $(O_{X/k})$ modules:

$$\hat{\Theta} X \rightarrow \text{Mod}_K X$$

$\hat{\Theta} X$:= pull back D-mod to X, take global sections.

Δ: twist by our K-torsor Δ.

Comment:

$\Delta (O_{X/k} X)$ = action of \mathfrak{g} on ΔX is given by:

$\Delta X = \hat{\Theta} (O_{X/k})$ (normal kind of Lie's theorem is O/k, Der on twist as above).

$\Delta X = (\mathfrak{g}_{O_{X/k}} \otimes O_{X/k})^K$.

$\mathfrak{g}_{O_{X/k}}$ acts on $\text{Der} \mathfrak{g}_{O_{X/k}} = \Delta (O_{X/k}) = (\mathfrak{g}_{O_{X/k}}^* \otimes O_{X/k})^K$.

ΔX := forgetful.

Δ is a tensor functor.

The D-modules we study, $\Delta (O_{X/k})$, are equipped with action of $\hat{\Theta}$.

Two separate Θ actions, as part of D and as part of symmetries of the structure.

D_X-algebra := associative commutative unital algebra in Tor_D^*.

D_X is a D-mod A, $A \otimes D_X \rightarrow A$, $D_X \rightarrow A$ is D-algebra with flat connection, horizontal unit, etc.
Category of \mathcal{D}-algebras: $\text{ComD}(X, \text{ Ver}_\mathcal{D}(X))$, versus $\text{ComD}(X)$
- tensor categories (the tensor product is a categorical product; \otimes)
- \otimes commutes with \square (tensor in ComD is \otimes)

Jets

Lemma
1) \mathcal{D} admits a left adjoint $F: (\text{ComD}(X)) \rightarrow (\text{ComD}(X))$
2) \mathcal{D} commutes with \square

Proof:
1) \mathcal{D} an \mathcal{O}-algebra: $\text{Hom}_{\text{D-gen}}(JR, \mathcal{A}) = \text{Hom}_{\mathcal{D-gen}}(R, \mathcal{O}A)$
2) so take JR as follows: need minimal version $R \rightarrow \mathcal{O}X$

$JR = \text{Sym} (Dx \otimes R) / [\text{ideal gen. by } 1_x - 1, 1_xf_r - (a_0)(1 x f_2)]$

JR is the "jet algebra" for R.

Prop: B, R \mathcal{O}-algebras, then $\text{Hom}_{\mathcal{OX}}(\square \circ JR, B) = \lim_{\text{Hom}_{\mathcal{OX}}(\square \circ B, \mathcal{O}X)}$

Here $\mathcal{O}X$ is $O(X \otimes \mathcal{O}_X \otimes X) = \mathcal{O}_X / I_{\text{red}}$, I_{red} diagonal ideal.

Sketch of proof: $\text{RHS} \overset{\text{lim}}{=} \text{Hom}_{\text{ring of } \mathcal{O}X} (\square \circ B, \mathcal{O}X) = \lim_{\text{Hom}_{\mathcal{O}X}(\square \circ B, \mathcal{O}X)}$

$\square \circ B \overset{\text{lim}}{=} \text{Hom}_{\mathcal{O}X}(\square \circ B, \mathcal{O}X)$: $b \circ f \rightarrow (b \circ f) \circ (\square \circ g)$

above = $\text{Hom} (Dx \otimes R, B) \Rightarrow \text{Hom}_{\text{D-gen}} (JR, B)$; map determined by action on generators.

Cor. C-points of $\square \circ JR$ are the same as pairs $(C, r)_C \times X$, r a section
of Spec R/X on the formal neighborhood of X.

Thus Spec JR is the union of infinite jets of sections of Spec R.

- General principle: $\mathcal{O}X$-algebra, infinite jets of sections have canonical
flat connection, as above construction.

Globalize: D_X-scheme = X-scheme with a flat connection along X.
(of which above is affine case.)

Claim the \square-construction is compatible with Zariski or Tate
localization, hence passes to D_X-schemes: D_X-sen $\rightarrow \mathcal{O}X$.
\[\text{Sch}_D(x) \xrightarrow{\phi} \text{Sch}(x) \]

Ex. (a) K \& pair commuting finite algebras in category of (g, k)-sets:
\[\text{commute with } y, \text{ show } \Delta \Gamma \text{ commute with } y, y. \]

Make our \(D_x \) algebraic algebras: \(A \) a \(D_x \)-algebra \(\Rightarrow \) sheaf of rings
\[A[D_x] : \text{sheaf of algebras on } X \text{ with } \text{algebras } A \rightarrow A[D_x] \]
with obvious compatibilities: \(A[D_x] \) generated by \(A, D_x \) with only these relations. (\(A \in \mathcal{A} \).)

Ex. \(A[D_x] = A \otimes D_x \) as \(A \)-bimodule.

A \(D_x \)-algebra allows one to multiply these \(A \)-valued diffs.

Claim \(A \)-modules = sheaves of \(A[D_x] \)-modules \(\Rightarrow \) \(A \)-modules.
\[\rightarrow \text{ define } \text{ge} \text{ modules on } D \text{-schemes, projectivity} \]
\(\text{not very good to generalize in ind-finite; want proj. projectivity} \)

Lemma For gen projective \(A[D_x] \)-modules are "local" objects.
\(\text{i.e., projective on some covering } \Rightarrow \text{projective on true } \).

Sheaf of (killing) differentials \(A \rightarrow \Omega_A \) is given any \(A \)-module \(M \).
\(\text{a differential } d \rightarrow M \) is a morphism satisfying \(\text{Lie}_d(ab) = a\text{d}b + bd\text{d} \).

1) Universal differential \(A \rightarrow \Omega_A \)
2) For an algebra \(A \)
3) \(\text{d}A \rightarrow \Omega_A \), \(\text{d}a \equiv a \text{e}_1 \oplus a \mod I^2 \).

Smooth \(D_x \text{-schemes} \): \(A \) a \(D_x \)-algebra.
For \(A \) is formally smooth if for \(x \in \overline{C} \Rightarrow \text{I} \in \overline{C} \), \(\text{I}^2 = 0 \).
any morphism \(A \rightarrow C[I] \) lifts to a morphism \(A \rightarrow C \).

Ex. \(A = \text{Sym } M. \) Then \(A \)'s formally smooth iff \(M \) is projective \(D \)-mod.
\(\text{iff } M \) is proj., \(A \rightarrow C[I] \) is mor of \(D \)-mod \(M \rightarrow C[I] \) liftable, conversely (exercise)
\(\Rightarrow \) lets you check projectivity.

Assume \(X \) affine - huge supply of proj. \(D \)-mod (\(\text{e.g. }, \text{R} \).
\(\text{A any } D_x \)-alg. can be written as quotient of formally smooth \(J \sqcup B \rightarrow A \).
We may unit \(\Omega B \rightarrow \Omega A \)
\[0 \rightarrow \Omega^2 A \rightarrow \Omega^2 B \rightarrow \Omega B \otimes A \rightarrow \Omega A \rightarrow 0 \quad \text{exact.} \]
\(\Omega^2 A \) depends on \(A \) only for \(B \) formally smooth.

**Show (using \(Y \)) formally smooth \(\text{Gr} B \) is formally smooth \(D_X \)-alg.

- Then \(\Omega^2 A \) is just \(\Delta^{(2)} A \) as \(O \)-module.

 Categorial: \(A \) is formally smooth iff
 1. \(\Delta^{(2)} A = 0 \),
 2. \(A \) is projective

 (as \(A[D_X] \)-module)

 (A formally sm. 1) obvious, ii) the \(B \)-poly. alg. ...

\[\mathfrak{m} \rightarrow B^{1/2} \rightarrow A \rightarrow 0 \quad \text{for } \mathfrak{m} \text{ sm. alg.}, \quad \mathfrak{m} \in \text{direct summand of } \Omega^2 A \rightarrow \text{proj.}

Conversely \(\Delta A \text{ proj} \Rightarrow \text{splitting } \Rightarrow \text{splitting } B^{1/2} \rightarrow A

\[\mathfrak{m} \rightarrow \mathfrak{m} \rightarrow 0 \quad \text{etc.} \]

\(A \) is fin. sm. as \(D_X \)-alg iff it is fin. sm. as \(O \)-alg and \(\Delta A \) is projective.

Ex. \(A \) is fin. sm. as \(\text{Gr} B \) alg iff it is fin. sm. as \(C \)-alg.

Def. \(A \) is smooth if it is sm. and finitely generated (as \(D_X \)-alg -

- quotient of symm. alg. of \(E \), free \(D \)-module.)

Claim smoothness is local \(\Rightarrow \) notion of a smooth \(D \)-sch.

Ex. \(Y \) smth. \(C \)-sch \(\Rightarrow \) smth. \(D_X \)-alg and smth. scheme \(\Rightarrow \) smth. \(D \)-sch.

Question. Is any smooth \(D_X \)-alg is finitely presented? (as \(D_X \)-alg)

9/15

Ex. of fin. gen. not fin. gen. \(D_X \)-alg: \(\text{Sym}(D_X^2) / \text{Sym}^2 D_X = \text{sym}^2 \) is not finitely generated...

Pitfall: Above we have \(Y \) smooth \(D \)-sch. Are more words on \(Y \)?

- A usual symm alg \(Y \) is a morph of \(D \)-alg \(Y \rightarrow \text{Sym}(D_X^2) \)

 \[\text{st. } \text{if } f: Y \rightarrow \text{Sym}(D_X^2) \text{ is an isomorphism.} \]

 \[\text{always have local coordinates on } Y \text{ scheme.} \]
Not true for smooth \mathcal{L}-sheaves, e.g. smooth \mathcal{L}-jets, smooth scheme - these do have coads - but not true for arbitrary \mathcal{L}-sh

on generic point.

Reason assume $\mathcal{L} = \text{Spec } A$, A integral. $\text{Spec } A$ has finitely many elements: $A[c] = A^*$ - invertible differential operator must have

deg 0 (say $\text{dim } X = 1$, top symbol is function, degrees of symbols add...).

Now assume A is smooth and $\mathcal{L} = \text{Spec } A$ for an algebra (not scheme). $A \subset \mathcal{L}$ corresponds to some $x \subset X$, well defined linear up to right mul of invertible operator $\Rightarrow A^*$ which fixes A!

so $x \subset X$ is canonical. - Line subbundle in \mathcal{N}, field of hyperplanes... is it integrable?

Integrability: $d(\mathcal{L}) \subset \mathcal{N}X$ must sit in $\mathcal{L} \subset \mathcal{N}$...

Example/Exercise $V + uV = 0$, $X = \text{Spec } \mathbb{C}[V]. B = \mathbb{C}[x^i, u, \ldots, V, \ldots, V']$

F gives \mathcal{L}-scheme. Take \mathcal{O}_V ideal $I \subset B$ generated by $\mathcal{O}_x = V + uV$,

$A = B/I$, so the \mathcal{L} is satisf \mathcal{L} is integrable.

Claim A is smooth and $\mathcal{L} \subset X$ is not integrable.

$\mathcal{O}_x = dV + d(uV) = du' + dV + d(uV') = dV + dV + VdV + V' dU + VdV + V' dU$

Horizontal Sections (classical analog of space of non-formal blocks)

Com Assoc (aln) Com \rightarrow Com$\mathcal{D}(V)$

$A \rightarrow R \otimes O_X$

Easier right adjoint: $\text{Com } A \rightarrow \Gamma(X, A)$ global horizontal sections

by lemma this is so being

Left adjoint: space of horizontal sections. Take maximal constant quadratic of \mathcal{L}! project α to A.

call this $\text{H}_p (X, A) = \text{H}_p (A)$

"constant algebra" = image of $R \rightarrow R \otimes O_X$.

Is there a smallest ideal that will do the trick?

Proposition If X is compact then any A has a smallest ideal I st A/I is small.

