Motivation: X smooth projective / Fq, F local system on X
Global epsilon factor (constant in $F_{	ext{arch}}$)

\[E(x, F) = \det (-\text{Fr}_* + ; \text{RP}(x, F)) \]

- monomial of degree = Euler characteristic (up)

\[E - \text{factorization} \quad E(x, F) = \prod_{x \in X} E_x(F) \quad \text{local fields} \]

- density only on base, mean x --- need to choose
- global to meromorphic form on curve (or additive character of field)

Geometric meaning? rewrite in terms of graded lines
\[\det \text{RP}(x, F) \]
\[E(x, F) = \text{Tr}_x (\text{Fr}_* +, \det \text{RP}(x, F)) \]
- supertrace in correct degree, don't need - sign can

Q: what is local factorization on level of superrings (\mathbb{Z}-graded)?

\[E_x(\langle \rangle) \quad \mathbb{Z} - \text{graded superlie with} \]
- Frob action depending on 1-form V.

- want \[\det \text{RP}(x, F) = \bigotimes_{x \in X} E_x(F) \]

- for almost all points local factor is trivialized
- connicilly... part of our hypotheses (like local geometry is trivial).

What is a superline? \[\otimes \] connectivity constant
- corrected by signs --- eg want \[\det (C_{\theta} \otimes C_{\theta}) \]

\[\otimes \det C_{\theta} \otimes \det C'_{\theta} \]

Independent of ordering, so needed
- if want to tensor over all points on a curve
Today explain why such a sheafification is reasonable---
in model topological str.

From now on \(X \) = compact real analytic manifold
\(F \) = constructible complex
real analytic --- used only to have canonical class of stratifications (subanalytic).

\(\Gamma_0(X,F) \) complex with \(\dim \) cohomology =
get graded super lie det \(\Gamma_0(X,F) \)
(degree = Euler class). would like det \(\Gamma_0 = \bigotimes E_{x_i} \).

How to compute this.

Basic example of computation.
\(X = \mathbb{S}^2 \), \(U = d \theta \) differential form
constructible sheaf \(F \) on \(\mathbb{S}^2 \); order \(1 \) at
points where \(F \) jumps in orientation given by \(U \).
\[\{ x_i^+ \} \text{ jump points}, \quad I_x = (x_{i-1}, x_i) \]
\[I^+ = (x_{i-1}, x_i^+) \] (again orientation from \(U \)).

\[\det \Gamma_0(X,F) : \]
\[0 \to j_! j^* F \to F \to \bigotimes F_{x_i} \to 0 \]
\(j_i \) : inclusion of complements of points.

sum of constant sheaves induced by \(j_i \).

\(x_i \leftarrow \det \Gamma_0(X,F) = \left(\bigotimes \det F_{x_i} \right) \left(\bigotimes \det R \Gamma_1(I_x, F_{x}) \right) \)
also have \(0 \to F_1 \to F_\alpha \to F \to 0 \)

so \((*) : \bigotimes t \text{ del R}_{\alpha} (F_x^+, F_{\alpha}^+) = \bigotimes \mathbb{E} \quad \forall \mathbb{E} \in X \)

\((E = C \text{ where small is smooth}) \)

\[E \chi(u) (F) \delta \theta \quad \text{on } F_{\alpha} \]

... behaves microlocally: depends only on microlocal behavior in \(x \) in \(C \theta \) radius, locally.

General situation: To each \(F \) assign singular support

\(SS(F) = T_x X \quad \text{critical Lagrangian subvariety} \)

Characteristic cycle \(CC(F) \) \& \(z \)-cycle support

on \(SS(F) \) of \(\dim X = \dim X \quad \text{sum of components} \) of \(SS(F) \)

- Case of local system: \(SS(F) \) is \(T_x X \)

\(CC(F) = \partial \cdot T_x X \)

- Case of skyscraper: \(SS(F) = T_x^X \), \(CC(F) = \partial t \cdot T_x^X \)

Dubson-Kashiwara formula:

\[\chi (X, F) = \langle \langle CC(F) , T_x X \rangle , X \rangle \quad 0 \text{-section} \]

... Euler char. given by intersection number.

For \(F \) local system, just got rank times self intersection of 0-section \(\Rightarrow \) of diago in \(X \times X \).

... essentially obvious in D-module theory, not obvious directly!

New attentive: gradient specie's form Picard group!
... \mathcal{Z} is a class of objects here in this Picard groupoid, so want to animate $\mathcal{R}(\mathcal{F})$...

... lift F to \mathcal{Z} valued in Picard groupoid of some group \mathcal{G}. ...

Generalize further to make obvious.

Consider K-theory spectrum of coefficients

... consider constructible sheaves with coeff in any associative or dg algebra R,

if R is perfect

$\Rightarrow \mathcal{R}(\mathcal{F}, F)$ perfect complex $\Rightarrow \mathcal{R}(\mathcal{F}, F)$ \text{Ker} of $K(R)$ homotopy, and K-theory spectrum ... defined only up to homotopy.

On level of $T(\mathcal{O})$ get Euler characteristic

$\text{def } R$'s cohomology ... little deeper:

(\text{def ... must assume } R \text{ commutative})

Any spectrum K defines Picard groupoid

\mathcal{T}_K Poincaré groupoid is a Picard groupoid

-- K is infinite loop space \Rightarrow get addition, comm & assoc. constraints come from delooping (calculus time)

\mathcal{T}_K remembers T_0, T_1 ...

\mathcal{T}_K comes from intermediate spectra.

Picard groupoids \mathcal{S} spectra with two adjoint homotopy groups.
K(R) -> spectrum \rightarrow \Omega K(R). Picard group

\text{Picard group of graded } \mathbb{R} - \text{super-algebras}

So for any complex set a lift of its boundary line to homotopy point of K(R).

So now \(K = K(R) \)

\[K(X) = K(\mathbb{P}(X), R) \]

K-theory of complex \(