[Will return to proof]

What is "space of sections"? $\text{R-sections} \rightarrow$ morphisms $X: \text{Spec } R \rightarrow \text{Spec } A \rightarrow \text{Spec } R$.

So we want such morphisms $A \rightarrow R \otimes O_X$ which are R-morphisms, i.e.

horizontal.
Via functor of jets, this contains usual notion of sections (by adjunction).

Right D-modules $M^r_\mathcal{D}(X)$ are $M^s_\mathcal{D}(X)$

a. If left M right, then $L_{\mathcal{D}^m}M$ is naturally a right D-module: $\mathcal{L} \cdot \mathcal{D} \cdot \mathcal{L} \cdot \mathcal{D} = -L_{\mathcal{D}^m}(-1) \mathcal{D} \mathcal{L} \mathcal{D} \mathcal{L} \cdot \mathcal{D}^m$

b. Canonical right and $\mathcal{L}\mathcal{D} = \mathcal{D}^{m-1}$ implies $\mathcal{D} \mathcal{L} = -1 \mathcal{L}$

c. $M^r_\mathcal{D}(X) \to M^s_\mathcal{D}(X)$, $\mathcal{L} \mapsto \mathcal{L} \mathcal{D} \mathcal{L} \mathcal{D}$ is an equivalence of categories.

$D^b_{\mathcal{D}^m}(X) \to D^b_{\mathcal{D}^s}(X)$

$\mathcal{L} \mapsto \mathcal{L} \mathcal{D} \mathcal{L} \mathcal{D}$ should shift naturally

Thus $D^b_{\mathcal{D}^m}(X)$ has two natural cores (above-subcategories)

$M^r \to M^r$, the left core M^r coincides with $M^s \mathcal{D}^{m-1}$.

Pull-back functors $f : Y \to X$, $M^s_\mathcal{D}(Y) \to M^r_\mathcal{D}(X)$

$M^s_\mathcal{D}(Y)$ as D-module: pull-back of bundle with connection is finite with connection.

\Rightarrow Right exact functor $f^* : M^s_\mathcal{D}(Y) \to M^s_\mathcal{D}(X)$, left derived is

$Lf^* : D^b_{\mathcal{D}^s}(Y) \to D^b_{\mathcal{D}^s}(X)$, which we denote by f^*

Exer.

$D^b_{\mathcal{D}^s}(X) \xrightarrow{f^*} D^b_{\mathcal{D}^s}(Y) \xrightarrow{Rf^*} D^b_{\mathcal{D}^s}(Y)$

$\downarrow \mathcal{L} \mathcal{D}$

$\downarrow \mathcal{L} \mathcal{D}$

Derivations of regular sheaves: $M^s \Omega^r = \text{sheaf of vector spaces}$ (Z-rank r)

$\Delta(M) = M^s \Omega^r \to \mathcal{O}_X \otimes \mathcal{D}_X$ (collinearity with respect to \mathcal{O}_X).

Projection $\pi : M \to \Delta(M)$

Deligne complex: $L \Delta M^r$, $D(R)(L) = L \Delta \mathcal{D} \mathcal{L} \Delta \mathcal{L}$, integrable

connection gives differentiable.

$M^s \Omega^r$, $D(R)(M) = M \Omega^r \mathcal{L} \Delta \mathcal{L}$ (in negative degree).

$M = \mathcal{L} \mathcal{D} \mathcal{L} \mathcal{D}$ these get identified (contract $\mathcal{L} \mathcal{D}$ with $\mathcal{L} \mathcal{D} \mathcal{L} \mathcal{D}$).

So canonical functor $D^b_{\mathcal{D}^m}(X) \xrightarrow{DR} D^b\mathcal{D}(X)$
Inducion \[M^D(x) \xrightarrow{\text{Diff}(x)} M^D(x) \]

Lemma: \[h(F) = F \] (Prove by reducing to local, reduce to \(F \) first by inductive limits and exactness in first argument.)

Example: Introduce category \(\text{Diff}(x) = M^D(x) \), some objects but morphisms are differential operators. Lemma ii. strict:

\[\text{Diff}(x) \xrightarrow{\text{fully faithful}} M^D(x) \]

Example: \(M \in M^D(x) \). \(\text{DR}(M) \) is a complex in \(\text{Diff}(x) \). So we may consider \(\text{DR}(M) \) as complex of \(D \)-modules:

\[\text{DR}(M) = (\ldots \to M \otimes \mathcal{O}_x \otimes \mathcal{O}_x \to M \otimes \mathcal{O}_x) \]

Claim: this morphism \(\text{DR}(M) \to M \) is a quasi-isomorphism, i.e., \(\mathcal{O}_x \) gives canonical left resolution of a right \(D \)-module \(M \).

Exercise: Define \(\text{D}^\bullet \text{Diff}(x) \) \(\text{D}^\bullet \text{Mod}(x) \) are mutually inverse equivalences of categories.

Fundamentality: Direct image (somewhat better for right pullback [left]).

Case a) Open embedding \(j : U \to X \). \(j_* \mathcal{N}_U = j_\ast j^* \mathcal{N}_U \) as sheaves.

- Meromorphic continuation;
- Closed embeddings \(i : Y \to X \) closed smooth subvariety, \(\mathcal{O}_Y = \mathcal{O}_X/I \)

\[i^! : M^D_Y \to M^D_X, \quad i^! M = \{ m \in M | I m = 0 \} = \text{Hom}_{\mathcal{O}_X}(\mathcal{O}_Y, M) \]
To make this a D^m-mod, extend vector field arbitrarily to X, action (from right) independent of extension. Pushforward is now $i^*: M^D_D(Y) \to M^D_D(X)$ left exact to i^*.

$M^D_D(Y) : i^* N = N \otimes_{D^m} i^* D^m$.

Let D^m a left D^m-module, pull back to Y, $i^* D^m = D^m / i^* D^m$ (can $= \mathcal{O}(Y)$)

Alternatively define $D^m_{pY} \hookrightarrow D^m$ as $\mathcal{O}(D^m Y) \hookrightarrow \mathcal{O}(D^m Y)$

So set $i^* N = N \otimes_{D^m_{pY}} D^m$ and show it's the same.

i^* is left exact and i^* is in fact exact.

What is $\text{Hom}(i^* N, M)$ - natural sends N to subobject of section killing i^*? $\text{Hom}(\mathcal{O}(Y), M) = \mathcal{O} M$.

Locally $X = Y \times_Z Z$ in étale topology. (y-scheme) $Y = Y \times_Z \cdot$, $\cdot \to Z$.

D^m_{pY} is reductive. $\text{Hom}(\mathcal{O}(Z), C) = C$, $i^* N = N \otimes C$.

Lemma (Kashiwara) $M^D_D(Y) \to M^D_D(Z)$ Y is again of categories, with inverse i^*, $i^* M^D_D$.

Proof: Need to show natural transforms $i^* \to i^*$ are equivalences.

Case Y point - algebraic version of Stone-von-Neumann (???)

Support at 0 means null by X is locally nilpotent, Z rep of Heisenberg algebra locally, \Rightarrow $\text{Fock} = Z$, add parameters

This functor is compatible with $D^m R^m$ (???) $D R^m N \to i^* D^m R^m N$ is a quasi-isomorphism in particular $h(\cdot N) = i^* h(N)$

Also compatible with induction $F(\cdot)$ mod: $i^* F = i^* F$

(Follow from adjunction/universality \cdots)

Open vs. closed: $Y \hookrightarrow X \setminus U$ complement

$i^* i_{K i}^* M \to i^* i_{K j}^* N$ is an exact triangle.
Formal definition of formal pullback $f^* : \mathcal{D}^b(M)^A \to \mathcal{D}^b(M)^B$ via $f_* : \mathcal{D}^b(M)^C \to \mathcal{D}^b(M)^D$ pullback of f as left \mathcal{D}^b-adjoint.

Alternatively decompose f as $\gamma \xrightarrow{\pi} X \xrightarrow{\pi_0} X$ - compatible with connections.

f_0 (chooses $\mathcal{T}_f \to N$ exact), take π_0 for projection! take π_0 as delRham complex t.b.w. to π_0 along γ $\mathcal{T}_f \to \mathcal{T}_f$.

When X is point, then $f_0^* N = R\pi_0^* \mathcal{D}^b(X \otimes \mathcal{O}(N))$ deRham sheaf.

Natural morphism $R\pi_0^* \mathcal{D}^b(X \otimes \mathcal{O}(N)) \to \Gamma(X, \mathcal{D}^b(X \otimes \mathcal{O}(N)))$ commutes with $\mathcal{O}(N)$ of our previous f.

$f_0^* N$ doesn't have expression as single derived functor neither left nor right exact, complex of $R\pi_0$ and \mathcal{O}.

Theorem (key property of \otimes) $f : Y \to X$ proper, then $\mathcal{D}^b(M)^C(Y) \xrightarrow{f_*} \mathcal{D}^b(M)^D(X)$ then f_* is left adjoint to f^*.

[Boer ...

Particular case X compact $\to \text{pt.} \quad M \in \mathcal{D}^b(X)$.

$H^0(\text{pr}_1^* \mathcal{O}_M) = H^0(X, \mathcal{D}^b(M))$.

Lemmas: There is a canonical morphism of \mathcal{D}-modules $\mathcal{M} \to H^0(\text{pr}_1^* \mathcal{O}_M) \otimes \mathcal{O}_X$ (constant) chasing the RHS with the maximal constant quotient of \mathcal{M}.

Theorem tells us how to compute $\text{Hom}((\mathcal{M}, \mathcal{N}))$ - it is

$\text{Hom}(\mathcal{M}, \mathcal{N})$ by definition:

$x \in X \mapsto \mathcal{U}_x \in \mathcal{O}_{X}$. $M_x = M^{\alpha \beta}_{x}M$ fiberwise.

Fibrewise $\mathcal{M}_x \mapsto H^0(\mathcal{O}_x \mathcal{K}_M)$, constructed from our canonical triangle

$0 \to \mathcal{K}_x \otimes \mathcal{M} \to \mathcal{M}_x \to \mathcal{K}_x \to 0$

M_x in \mathcal{K}_x look at formal neigh where our connection trivializes M as M_x.

So set now $\otimes_{\mathcal{K}}^\mathcal{D} M \to \mathcal{M}$, surjective since \mathcal{U}_x is open, no local.

The kernel can be computed via

$H^{-1}(\mathcal{U}_x, M) \xrightarrow{\text{Res}} M_x \to H^0(\mathcal{O}_x \mathcal{K}_M) \to 0$.

Assume \(\dim X = 1 \), \(X \) compact, \(L = U^1 \mathcal{O}(X) \)
What is the maximal constant quotient of \(L \) (\(\mathcal{O}(\) of copies of \(\mathcal{O} \) ...)

Proof construction: \(H^0_{\mathcal{O}}(\mathcal{O}(X) \otimes \mathcal{O}) \).
There is a canonical morphism of left \(\mathcal{O} \)-modules \(L \rightarrow H^0_{\mathcal{O}}(\mathcal{O}(X) \otimes \mathcal{O}) \).

Proof: May assume \(L \) has no torsion as \(\mathcal{O} \)-mod - can quotient out by torsion without changing the question. Take \(\text{ker} \mathcal{O} : j : V = X \otimes \mathcal{O} \rightarrow X \)
Consider the fibres \(L_x = \mathcal{O}_x / \mathcal{O}_x \cdot \mathcal{O}_x = \text{ker} \mathcal{O}_x (L \rightarrow j^*L) \otimes \mathcal{O}_x \)
- \(\alpha : \mathcal{O}_x \rightarrow \mathcal{O}_x \rightarrow \text{Vec} \)
- \(\mathcal{O}_x \)

Why is \(\alpha \) an identification? Multiplication by \(\frac{dt}{t} \).
- take element of \(\mathcal{O}_x \), extend locally, tensor with \(\frac{dt}{t} \) - different extensions differ by \(\mathcal{O}_x \) (regular forms)
- i.e., residue map.

\[0 \rightarrow L \rightarrow j^*L \rightarrow L_x \otimes \mathcal{O}_x \rightarrow 0 \]

Long exact: top dir of \(j^*L \) remains as \(\text{ker} \mathcal{O} \) \(\otimes \mathcal{O}_x \) ... so for
\[H^0(C, \mathcal{O}) \rightarrow L_x \rightarrow H^1_{\mathcal{O}}(\mathcal{O}(X) \otimes \mathcal{O}) \rightarrow 0 \]
\(V \) is a fibre so that we may quotient \(\text{ker} \mathcal{O} \rightarrow H^0(C, \mathcal{O}) \rightarrow H^0(C, \mathcal{O}) \)

Restrict \(L \) to formal neigh of \(x \), \(V \) trivializes, i.e.
\[L^\times = \lim \mathcal{O}(\mathcal{O}/\mathcal{O}^m) \rightarrow L_x \otimes \mathcal{O}_x \]

The map above is just \(\text{Res}_x \).
\[H^0_{\mathcal{O}}(\mathcal{O}(X) \otimes \mathcal{O}) \) is kernel of residue map.

Do this in fam to cover \(x \) (look at diagonal in \(X \times X \)).

so the above becomes stalk of the map we were to construct.

Maximality of quotient: say \(L \rightarrow V \otimes \mathcal{O}_x \), \(\alpha \)
is the factor through \(H^0_{\mathcal{O}} \): apply \(H^2 \rightarrow 0 \).

\[H^2(\mathcal{O}(X) \otimes \mathcal{O}) \rightarrow V \otimes H^2(\mathcal{O}(X) \otimes \mathcal{O}) = V \]

which is the map we wanted ...

Con: application we used before: \(A \) a \(\mathcal{O} \)-algebra, \(\dim X = 1 \), \(X \) compact
then \(A \) has maximal constant quotient \(H^0_{\mathcal{O}}(X, A) \):
\[R < A \rightarrow H^2_{\mathcal{O}}(X, A) \otimes \mathcal{O}_x \rightarrow R \otimes \mathcal{O}_x \) isn't 2nd.

so maximal quotient is \(A/R \)-ideal gen by \(R \).

\[H^0_{\mathcal{O}}(X, A) = A/R, \] The spec of this is spec of bosonic section ...
\[A = \text{res} \phi(C(X \times X), A \otimes \mathcal{O}_x), \ A/R \rightarrow \text{spec} \phi(C(X \times X), A \otimes \mathcal{O}_x) = H^0_{\mathcal{O}}(X, A) \)

In quantized situation this will be conformal blocks, standard coimultants definition.
New pseudotensor structure on $M_5^g \Omega X$.

Categories: Example $M_5 \Omega$ tensor category (symmetric monoidal -

strictly commassoci.) Given $[M; \Omega; I]$ finite nearly

$\Rightarrow \{ M_i \}$ need not demand I ordered etc.

Polynomial operad $P_\Omega ([M; \Omega]; L) = \text{Hom} (\{ M_i \}, L)$

composition $\times I \Rightarrow I$, family $\{ K_\Omega \}$

$\Phi_i \in P_\Omega (\{ K_\Omega \}; M_i)$, $\chi \in P_\Omega (\{ M_i \}, L)$

$\Phi (\chi_i) = \chi \circ (\phi^i \chi_i) \in P_\Omega (\{ K_\Omega \}, L)$ associative.

Definition: A category, or Ω structure on Φ is a lax $P_\Omega (\{ M_i \}, L)$.

More generally just assume M is a set

set law of composition $P : \text{Hom} (M, L) = P_\Omega (\{ M_i \}, L)$,

assumed we have an identity in here.

Difference from usual tensor category:

Assume further $P_\Omega (\{ M_i \}, L)$ is representable — by $\cdot_{\{ M_i \}}$.

Composition law gives canonical morphism $\cdot_{\{ M_i \}} \Rightarrow \text{Hom} (\{ M_i \}, L)^{\otimes I}$

Now we have

Lemma: A tensor category is a representable Ω-cat such that all

Φ_i's are isomorphism.

Example: Ω category with single object: $I \times \times \times \Rightarrow P_\Omega$ composition operations \Rightarrow operation

$\in \{ \Rightarrow P_\Omega \}$ composition law. + \times action. $\Rightarrow P = P_{\times 2}$, etc.

So acts transitively on the composition.

This will be tensor if all $P_i = M$, commutative monoidal composition

are products.

Obvious notion of Ω functor \Rightarrow sub Ω-cat etc.

Examples of subcat: Full subcategories, take any collection of

objects and their operations e.g. any object \Rightarrow object.

Φ_Ω on $M_5^g \Omega X$ which is subcat (poly)linear: $P_\Omega (\{ M_i \}, L)$ =

$\text{Hom} (\{ M_i \}, \Delta^\text{op} \Omega L)$ — purely local (concentrated on

diagonal, form sheaf on X.)
We say a $*$-structure on an abelian category \mathcal{M} is abelian if \mathcal{P} are left exact. (Generalize usual exactness of \mathcal{T}.)

Let \mathcal{M} be an abelian category. Define:

- $\mathcal{M}^0(x) := \mathcal{M}^0(x)$ (Categories of Chain Complexes).

On the full subcategory $\text{Diff}(\mathcal{A})$ of $\mathcal{M}^0(x)$ closed under:

- $M_i = \mathbb{F} = \mathbb{F} \oplus \mathbb{F}$
- $L = \mathcal{E} = \mathcal{E} \oplus \mathcal{E}$
- $\mathcal{P}^\mathbb{F}(\mathbb{F}, \mathbb{F}) = \text{Hom}(\mathbb{F}, \mathbb{F}) = \text{Hom}(\mathcal{E}, \mathcal{E})$

so $\text{Diff}(\mathcal{E}, \mathcal{F}) = \text{Poly-differential operator}$

We have $h: \mathcal{M}^0(x) \to \mathbb{S}(\mathbb{H})$, a tensor category with usual tensor product.

Claim h is a $*$-functor $\mathcal{M}^0(x)^\ast \to \mathbb{S}(\mathbb{H})$.

Let $\mathcal{P}^\mathbb{F}(\mathbb{F}, \mathbb{F}) = \text{Hom}(\mathcal{E}, \mathbb{F})$, $h(x)$ is a generator of \mathcal{M}, the ext product. $\Delta_\mathcal{E}$ commutes with h i.e. natural maps $\Delta_\mathcal{E} h(M) \to h(\Delta_\mathcal{E} M)$, $h(\Delta_\mathcal{E} M) = \Delta_\mathcal{E} h(M)$, compatible with compositions.

Assume \mathcal{O} is an operad. We have action of an algebra \mathcal{O}.

Let \mathcal{O}-algebra \mathcal{V} with \mathcal{O}-action i.e. maps $\mathcal{O} \to \text{End}(\mathcal{V})$. End algebra of \mathcal{V}.

Take \mathcal{O}-functor, an \mathcal{O}-alg $\mathcal{M} = \mathbb{S}$ (functor from $\mathcal{O} \to \mathcal{M}$, i.e. an object $\mathcal{V} \in \mathcal{M}$ with a morphism $\mathcal{O} \to \mathcal{V}$.

Example 1: For us the most important is the Lie algebra. Lie - space which consist of all natural \mathcal{O}-Lie operators, generated by \mathcal{F}, \mathcal{I} in degree 1 freely with two relations - Jacobstrew-symmetry.

Example 2: Comm - just \mathcal{C} in each degree, only one way to \mathcal{C}-commute.

Example 3: Ass - just \mathcal{F} in degree 2, no relations at all except associativity.

Example 4: Poiss
Given O can define free O-algebra on rings (universal property), which is the space of O.

A Lie algebra in k is $L \otimes M$ with $LL \subseteq [L, L, L]$. Use symplectic & Jacobi identity in $k \otimes [L, L, L]$.

An L-module is $V \otimes M$ with $v \otimes L \subseteq [L, V, V]$. Use

show it gives an O-algebra category L-mod for O-algebra k.

In particular we have Lie algebras.

If L is a Lie algebra then $h(L)$ is a Lie algebra on X,

Good L-module $\Rightarrow h(V)$ is an $h(L)$ module.

is not faithful, but not too far from it.

Ex. For induced modules, a Lie algebra in $\text{Diff}(X) = O$-mod +

the bracket given by a bidifferential operator.

This gives a huge study - vector fields, diffops, algebras of vector bundle \mathcal{A} ...

Ex 2. Simplest example of non-induced Lie *-algebra: by simple Lie algebra $L = SO(3)$.

Assume dim $X = 1$, consider $\mathfrak{g} = \mathfrak{so}(3)$, Lie algebra.

with \mathfrak{g}-flow exist, induce to X.

This gives a central extension by means of \mathfrak{w}_X.

$0 \rightarrow \mathfrak{w}_X \rightarrow \mathfrak{g} \otimes \mathfrak{dx} \rightarrow \mathfrak{g} \otimes \mathfrak{dx} \rightarrow 0$.

Induced action \otimes bilinear action on $\mathfrak{g} \otimes \mathfrak{dx} \otimes \mathfrak{w}_X \otimes \mathfrak{dx}$

get almost \mathfrak{w}_X, but not full symmetry.

define $[\mathfrak{g} \otimes \mathfrak{dx} \otimes \mathfrak{w}_X \otimes \mathfrak{dx}]$.

with \mathfrak{w}_X-action (a, b) — operation in

$\mathfrak{p}^2(\mathfrak{g} \otimes \mathfrak{dx}, \mathfrak{g} \otimes \mathfrak{dx}, \mathfrak{w}_X \otimes \mathfrak{dx})$, push it forward.

Explicitly, take the product operation $\mathfrak{g} \otimes \mathfrak{g} \rightarrow \mathfrak{g}$, what is the corresponding operation in $\mathfrak{p}^2(\mathfrak{g} \otimes \mathfrak{dx}, \mathfrak{dx})$?

map $\mathfrak{g} \otimes \mathfrak{dx} \rightarrow \mathfrak{g} \otimes \mathfrak{dx}$. Use the map by s with relation s is killed by diagonal.
Diff(C) A diffeo between C-modules $F_1 \to F_2$ is the same as a morphism between the reduced modules $\tilde{F}_1 \to \tilde{F}_2$:

$\tilde{F}_1 \to \tilde{F}_2 = \text{Diff}(\mathcal{O}_X, F_1) \ni \phi \mapsto (q \mapsto \phi(q) F_2)$

$\text{Diff}(\mathcal{O}_X, F_1) \to \text{Diff}(\mathcal{O}_X, F_2) : \text{composition}$ from left with $\tilde{\phi}$.

Diff(C)* $\to M(C)^*$ is a Y# functor, given

$L \to \text{Diff}(C)^* - \text{ Lie algebra } \mathfrak{g} \to \text{L}^*$ bidifferential

$\mathfrak{g} \to \text{L} \to \text{L}^* \to \text{L}^*$ differential

$i : \mathfrak{g} \to \text{L}$ differential (1)

$(L \mathfrak{g} \mathfrak{g} \mathfrak{g}) \otimes (L \mathfrak{g} \mathfrak{g}) \to \mathfrak{g} \otimes \mathfrak{g} (\mathfrak{g} \otimes \mathfrak{g})$ I ideal of diagonal.

Examples (i) \mathfrak{g} is a linear:

$[\mathfrak{g}, \mathfrak{g}] \subset \mathfrak{g}$ sends $L \otimes L \subset (L \mathfrak{g} \mathfrak{g} \mathfrak{g}) \otimes \mathfrak{g} \otimes \mathfrak{g}$ to $L \otimes L \otimes \mathfrak{g} \otimes \mathfrak{g}$ and coincides on it with \mathfrak{g}.

e.g. K-M case $G_2 :$ bracket $\{g \otimes g\} \otimes \mathfrak{g} \otimes \mathfrak{g} \to \mathfrak{g} \otimes \mathfrak{g}$ (Kac \wedge \mathfrak{g})

$k \mathfrak{g} \mathfrak{g} \mathfrak{g} \mathfrak{g} \mathfrak{g}$ - diagonal operators \otimes with Y-functions in transverse directions - constant in transverse X_3 direction $- \mathfrak{g} \otimes \mathfrak{g} \otimes \mathfrak{g} \otimes \mathfrak{g} \otimes \mathfrak{g}$.

\begin{enumerate}
\item $L = O_X$ with standard bracket, \otimes bracket on O_X
\end{enumerate}

On $O_X \otimes O_X$, the * bracket is $[\xi_1, \xi_2] = [\xi_1, \xi_2] \otimes 1 + \xi_1 \otimes \xi_2^{\otimes 2}$ in $O_X \otimes (\mathfrak{g} \otimes \mathfrak{g})$

\subset (2) means \subset as DIFF

acting along the second variable

e.g. $[\xi_1, \xi_2] = 2 \otimes (\xi_1 \otimes 2)$

\begin{enumerate}
\item How do we $*$ this: $Q_i \otimes Q_2^{\otimes 2} \to [Q_1, Q_i, Q_2]^{\otimes 2}$ is the new diffeomorphism operator $= Q_1 Q_2^{\otimes 2} [Q_1, Q_2] + [Q_1, Q_2] Q_2^{\otimes 2} - Q_2^{\otimes 2} [Q_1, Q_2]$
\end{enumerate}

"Sier geometry" : take $[E_2, G] = -\text{inv} \circ [G, E_2]$ where inv is the involution of X2X switching factors.

What are the modules \mathfrak{g}?

Recall $h: M(X)^* \to Sh(X) \times \otimes \text{ functor}.$

$(A \otimes B \to \Delta \otimes C) \subset P_2 \times ([A, B], C)$.

Let's apply h transversely to the diagonal $\mathcal{F} \to A$, along \mathcal{F}.
variable \(\Delta \) transversely is \(\delta \)-functions hence its \(h \) is \(C \):
\[
\begin{align*}
\text{get} & \\
\Delta \xrightarrow{\delta} & \quad B \quad \rightarrow \quad C, \quad \text{i.e.} \\
\Delta \xrightarrow{\delta} & \quad \text{Hom}_D(B, C) \\
\xrightarrow{h} & \quad \text{Hom}_D(h(B), h(C)) \quad \text{which is} \ h \text{ applied to the whole \(D \)-operation} \\
& \quad \text{get more structure via this “partial” application of \(h \).}
\end{align*}
\]

Example \(L \) Lie*-algebra, \(L \) an \(\mathbb{L} \)-module. Then the \(\text{Lie} \) action \(M \rightarrow \mathbb{P}^*_L(L, M, h) \), apply partial \(h \) yields \(h(L) \rightarrow \text{Hom}_D(M, M) = \text{End}_D(M) \). \(h(L) \) is a sheaf of \(\text{Lie} \)-algebras. This gives actions of \(\mathbb{C} \)-sheaf \(h(L) \) on \(M \) (follows from general facts, to be done.)

1. The \(\text{Lie} \) functor \(\Lambda \text{mod} \rightarrow \mathbb{L}(L) \)-mod in \(\mathbb{M}(\mathbb{L}) \) is fully faithful.

Example \(L \) Lie*-algebra, \(M \) an \(\mathbb{L} \)-module. Then the \(\text{Lie} \) action \(M \rightarrow \mathbb{P}^*_L(L, M, h) \), apply partial \(h \) yields \(h(L) \rightarrow \text{Hom}_D(M, M) = \text{End}_D(M) \). \(h(L) \) is a sheaf of \(\text{Lie} \)-algebras. This gives actions of \(\mathbb{C} \)-sheaf \(h(L) \) on \(M \) (follows from general facts, to be done.)

1. The \(\text{Lie} \) functor \(\Lambda \text{mod} \rightarrow \mathbb{L}(L) \)-mod in \(\mathbb{M}(\mathbb{L}) \) is fully faithful.

1. The above property of \(h \) makes it an \(\text{augmentation functor} \) for the \(\mathbb{C} \)-structure: \(\text{write} \ h(M) = \mathbb{P}^*_L(M) \).

Now the \(\mathbb{P}^*_L(\{z\}, M) \) have composition \(J \circ I \rightarrow \mathbb{P}^*_L \circ \circ \circ \rightarrow \mathbb{P}^*_L \). Now can extend this to \(J \circ I \) not surjective: For example fibers, replace with \(\mathbb{P}^* \) - exact operations.

1. Right exact. Then \(I \circ J \) (exact - cannot really write \(\text{Hom}(M, N) \) as \(\text{Hom}(\mathbb{C}, N) \).

In the case \(J \circ I \rightarrow \mathbb{L} \)-mod:
\[
\mathbb{P}^*_L(\{z\}, L) \circ \circ \circ \rightarrow \mathbb{P}^*_L(\{z\}, L)
\]
\[
\text{i.e.} \quad \mathbb{P}^*_L(\{z\}, L) \rightarrow \text{Hom}(\circ \circ \circ (M), \mathbb{P}^*_L(\{z\}, L)).
\]

Exercise-Proposition: If \(J \) is nonempty then this map is injective.

Example \(L \) is a \(\mathbb{L} \)-algebra, \(x \in X \), what are \(\mathbb{L} \)-local \(x \)-loans supported at \(x \)?
\[
\begin{align*}
\text{M}(X) & \xrightarrow{\Delta} \text{Vec} \quad \text{So we have vector spaces w/ some extra structure.} \\
\text{h}(L) & \text{ is a \(\mathbb{L} \)-algebra, w/ some topological vector space.} \\
\text{The \(\text{K} \)-theory of \(h(L) \) is always represented for any \(\mathbb{L} \)-module \(L \). Consider all} \ \mathbb{L} \text{-submodules} \quad L' \subset L \quad \text{s.t.} \quad h(L') \text{ is supported at} \ x \ & \quad \Rightarrow \ h(L') \xrightarrow{\Delta} h(L) \quad \rightarrow \text{h}(L \circ L') \xrightarrow{\text{exact}} \ \\
\text{The open sets are then the images of these maps} \quad \text{h}(L') \rightarrow \text{h}(L) \).
\end{align*}
\]
Lemma: If the L_i's are regular D-modules then any $*$ operation on $L \in P^*$ induces a continuous operation

$$h: L(\mathfrak{g}) \times: \mathfrak{g} \rightarrow L(\mathfrak{g})$$

take an open in $L(\mathfrak{g})$ killed by sufficiently high powers of \mathfrak{g}, hence so will $L(\mathfrak{g})$ in inverse image.

So $h(\mathfrak{g})$ is a topological Lie algebra, and a module over \mathfrak{g}.

Consider the action $L \otimes M \rightarrow L \otimes M$, given by $L \otimes h(\mathfrak{g}) \rightarrow M$. Making first variable $h(\mathfrak{g})$, then $L \otimes h(\mathfrak{g}) \rightarrow L \otimes M$ makes first variable continuous.

We can also go backwards: continuous map $h(\mathfrak{g}) \otimes h(\mathfrak{g}) \rightarrow L(\mathfrak{g})$ factors through $h(\mathfrak{g}) \rightarrow h(\mathfrak{g})/h'(\mathfrak{g}) \rightarrow \mathfrak{g}$, where $L(\mathfrak{g})/h'(\mathfrak{g})$ is a Lie algebra over \mathfrak{g} by Sheaves-ness. Set $L \otimes h(\mathfrak{g}) \rightarrow M$, $L \otimes M \rightarrow L \otimes M$ just by lifting back up to \mathfrak{g}.

Example: $K-M \otimes \mathfrak{g} = \mathfrak{g} \otimes \mathfrak{g}$, only h set back $\mathfrak{g} \otimes \mathfrak{g}$ - no longer just an infinitesimal vector space. $K-M$ is a \mathfrak{g}-module, and \mathfrak{g}-modules are vector spaces on which this completed $K-M$ acts - i.e., every element is killed by a form $\cdot \mathfrak{g}$, i.e. category of \mathfrak{g} modules.

Now combine D-algebras & Lie* structure

We need to study symmetries in geometry of \mathfrak{g}-alg, but sheafing doesn't work, need *-theory instead of group schemes.

Compatibility between \otimes and P^*: Fix attention on $M^*(\mathfrak{g})$, which now has tensor structure \otimes, \otimes structure:

$$M \otimes M_2 = (M \otimes \mathfrak{g}^{-1}) \otimes_\mathfrak{g} (M_2 \otimes \mathfrak{g}^{-1}) \otimes \mathfrak{g} \mathfrak{g} = (M \otimes \mathfrak{g}^{-1}) \otimes M_2$$

Since we discussed \otimes on left, and now we must shift to right hand.

Compatible $h(\mathfrak{g})$: $h(\mathfrak{g}) \otimes \mathfrak{g} \otimes h(\mathfrak{g}) \otimes \mathfrak{g}$ have canonical map

$$P^* (\mathfrak{g} \otimes \mathfrak{g}) \otimes P^* (\mathfrak{g} \otimes \mathfrak{g}) \rightarrow P^* (\mathfrak{g} \otimes \mathfrak{g}) \otimes P^* (\mathfrak{g} \otimes \mathfrak{g})$$

$$L \otimes \mathfrak{g} \otimes \mathfrak{g}$$

$(L \otimes \mathfrak{g} \otimes \mathfrak{g}) \otimes (M \otimes \mathfrak{g}^{-1}) \rightarrow M \otimes (L \otimes \mathfrak{g}^{-1})$.
What is the map?
\[\mathcal{M} \xrightarrow{\varphi} \Delta^{(1)} L, \quad \mathcal{K} \xrightarrow{\psi} \Delta^{(2)} N, \]
\[\mathcal{M} \otimes \mathcal{K} \xrightarrow{\varphi \otimes \psi} \Delta^{(1)} L \otimes \Delta^{(2)} N \]
Consider hyperplane
\[X^m \xrightarrow{\varphi} X^{m+1} \]
pullback our module to this hyperplane — still get something sitting on a diagonal of \(X^m \), which is just what's happening with the case of one module.

So above operations are a generalization of tensoring morphisms...

Note any formulation: Note that \(\otimes \) is not self-dual. In the category, its arrows going wrong ways. Let's make it self-dual by brute force — i.e., cheat with \(\otimes \) on it as the dual. This compound structure with some compatibility. E.g., \(\otimes \) defines \(\otimes \) on dual (\(\otimes \) self-dual) in a compound structure.

Simpler example: \(\otimes \) is \(\otimes \); we can construct compound \(\otimes \) by \(\otimes \) and \(\otimes \).

\[
\begin{align*}
M^{(1)}(k) & \quad I \xrightarrow{1_i} s_j \rightarrow I \xrightarrow{1_s} J \\
\otimes & \quad p^* & \quad \otimes p^* & \quad \leftarrow p^* \\
\text{compatibility} & \quad \text{with } I, J, i, j,
\end{align*}
\]

Assocativity: \(I, J, K \) with \(I, J, K \) to \(I, J, K \)

Two transformations \((I, J, K) \) to \(I, J, K \)

Different order pullbacks commute...

\(\otimes \) compound tensor category (classical structure)

Matrix algebras — Associates with \(\otimes \), some from following model:

\(V, V' \) vector spaces, \(\langle > \) \(: V \times V \rightarrow \mathbb{C} \)

\(V \otimes V' \) is then an associative algebra:

\(V \otimes V', V' \otimes V, V \otimes V' \) (coordinate-free matrix multiplication)

It acts on \(V \) from left, or \(V' \) from right.

Now assume \(V, V' \in M^{(1)}(k) \), \(\langle > \in \mathfrak{P}^{(1)}(V, V'), \mathfrak{D} \)

Claim: \(V \otimes V' \) is an \(\otimes \) associative algebra that acts on \(V \) from left, \(V' \) from right.

Action on \(V' \): \(\text{id}_V \otimes (\varphi) \quad \langle > \quad \left[V, V' \right] \rightarrow \mathbb{C} \\
V \xrightarrow{\text{id}_V} V \xrightarrow{\otimes \text{id}_V} V \xrightarrow{\otimes \text{id}_V} V' \xrightarrow{\otimes \text{id}_V} V \)

\(V' \) takes \(\langle > \otimes \text{id}_V \).
Product: \(\text{id}_V \otimes \text{id}_V \quad \xrightarrow{v \otimes v} \quad V \otimes V \)

Endomorphism algebras: \(\text{End}_A(M) \) in a \(\times \) category

\[M, L \rightarrow \text{Hom}^*(M, L) \quad \text{Assume we have a pairing } \langle \cdot, \cdot \rangle : \text{Hom}(M, L) \times \text{Hom}(L, M) \rightarrow \mathbb{C} \]

Then for any \(I, K \), \(j \cdot \) maps

\[p^*_j (L, K, X) \rightarrow p^*_j (L, K, M, L) \]

\[\text{Def } (\mathcal{K}(x)) \text{ is } \text{Hom}^*(M, L) \text{ if for any } I, K \]

\[p^*_j (L, K, X) \rightarrow p^*_j (L, K, M, L) \]

This is inner hom in our tensor category.

Say \(I \) is a single object:

\[\text{Hom}(I, \text{Hom}(M, L)) = P^*_x (L, K, M, L) \]

A useful \(\otimes \)-cat: \(\text{Hom}^*(M, L) \) is an object \(X \) equipped with an \(X \otimes M \rightarrow L \) s.t. \(\text{Hom}(K, x) \rightarrow \text{Hom}(K \otimes M, L) \) is iso.

Certainly unique if exists.

- Trying to represent functor \(F \) as \(\text{Hom}(\ldots, X) \): doesn't try

These is like saying a canonical element \(\text{def} = \langle x \rangle \)

corresponds to \(\text{id}_X : \text{Hom}(X, M) \rightarrow \text{Hom}(X, X) \)

\[\rightarrow \text{id}_X \]

For \(M \) coherent this exists.

Exist: Define inner \(P^*_I \).

\[p^*_j (L, K, X, M, L) \]

Then \(\text{End}^*(M) \) is an \(\text{Ass}^* \)-algebra acting on \(M \) from right only.

Lemma: In \(\text{End}^*(M) \times \text{Hom}(M, L) \) exists \(T \) \(M \) is coherent.

- Built it locally:

\[\text{Hom}(M, L) = \text{Sheaf } \text{Hom} (D_x, \text{Hom} (M, L)) \]

\[= \text{Hom} (M, \text{Hom} (L, D_x)) \]

\[= \text{Hom} (M, \text{Hom} (L \otimes M, D_x)) \]

Say \(\text{End} \) at sheaf, a diagrams.

If \(M \) is not coherent this last term will be infinite sum.

\[\text{Hom}(\text{coch}, 2 \cdot C) \text{ not } \geq C \] then \(\text{Hom}(\text{coch}, 2 \cdot C) \text{ is coh.} \)

Example: \(M^0 := \text{Hom}^*(M, \text{coch}) \) usual duality for \(\text{D-modules} \).

\[D_x^O = C_x \otimes \text{coch } \text{inner } \ast \text{-category} \]

Example: \(V, V', \langle \cdot, \cdot \rangle \rightarrow \text{Hom}(V, V') \rightarrow \text{End}^*V \)

Lemma (exercise): If \(V \) is locally free Fred \(\text{Witt rank} \), \(V = V' \), symmetric

Since \(V \otimes V' \rightarrow \text{End}^*V \).
Now apply \(h \). First assume \(V = \mathbb{F} \) is induced, Frobenius Cartan.

\(\text{Claim } \) \((\text{End } V) = \text{Diff}(\mathbb{F}, \mathbb{F}) \to \text{End } \mathbb{F} \).

\(L \) a Lie\(^*\) algebra, \(M \otimes L \) \(\longrightarrow \) \(\text{End } \mathbb{F} \) \(\otimes \text{End } L \) \(\longrightarrow \) \(\text{End } \mathbb{F} \otimes L \).

Claim: \(L \)-mod is a tensor category, \(h(L) \) is a tensor functor which is a Hilbert embedding as tensor subcategory.

Proof: Should define \(L \)-action on \(M \otimes N \) when \(M, N \) are \(L \)-modules.

* \(\bullet \) \(M \otimes N \) \(\otimes L \to \text{End } \mathbb{F} \otimes L \to \text{End } \mathbb{F} \).

or explicitly \([L \otimes M, N] \to \text{End } \mathbb{F} \otimes L \).

\[A \otimes B \to A \text{ acts } L \text{-action on } B \text{ acts } \]

using tensor of \(L \)-modules.

Duality

\[\text{On } M^d_\mathbb{F}(X) \to M_\mathbb{F}(X) \] (covariant)

\[M \to M^d = \text{Hom}_\mathbb{F}(M, \omega_X) = \text{Hom}_\mathbb{F}(M, \omega_X \otimes \text{Dx}) \]

(\(\omega_X \otimes \text{Dx} \) has two right dual structure, from \(\text{Dx} \) as right)

from \(\text{Dx} \) as left \(\omega_X \) with \(\omega_X \).-Consider both sides of \(\omega_X \) as \(\text{Dx} \) acts \(M^d_\mathbb{F}(X) \) via \(\omega_X \)

and \(M^d_\mathbb{F}(X) \).

Claim: \(\omega \) lifts canonically to a \(\text{Dx} \times \text{Dx} \) functor

\[M^d_\mathbb{F}(X) \to M^d \omega_X \]

(Note: tensor of two \(\text{Dx} \)\(\text{Dx} \) is not \(\omega_X \) \(\omega_X \) in general)

- as follow in \(M^d \omega_X \) \(P^\times_\mathbb{F}(E) \cdot M : = \text{Hom}_\mathbb{F}(\omega_X)(M, \omega_X) \)

\[P^\times_\mathbb{F}(E) \cdot M \]

\[\text{maps} \]
Recall we have an operation \(\varphi_i \in P^*_k(\mathbb{Z}^i, \mathbb{L}^i, \mathbb{W}_k) \)

\[\Rightarrow \varphi_i \in P^*_k(\{\mathbb{L}^i, \mathbb{L}^i \}, \mathbb{W}_k) \]

-coproduct tensor at the \(\varepsilon_i \).

If \(\mathfrak{g} = \text{Hom}_k(M, \mathbb{L}^i) \) can compose:

\[(\otimes \varepsilon_i) (P^*_k(M, \mathbb{L}^i)) \cong P^*_k(\mathbb{L}^i, \mathbb{L}^i, \mathbb{W}_k) \]

\[\Rightarrow \otimes \varepsilon_i (\mathbb{L}^i, \mathbb{L}^i, \mathbb{W}_k) \]

- now how - this is our \(g \)-module.

We have when of \(D_k \)-schemes, group \(D_k \)-schemes \(g \),
action \(g \otimes \varepsilon_i \rightarrow \varphi_i \) of \(g \) on \(\mathbb{L}^i \). What's inner leading action?

\(\text{Collie}(\mathbb{L}^i) \) is well defined - cotangent fiber of \(\mathbb{L}^i \) at \(\varepsilon_i \), product on \(\mathbb{L}^i \) yields cobracket \(\text{Collie}(\mathbb{L}^i) \rightarrow \text{Collie}(\mathbb{L}^i) \otimes \text{Collie}(\mathbb{L}^i) \)

Assume that \(\text{Collie}(\mathbb{L}^i) \) is constant (e.g. \(\mathbb{L}^i \) locally of the form \(\mathbb{L}^i, \mathbb{W}_k \)).

Then \(\text{Collie}(\mathbb{L}^i) \) is a constant \(D_k \)-module and our duality
(Which is not the abstract inner duality of a \(D_k \)-category -oms falls ! \(\Rightarrow \mathcal{T} \)).

Set \(\text{Lie}(\mathbb{L}^i) = (\text{Collie}(\mathbb{L}^i))^\circ - \)

Which is a Lie algebra!

This \(\text{Lie}(\mathbb{L}^i) \) will act on the sheaf of functions at the same \(\mathbb{L}^i \) acts on...

\(\mathbf{G} \) acts on \(\mathbb{L}^i \Rightarrow \mathbf{G} \) acts on \(\mathbb{L}^i \)

\(\mathbf{G} \) acts on \(\mathbb{L}^i \)

\(\text{Collie}(\mathbb{L}^i) = \mathcal{L}(\text{Collie}(\mathbb{L}^i) = \text{Lie}(\mathbb{L}^i) \).

- more generally \(\text{Sym} V = \text{Sym} (D_k, \mathbb{L}^i) \) by universal V:

\[
\text{Hom} (\text{Sym} V, A) = \text{Hom} (\text{Sym} (D_k, \mathbb{L}^i), A) = \text{Hom} (\mathbb{L}^i, A)
\]

\[
\text{Hom} (\mathbb{L}^i, A) = \text{Hom} (\text{Collie}(\mathbb{L}^i), A).
\]

\(\text{Lie}(\mathbb{L}^i) = \text{Lie}(\mathbb{L}^i, D_k) \ldots \) when we have central charge can't write our lie algebra as dual to anything... only in some derived cat...

These are the real examples.

\[\text{Remark: A comm. \(D_k \)-algebra, can consider \(A \)-mod, a tensor category \(\otimes A \):
\]

\(Q_A M; = Q_A M; / I_{Q_A M}; \) being the ideal at \(A \rightarrow R \rightarrow A \)

Claim: \(A \)-mod is a derived functor at:

\[P^*_A (\mathbb{L}^i, M) = P^*_k(\mathbb{L}^i, \mathbb{W}_k, \mathbb{L}^i, \mathbb{W}_k, \mathbb{L}^i M)
\]

\(\Rightarrow \text{exercise} \)

\(\varphi (\mathbb{L}^i, \mathbb{W}_k, \mathbb{L}^i M) = P^*_k(\mathbb{L}^i, \mathbb{W}_k, \mathbb{L}^i M) \)
Lie algebroids X obj. unity - algebroid is a sheaf L with:

a. L is a (twc) O_X module

b. L is a sheaf of Lie algebras

c. \(\sigma: L \to \text{Der}_X \text{O}_X \) (Lie alg homomorphism) \(\text{O}_X \)-modules

- \(\text{Lie}_L = \{ \text{smooth } f, g \text{ s.t. } [f, g] = \sigma(f)(g) - \sigma(g)(f) \} \)

- L-module is an \(\text{O}_X \)-module M with an \(L \)-action (as Lie algebra)

\(\text{Lie}_L \text{ men } f, g, h \text{ s.t. } \{ f, g \text{ on } h \} = \sigma(f)(g) - \sigma(g)(f) \text{ on } h \text{ i.e. } \sigma(f)(g) - \sigma(g)(f) \text{ commutes with } f, g \text{ on } h \) .

Examples of sheaf of vector fields (with some finiteness conditions on X) - \(O_X \).

- \(O_X \)-module is precisely a \(O \)-module (left).

1. \(F \) a bundle - pairs \((x, \xi) \in O_X \times \text{Lifting of F} \)

\(\Rightarrow \text{Lie algebra. Can put extra conditions on } \xi \text{ if } F \text{ is a } G \)-bundle consider lifts \(\xi \) commuting with \(G \)-action \(\Rightarrow E_X \).

- A Lie algebroid is free, if \(\sigma: L \to \text{Der}_X O_X \).

So \(E_X \text{ is free. } O \to O_E \to E_X \to O_X \to 0 \)

In general \(\text{ker } \sigma \) is a Lie \(O_X \)-algebra.

- Connection - an \(O_X \)-linear section of \(\sigma \). It's integrable iff this section is a morphism of Lie algebras.

2. Let \(P \) be a Lie alg. acting on \(X \Rightarrow O_X \otimes P \) is a Lie algebra on \(X \), \(\sigma \) get \(\gamma \) by \(O_X \)-linearly extensions action \(P \to \text{Der}_X O_X \)

Claim \(\exists! \) algebraic structure on \(O_X \otimes P \) with \(O_X \gamma \) acting of \(P \).

- \(E_X \text{ is free } \)

\(\text{Lie algebra structure on } O_X \otimes O_Y \text{ is in fact a sheaf of ideals!} \)

This is Lie algebra version of gro-poids:

- Groupoid - device which gives you a space of orbits - equiv relation

- Y morphism (not rel. subvariety) \(\Rightarrow \) which is symmetric has Y \times Y lifting over diagonal \(X \times X \) "cross" morphism on \(X \times X \).

- Playing with sets, this gives a category - objects points of \(X \), arrows elements of \(Y \) over \(X \times X \), same as category with all arrows isos.

- Morphisms here are arrows of our category.

- so this is a groupoid on \(X \).

- \(\Rightarrow \) gro-poid is just a gro.

\(G \) acts on \(X \Rightarrow \text{groupoid on } X \) projected \(X \times X \text{ action} \)

Groupoid action on \(X \) is local - may restrict to any open set \(U \).
How to get a graded : take unit section of one of the
prosections & take normal bundle... (image of deformed)

Consider relative tangent bundle to presch $P \rightarrow X$.
We have unit section $\mathbb{E} / X \rightarrow Y$. Our graded is $\mathbb{E} \otimes \mathbb{O}[X]$.

4) Poisson structure : $\mathbb{E} / X \rightarrow Y$ canonical Lie algebra on \mathbb{E}_X. (Existence defined by this structure.
- The unique graded structure st $\mathbb{O}[X] \rightarrow \mathbb{E}_X$ is an isomorphism of Lie algebras, $\mathbb{O}[X] \otimes \mathbb{E}_X = \mathbb{E}_X$.
- \mathbb{E}_X as abstract Lie alg acts on \mathbb{E}_X, may take induced algebra
 $\mathbb{O}[X] \otimes \mathbb{O}[X] \rightarrow \mathbb{O}[X] f \mapsto df$.
- Lemma. Poisson structure $\mathbb{E} / X \rightarrow \mathbb{O}[X]$ is the Lie algebra \mathbb{E}_X.

Compound Lie R-algebras : \mathbb{E} is a Lie R-alg, so there are $D \rightarrow \mathbb{E}$-mod \mathbb{E} with the following structures:
- \mathbb{E}-module \mathbb{E}
- \mathbb{E}-algebra structure \otimes action of D on \mathbb{E} (Lie alg action \mathbb{E}-alg action)
- Compatibility \otimes-action of D on \mathbb{E} is compatible with a
 unit \mathbb{E}-alg structure on \mathbb{E}, i.e. \mathbb{E}-alg is an isomorphism of \mathbb{E}-modules.

\Rightarrow (category CCA) compound Lie R-algebras.
\mathbb{E}-modules are $D \rightarrow \mathbb{E}$-mod \mathbb{E} with structure of \mathbb{E}-module, \mathbb{E}-mod
 (as Lie alg) and compatibility \otimes \mathbb{E} \mathbb{E}-linear and \mathbb{E}-\mathbb{E}-compatible with action.

Ex. 1. Tangent \mathbb{E}-algebra $\mathbb{E}_x := \mathbb{O}^* \mathbb{E}[X, \mathbb{E}] \subset \mathbb{Hom}(\mathbb{E}_X, \mathbb{E})$.

- polynomial ring in \mathbb{E} (dg, str, \mathbb{E}) which are deformations unit variable \mathbb{E}. (with correct functor is retractable) \Rightarrow
 $\mathbb{Hom}_\mathbb{E}(\mathbb{E}_x, \mathbb{E})$

If \mathbb{E} is smooth then \mathbb{E}_x exists : $\mathbb{Hom}_\mathbb{E}(\mathbb{E}_x, \mathbb{E})$.

Universal of tangent \mathbb{E}-algebra : every Lie algebra \mathbb{E} in \mathbb{E}-alg (A) has

\mathbb{E} ! $\mathbb{E} \otimes \mathbb{E}$ via action 1 on \mathbb{E}.
Tangent algebra to jet algebras $\mathfrak{X} = JB$:

$$A[D^X] \otimes B[A] \to J^2 A$$

(EXERCISE)

$$\Theta_2 = \text{Hom}_B (R^2, A)$$

which is a $D^X - \text{mod}$, $A[D^X] \to \Omega A[1]$.

$$\Theta_2 = \text{Hom}_B (R^2, A) = \text{Hom}_B (R^2, A) = \text{Hom}_B (R^2, A[D^X])$$

But $x^+ \cdot A = \text{ker} A[D^X]$ so may rewrite Θ_2 as

$$\text{Hom}_B (R^2, A[D^X])$$

$$\Rightarrow \Theta_2 = \text{Hom}_B (R^2, A[D^X]) = \text{Hom}_B (R^2, A[D^X])$$

Now \mathfrak{X} should act on A:

$$\mathfrak{X} \cdot A = \Theta_2 \cdot A$$

acting in an obvious way on A. - inf. acts of B act on $A = \text{acts of } B$.

Now assume $\dim X = 1$. A smooth

Def: $L \subset E(\mathfrak{X})$ is an elliptic algebra if

$L \to E(\mathfrak{X})$ is injective, and the cokernel is a projective A-mod of finite rank.

Compound Poisson (= Caisson) Structure

A D^X-algebra with $\mathfrak{X} \subset E(\mathfrak{X})$ such the adjoint action is an action of A (cos. Lie alg.) on A (cos. Lie alg.).

A smooth have unique extension $A \to \Theta_2\text{ann} \to \text{ann}$ with a canonically $\text{Lie}^\ast A$-algebras,

from which can recover Caisson on A.

Def: A caisson is elliptic if $\Theta_2\text{ann}$ is an elliptic algebra.

A caisson structure is sympletic if $\Theta_2 - \Theta_2\text{ann}$ is is 0.

Elliptic is the true generalization of sympletic to infinite dimension... sympletic not that interesting here.

Ex. Koszul - Clifford Poisson structure on sym alg:

If L is any Lie alg then Sym L is a caisson algebra - mainly the graded L characterized by property $L \to \text{Sym} L$

is a morphism of Lie algebras.

2. Twisted version:

$$0 \to c_k \to \text{L} \to L \to 0$$

in $c_k - \text{alg}$

$\text{Sym} L$ by ideal gen by $c_k (a = 1)$ - commutative

Graded algebra with ass graded $\text{Sym L} \to \text{Sym}^\infty L$.

Ex. Heisenberg algebra $(R[X], 2y) \delta = \delta(x \cdot \gamma)$.

Consider $0 \to \omega \to \operatorname{Res} \to \mathcal{D}_{x} \otimes \mathfrak{A} \to 0$

Then $(\operatorname{Sym} \mathcal{D}_{x}) \otimes (\mathcal{D}_{x} \otimes \mathfrak{A})$ is elliptic.

Thus is $\operatorname{Sym} (\mathcal{D}_{x} \otimes \mathfrak{A})$ with twisted center.

$0 \to \omega \\
\mathcal{D}_{x} \otimes \mathcal{D}_{x} \mathfrak{A}_2 \to \mathcal{D}_{x} \mathfrak{A}_2 \to \mathfrak{A}_2$

via $x \mapsto \delta x, \quad \delta x \mapsto \delta x$

with Cohen cohomology of $\mathcal{D}_{x} \mathfrak{A}$ (cohom order sums)

On a curve X we have the notion of elliptic coisson algebras A

- Take a smooth A-alg with $\mathbb{E} \to A$
- elliptic: or injective, cocontract. \mathcal{E} is a proj. A-mod of finite rank.

Recall \mathfrak{A} is a projective $\mathbb{E} \otimes \mathfrak{A}$ mod (\mathfrak{A} smooth) — bug compared to A.

Note/Exercise — we sitter in any \mathfrak{A} alg is always central:

$\mathfrak{A} \otimes \mathfrak{A} L \mapsto \mathfrak{A} L$

Fix a point in X

- contract variable x
- $\mathfrak{A} L \otimes \mathfrak{A} L$

but there are no maps $\mathfrak{A} L \to \mathfrak{A} L$ other than zero.

Furthermore $\mathfrak{A} L$ will act trivially on any \mathfrak{A}-mod (via $\mathfrak{A} L \otimes \mathfrak{A} L$)

- can't feel "level"/central charge classically — only \mathfrak{A} and \mathfrak{A}.

$\operatorname{Sym} \mathcal{E}$ — functions on hyperplane ind to \mathfrak{A}

No Koszul—Krull (contracted) coissors are elliptic—degree into 0 ...

Untwisted — \mathfrak{A} free \mathfrak{A}-mod of finite rank. Now in general

$\operatorname{Sym}_L \otimes \mathfrak{A} L$ via $\mathfrak{A} L \otimes \mathfrak{A} L$

$\operatorname{Sym}_L \otimes \mathfrak{A} L \otimes \mathfrak{A} L$ canonically — $x \otimes \mathfrak{A} L$ gives automorphism

$\operatorname{Sym}_L \otimes \mathfrak{A} L$, use insertion def of Sym_L — $\mathfrak{A} \otimes \mathfrak{A} L$

$x \otimes \mathfrak{A} L \mapsto \mathfrak{A} x

\operatorname{Hom} \mathfrak{A} \otimes \mathfrak{A} \otimes (\mathfrak{A} L) \to \mathfrak{A} \otimes (\mathfrak{A} L)$

with the above freeness condition

$\mathfrak{A} \otimes \mathfrak{A} L \to \mathfrak{A} \otimes \mathfrak{A} \otimes \mathfrak{A} L \to \mathfrak{A} \otimes \mathfrak{A} \otimes \mathfrak{A} L$

Image of the monster with quadratic, in particular $\mathfrak{A} L \otimes \mathfrak{A} L \otimes \mathfrak{A}$ is injective: $\mathfrak{A} L$ project degenerates at 0 to not symmetric.
Assume this is elliptic coker loc. From A-mod, take if's quotient mod standard (aug) map ideal in A, get $\text{ker} A$. with $L^0 \rightarrow \text{ker} \sigma / \text{coker} \sigma$. But elliptic hypothesis $\Rightarrow \text{coker} / \text{ker} \sigma$ is loc. free G^*-mod of G. Want \Rightarrow twisted case. twisted again Sym^L for H^*_coker. visual symplectic bracket on hyperplane, nondegen. (dim) via splitting of exact sequence.

Int: dim: say we have $\text{ker} A$ and splitting $0 \rightarrow \omega \xrightarrow{\psi} L \rightarrow 0$ get K-ic bracket with a correction term.

Let $L \rightarrow \text{Sym}^L \text{loc}^0$. Since $\text{Sym}^L \text{loc}^0 \cong \text{Sym}^L \text{loc}^0 _L L$.

In L, we have $\text{ker} \sigma$ and splitting $0 \rightarrow \omega \xrightarrow{\psi} L \rightarrow 0$ successive graded quotient $\text{S}^L \text{loc}^0 \rightarrow \text{Sym}^L \text{loc}^0 = \text{id} \text{loc}^0 \sigma$. so if $\text{ker} \sigma$ graded is L, original map is σ. Our coisson is symplectic/elliptic iff the diff op $c : L \rightarrow L^0$ is iso or elliptic. Here an elliptic differ (map between A-mod) is injective with coim L, free for gen. G^*-mod.

Example: $G(\mathcal{O}) = K \rightarrow \text{Sym}^L \mathcal{F} \xrightarrow{\omega} \mathcal{F} \xrightarrow{\omega} L \rightarrow 0$.

with cocycle $(\mathcal{O} \otimes \mathcal{O}) \nu((\mathcal{O} \otimes \mathcal{O})) \rightarrow \mathcal{O} \otimes \mathcal{O} \otimes \mathcal{O} \otimes \mathcal{O}$.

In local coordinates.

$c : L \rightarrow L^0$. $\omega \otimes D_x \rightarrow \omega \otimes \omega x D_x$

in local coordinate.

Now $\omega \otimes \omega x D_x$ in local coordinate.

Case σ. $\mathcal{O} \rightarrow \mathcal{O} \otimes \mathcal{O}$, $L \rightarrow \mathcal{O} \otimes \mathcal{O}$ correspond to differ.

d $\mathcal{O} \rightarrow \mathcal{O} \otimes \mathcal{O}$ (these are integral).

The coker σ is $\mathcal{O} \otimes$. If σ is non-degen, then coker $\sigma = \mathcal{O} \otimes \mathcal{O} \rightarrow \text{elliptic coisson}$. \[\square\]
Local Poisson algebras

\[\text{dim } x = 1, \ A \ any \ \mathbb{D} \text{-algebra}, \ x_1 \in X, \ A_x = A \otimes \mathbb{C}x_1. \]

\[J_x : A_x \to X, \ A_x = h(\text{j}_x, x \mathbb{C}x_1, \ A/\mathbb{C}) \] - vert. span of sections at point \(x \).

\[\text{Spec } A_x = \text{Spec } \mathbb{C} \text{ of horizontal sections of } \text{Spec } \mathbb{C} \text{ over } \text{Spec } \mathbb{C} \text{ formal disk}: \mathbb{C}_x < \mathbb{C}_x \xrightarrow{\text{closed sub}} \mathbb{C}_x. \]

Any point of fiber may be extended via the connection to a horizontal section/ a formal disk.

\[A(x) = \pi^* \mathbb{A}^x, \ A \text{ varying over all } \mathbb{D} \text{-algebras } A \subset \mathbb{A}. \]

\[\text{Note } A' / A \to A' \to A_x \]

- (ber at \(x \) is larger).

Consider \(A' \to A \to A / A' \to 0 \) - \(A \text{ on support point and infinitely divisible tensor with } \mathbb{A} / A' \).

\[\Rightarrow A_x \to A \to A / A' \otimes \mathbb{C}(1) = 0. \]

(\(A' / A \otimes \mathbb{A} / A' \) sum at point \(\Rightarrow \) sum of \(\mathbb{A} / A' \) functions \(\Rightarrow \) \(\mathbb{A} / A' \)).

Claim: \(\text{Spec } A(x) = \text{Spec } \text{ over } \mathbb{C}_x \text{ of } \text{Spec } A \text{ over } \mathbb{C}_x \)

- First we have canonical projection \(A(x) \to A_x \), hence \(\text{Spec } A(x) \to \text{Spec } A_x \) restriction of horizontal sections.

- What is a section? horizontal \(\mathbb{A} \)-morphism \(A' \to \mathbb{C}_x \).

Consider \(\mathbb{C}_x < \mathbb{C}_x \) and the prerequisite \(\mathbb{A} \to \mathbb{C}_x \).

- \(A' \) coincides with \(A \) outside \(x \). Now get \(A_x' \to 0 \)

**Determining \(A' \to \mathbb{C}x \) fiber at point.

Spec \(A(x) \) := \(\mathbb{D} \text{-algebra} \) (spectrum of projective limit)

Conversely localize \(A' \to \mathbb{D} \to \mathbb{D} \text{-algebra} \) to get \(A \to A_x \) (more完善 localization).

Proposition: Assume that \(A \) is a \(\mathbb{D} \)-algebra. Then any Poisson bracket on \(A \) yields a Poisson bracket on \(A(x) \).

Proof: Construction: \(\mathbb{A} \to \mathbb{A}_x \to h(\text{j}_x, x \mathbb{A}) \) canonically.

\(\Rightarrow \) morphism \(A_x \to h(\text{j}_x, x \mathbb{A}) \) - dense image (surjective on any quotient) \(\Rightarrow \mathbb{D} \)-algebra.

\(h(\text{j}_x, x \mathbb{A}) \) has Lie bracket - \(A_x \) is completion of this so bracket extends if it's continuous.

(Continuity: for given \(A' \) and \(f \in h(\text{j}_x, x \mathbb{A}) \), \(f \) is closed for given \(A' \) and \(f \in h(\text{j}_x, x \mathbb{A}) \), \(f \) is.

Check this.

This bracket is Poisson: \(h(\text{j}_x, x \mathbb{A}) \) acts on \(\text{i} \mathbb{A} \)

by derivations. Now \(\text{i} \mathbb{A} \) \(f \in h(\text{j}_x, x \mathbb{A}) \) is adj. \(A^\text{op} \to A_x \).

must be derivation, so our action is direct limit of derivation.
Consider $\mathcal{A}(x) \rightarrow A_x$. Claim I is involutive (closed under the Poisson bracket $\{\cdot, \cdot\}$). Let $h(\mathcal{A})_x := h(\mathcal{A})$ for $\mathcal{A} \otimes \mathfrak{g}$ generates the ideal I. For any $\mathcal{A} \rightarrow \mathcal{A} \otimes \mathfrak{g}$, we have $h(\mathcal{A})_x \rightarrow I_x \rightarrow 0$, which comes from h applied to $\mathcal{A} \rightarrow \mathfrak{g}$.

I is a kernel of each $h(A)$. Let $h(A)$ be a Lie algebra of $h(\mathcal{A})$ (right action).

I completion of $h(\mathcal{A})_x$ is involutive.

Now I/I^2 is an A_x module. I/I^2 is Lie, acts on A_x by Poisson brackets. Let π map $I/I^2 \rightarrow \mathfrak{g}$.

I acts on $A_x \otimes \mathfrak{g}$; I/I^2 is a Lie A_x-algebra (Hamiltonian reduction).

General nonsense - N an A-module, may form $h(N)_x := \lim_{N \rightarrow N}$ $h(N/N_x)$, a Lie algebra coinciding with N at x.

This is an A_x module: N/N_x is an A-module at point x.

Lemma Assume N is a coadjoint Lie algebra, $N \subseteq \mathfrak{g}(A)$, and N is G-invariant. Then $h(N)_x$ is a Lie A_x-algebra.

Action on A_x comes from continuous action of $h(N)_x$ of which this is a completion. \[\Rightarrow \]

Proposition $I/I^2 = h(A/A_x)$

Prove this. Hint: Compute relative \mathfrak{g}/A.

Answer: $\mathfrak{g}/A \cong A/A_x$, $a \rightarrow a + b$ - using infinite duality of A/A_x.

The Global Space of Sections

x - compact curve, A a \mathbb{R}_x-algebra. $\mathfrak{g}(\mathcal{X}, \mathcal{A}) = \text{Sec}_B$

space of horizontal sections, $B = H^0(\mathcal{X}, \mathcal{A})$ maximal constant 2-form ω for $x \in \mathcal{X}$, $B_x = A_x/\mathfrak{g}_x. (\mathcal{H}^1(\mathcal{X}_x, A))$

via \mathfrak{g}_x, $\mathfrak{g}_x \rightarrow \mathfrak{g}_x. (\mathcal{H}^1(\mathcal{X}_x, A))$

\mathfrak{g}_x, write $B = \sigma \mathfrak{g}_x. (\mathcal{H}^1(\mathcal{X}_x, A)). B$ is gen by the image of \mathfrak{g}_{x}. \mathfrak{g}_{x} is $\mathcal{H}^1(\mathcal{X}_x, A) \otimes \mathfrak{g}_{x}$.

Consider $\rho : H^1(\mathcal{X}_x, A) \rightarrow \otimes \mathcal{A}_x \subset \otimes \mathcal{A}_x$. A_x
\[
\Gamma^*(\mathcal{X}, \mathcal{A}) = \text{Spec} \bigotimes_j \mathcal{A}_x / \mathcal{M}_x (\mathcal{H}^*(\mathcal{X}, \mathcal{A})) \otimes \mathcal{A}_x
\]

\[
(A \to \mathcal{X} \to \mathcal{Y}, \text{ and pass to } \mathcal{H} \ldots)
\]

Suppose \(\mathcal{A} \) is a coisson, \(\otimes \mathcal{A}_x \) will then be a topological Poisson algebra. Then \(\mathcal{M}_x \) will also be a morphism of Lie algebras - may be considered a Poisson action (Hamiltonian) of \(\mathcal{H}^*(\mathcal{X}, \mathcal{A}) \), a Lie algebra, on the Poisson algebra \(\otimes \mathcal{A}_x \).

Rewrite it as \(\mathcal{H}^*(\mathcal{X}, \mathcal{A}) \to \otimes \mathcal{A}_x \) as a morphism of \(\mathcal{H}^*(\mathcal{X}) \to \mathcal{H}^*(\mathcal{X}) \), and then the space of horizontal sections of \(\mathcal{A}_x \) over \(\mathcal{X} \times \mathcal{Y} \) is the zero fiber of the moment map for this action.

\(\mathcal{H}^*(\mathcal{X}, \mathcal{A}) \to \otimes \mathcal{A}_x \) must expand to \(\text{Sym} \mathcal{H}^* \to \text{Poisson} \).

Hamiltonian reduction - the invariants of this zero fiber -

Example \(\mathcal{X}, \mathcal{Y} \) semi-simple \(\Rightarrow K.M \to g \otimes \mathfrak{d}^\omega \),

\(g = \text{Sym}(\mathfrak{d} \otimes \mathfrak{d}) \), Spec \(\mathfrak{d}^\omega = \text{the space of connections on the trivial } \mathfrak{g} \text{-bundle on the formal punctured disc at } x_0 \),

Spec \(\text{Sym} \otimes g \otimes \mathfrak{d}^\omega \) - dual to \(g = K_x \otimes \mathfrak{d}^\omega \)

\(\mathfrak{d}^\omega - \text{diff on the disc} \)

Horizontal sections will give space of connection on \(\mathcal{X} \times \mathcal{Y} \).

Hamiltonian reduction -

Isomorphism classes of (global) connections on curves over \(\mathcal{X} \times \mathcal{Y} \) to bundles.

Coisson reduction - standard situation \(\mathcal{X} \to \mathcal{A} \)

\(\text{Sym} \mathcal{X} \to \mathcal{A} \), take point of \(\mathcal{O} \) on spectra, reduce out \(\mathcal{O} \).

In other terms - \(\mathcal{X} \to \mathcal{A} \) (image of \(\mathcal{O} \)) - involutive ideal.

\(A / \mathcal{I} \) doesn't inherit bracket - take subspace invariant under \(\mathcal{I} / \mathcal{I}^2 \) - this acts on \(A / \mathcal{I} \) - it is a Lie \(A / \mathcal{I} \)-algebra.

Choosing \(\mathcal{I} = \mathcal{I}^2 \Rightarrow (A / \mathcal{I})^1 / \mathcal{I}^2 = (A / \mathcal{I})^2 = (A / \mathcal{I})^1 \).

In our situation - since \(\mathcal{I} \) is set by \(\mathcal{O} \), in general only need the involutive ideal \(\mathcal{I} \), not \(\mathcal{O} \)-action.

Coisson setting: \(A \) coisson \(A \to \mathcal{I} \) involutive ideal.
\[1/9^2 \text{ gets bracket, becomes } \mathcal{L}(\mathcal{A}/\mathcal{B}) \implies \text{ invariants } \]
\[(\mathcal{A}/\mathcal{B})^{1/9^2} \ldots \text{ If } \mathcal{I} \text{ is gen. by a Lie subalg of } \mathcal{A}^{1/9^2} \]
\[\text{sufficient to take } \mathcal{I}\text{-invariants} \]
\[\implies \text{ new coisson algebra.} \]

10/25

\[x \text{ cannot come, } \mathcal{A} \text{ Q-alg. Spec } \mathcal{H}_0(\mathcal{A}/\mathcal{B}) \text{ horiz. sections of } \mathcal{A}/\mathcal{B}. \]

sufficient. \[H_0(\mathcal{X}/\mathcal{S}, \mathcal{A}) \implies \mathcal{O}_x \mathcal{S}/\mathcal{S} \text{ -- ideal sm. by the image of } \mathcal{I}\text{-res : } H_0(\mathcal{X}/\mathcal{S}, \mathcal{A}) \to \mathcal{O}_x \mathcal{S} \subset \mathcal{O}_x \mathcal{S} \]

Now \[H_0(\mathcal{X}/\mathcal{S}, \mathcal{A}) \text{ as large } \ldots \]

Lemma: \[\text{Let } \mathcal{S} \subseteq \mathcal{A} \text{ be a D-subal that generates } \mathcal{R} \text{ as } \mathcal{D} \text{ alg}. \]

Then \[\mathcal{I}\text{-res is generated by the image of } H_0(\mathcal{X}/\mathcal{S}, \mathcal{A}) \]

proof suffices to use char as maximal cont. quotient ...

Case (i): \[\mathcal{A} = \text{Sym } \mathcal{L} \ldots \text{ then } H_0(\mathcal{X}/\mathcal{S}, \mathcal{A}) = \text{Sym} \text{ cont. quotient of } (\mathcal{L} = H_2(\mathcal{X}/\mathcal{L})) \]

(1) General: \[\text{Sym } \mathcal{L} \to \mathcal{A} \text{ cocompns } \implies \text{ gen. of } \mathcal{R} \text{ from } H_0(\mathcal{X}/\mathcal{S}, \mathcal{A}) \]

Hence must come from \[\mathcal{L} \]

Corollary: \[\text{tor sec. at Spec } \mathcal{A} \text{ on } \mathcal{X}/\mathcal{S} = \text{Spec } H_0(\mathcal{X}/\mathcal{S}, \mathcal{A}) = \text{Spec } \mathcal{L}(\mathcal{A}/\mathcal{S}) \text{ over } (\mathcal{R}/\mathcal{A}) \text{ coincides with } \mathcal{A}\text{-bords.} \]

This \[H_0(\mathcal{X}/\mathcal{S}, \mathcal{A}) = \mathcal{O}_x \mathcal{S}/\mathcal{S} \text{, generated by } \mathcal{I}\text{-res from } H_0(\mathcal{X}/\mathcal{S}, \mathcal{A}) \]

Then again it's sufficient to take ideal coming from \[\mathcal{A}\text{-sec. (LC) on } \mathcal{X}/\mathcal{S} \]

Coisson case:\[H_0(\mathcal{X}/\mathcal{S}, \mathcal{A}) \to H_0(\mathcal{X}/\mathcal{S}, \mathcal{A}) \text{ a subspace of this cont. alg.} \]

May consider reduction with this subspace acting on symmetry
\[\implies \left(\mathcal{L}(\mathcal{A}/\mathcal{S}) \right) H_0(\mathcal{X}/\mathcal{S}, \mathcal{A}) \]

- same reduction just from \[\mathcal{L} \]

Example of (c) \[\mathcal{A} = \text{Sym } (\mathcal{O} \otimes D_\mathbb{C}^2), \text{ quad.} \text{ coisson algebra.} \]

This is canonically split as algebraic
\[\text{Spec } \mathcal{L} = \text{Sym } (\mathcal{O} \otimes D_\mathbb{C}^2), \text{ Spec } \mathcal{A} = \mathcal{O} \otimes D_\mathbb{C}^2 \]

Using (c) \[\otimes \text{ cont. } \text{ Spec } \mathcal{L} = \text{Spec } \mathcal{A} = \mathcal{O} \otimes D_\mathbb{C}^2 \]

connections on trivial G-bundle on Spec \[\mathcal{O} \mathcal{A} \text{, similarly for } \mathcal{L} \text{ in } \mathcal{L}. \]

\[h(\mathcal{A} \otimes D_\mathbb{C}) = \mathcal{O} \otimes D_\mathbb{C}, \text{ fiber at } x\text{-completed } g \cdot \mathcal{L} \text{ at } \mathcal{L} \text{.} \]

acts as algebra of gauge transformations on connections
\[\text{adjoint action of } H(\mathcal{L}) \text{ on } ... \]

Thus for \[\mathcal{A}(x) \text{.} \]
Global horizontal sections - global connections on trivial bundle
- maximal cotangent of \(\mathfrak{g} \) span by \(\omega \otimes \mathfrak{g} \).
\[\text{Hom}(\omega \otimes \mathfrak{g}, \mathfrak{g}) = \text{Hom}(\text{max cotangent } \mathfrak{g}) \]
- \(\omega \otimes \mathfrak{g} \) forms - so \(\mathfrak{g} \) acts on \(\omega \otimes \mathfrak{g} \) forms...

Take Hamiltonian reduction - \(\mathfrak{g} \) acts on gauge transformations - as affine scheme quotient.
- At just point: Group of gauge transformations gives isomorphism classes of trivial \(\mathfrak{g} \)-bundle with connection - but this space has no functions but constants \(\Rightarrow \) point space...

DS reduction extracts from this space a nice affine slice...

General norence on elliptical form

\[\ln x = 1, \quad \mathfrak{g} \rightarrow \mathfrak{g} \in C(\mathfrak{g}) \text{ elliptic } \quad \text{assume } \mathfrak{g} \text{ smooth, } \]
\[\mathfrak{g} \rightarrow \mathfrak{g} \rightarrow \mathfrak{g} \rightarrow \mathfrak{g} \rightarrow 0 \text{ the pre-Lie algebra structure } \]
\[\mathfrak{g} \text{ pre-Lie algebra} \]

Claim: \(\mathfrak{g} \) is a Lie algebra in the tensor cat of \(\mathfrak{g} \)-modules.

Ex. \(\mathfrak{g} \) comes (as \(R \mathfrak{g} \)) from an elliptic Conner algebra.

Lie-theory case \(\mathfrak{g} = \mathfrak{g} / \mathfrak{z}(\mathfrak{g}) \), so \(\mathfrak{g} \) comes from a Lie algebra - get sheaf of Lie algebras on this, locally free family, whose fiber at any connection is some Lie algebra.

- Flat endomorphism of your bundle (ends preserving connection) - twisted version of \(\mathfrak{g} \).

Definition of this branch - Preliminary

Bott-Drinfeld complex of a Lie algebra:\n
Usual situation: A comm alg, \(\mathfrak{g} \) a Lie \(\mathfrak{g} \)-alg.
- A constant, \(\mathfrak{g} \) just a Lie alg, this is a dg alg, \(\mathfrak{g} \) alg.
- A smooth, \(\mathfrak{g} \) vector fields \(\mathfrak{g} \otimes \mathfrak{g} \) => deRham complex of \(\mathfrak{g} \).

General \(\mathcal{C}(\mathfrak{g}, A) = \text{Hom}(\mathfrak{g}, A) \) - can replace \(\mathfrak{g} \)
by any \(\mathfrak{g} \)-mod \(M \). This is a complex with Chevalley differential for Lie alg. calculus.
A D_x-alg. smooth $\xrightarrow{\eta} \Theta x$ Lie algebraic over A

Claim consider the dual \mathcal{L} (fully enc. reflexive for e.g. proj.):

$0 \xrightarrow{\eta} D_x \rightarrow \mathcal{L}_x \rightarrow \mathcal{P}_x$ - then Hochschild \mathcal{P}_x

Is a Lie coalgebra in the tensor category of $\mathcal{A}(\mathcal{M}_x)$-modules

E.g. if $\mathcal{M}_x = 0$, D_x is a Lie alg. over A, then D_x strong

\Rightarrow coaug. \Rightarrow Duality: $M^{ad}_A (\mathcal{M}_x) \rightarrow M^{ad}_A (\mathcal{P}_x)$ - inner hom to \mathcal{P}_x.

This is an equivalence of categories if we consider proj. $\mathcal{A}(\mathcal{M}_x)$-modules.

In particular, in the elliptic situation: $\text{Coker } \eta \xrightarrow{\mathcal{L}}$.

$\text{Coker } \eta$ is a Lie algebra in the tensor cat. of $\mathcal{A}(\mathcal{M}_x)$-modules.

Elliptic case - coker η is e.g. \mathcal{M}_x-mod - so no morphisms tend to \mathcal{L} so it is also injective

$0 \rightarrow A \rightarrow B \rightarrow V \rightarrow 0$

$0 \rightarrow V^* \rightarrow A^* \rightarrow B^* \rightarrow 0$ - V dual A^*, with dual connection

$L^* = \text{Hom}(\cdot, \mathcal{A}_x)$

$\mathcal{L}^* \rightarrow \text{Hom}(\cdot, \mathcal{A}_x)$ - naive duality

Chevalley - De Rham complex for a Lie algebra - common gen. of Chevalley - De Rham.

In compound setting:

$LC^\bullet (C, D_x)$ - is local CD-R complex $C^\bullet (C, D_x)$.

Terms $P_{\text{coH}}(C, D_x, \text{M})$.

$[C^\bullet (C, D_x)$ is a Lie alg.] Differential is usual formula.

$C^\bullet (C, D_x) \in C^\bullet (C, D_x)$ - forget A-structure, D_x plain Lie algebra - define this to be a $CD-R$ complex.

Similar to embedding Lie alg. complex into all vector fields.

$C^\bullet (C, A)$ is a dg. commutative algebra - but differential not A-linear.

\Rightarrow like usual De Rham complex.

Local CD-R complex $C^\bullet (C, D_x)$ - replace polynomials P^n by inner homs: terms $P_{\text{coH}}(C, D_x, \text{M})$

Exists when D_x is a prof C-rank $\mathcal{A}(D_x)$-mod.
From duality, $\psi_{\infty} (\text{id} \otimes M) = (L^0, L^0) \otimes M$
$A = M: \text{ terms are } \Lambda^0 L^0 = \mathcal{H} (L, \mathcal{A}) \triangleright \Lambda_0 \otimes A$.

Claim: $C^*_R(\mathcal{A}, \mathcal{A})$ is a comm. R-algebra in the tensor cat. of $\mathcal{A} \otimes \mathcal{A}$-modules (diff. not \mathcal{R}-linear)

$x \mapsto \partial_x$ gives a canonical morphism of dg-algebras
$DR (\mathcal{A}) \rightarrow C^*_R (\mathcal{A}_x, \mathcal{A}_x)$. DR - deRham complex.
$0 \rightarrow \mathcal{A}_x \rightarrow \Lambda^0 \mathcal{A}_x$ - just first term of this.
Quotient is $C^*_R (\mathcal{A}_x, \mathcal{A}_x) / \text{ideal (im of } \mathcal{A}_x) = \Lambda^0 \mathcal{A}_x$.
- so latter is dg-algebra.
- ∂_x of 0 coincides with \mathcal{A}_x.
Diff is zero \Rightarrow degree 0 - so \mathcal{A}_x linear differential
$\Rightarrow \mathcal{A}_x \otimes \Lambda^0 \mathcal{A}_x$ or $\Lambda^0 \mathcal{A}_x \otimes \mathcal{A}_x$ - flat structure on \mathcal{A}_x
- ∂_x bracket comes from degree zero differential.

The Quantum Picture

Quantize coisson algebras... purely in terms of the dual space itself - space of functions solving some differential equations...

Chiral operators x is a curve $\mathcal{M}^0 (x)$
$P^x_{\text{ch}} (\mathcal{M}^0) : = \text{Hom} (\mathcal{M}^0 (x), \mathcal{M})$,
$\mathcal{M}^0 (x) \rightarrow \mathcal{M}^0$ complement of all diagrams $\rightarrow \text{space}$.

$\mathcal{M}^0 (x) = \mathcal{M}^0$ - all paths along diagonal.

Compositions $I \rightarrow I \rightarrow \mathcal{M}^0$,
$\mathcal{M}^0 (x) \rightarrow \mathcal{M}^0 (x) \rightarrow \mathcal{M}^0 (x)$.

$\mathcal{M}^0 (x, x)$ the set of $\mathcal{M}^0 (x)$.

Definition: A chiral algebra is a Lie algebra in \mathcal{M}^0 cut $\mathcal{M}^0 = (\mathcal{M}^0 (x))_{x}$.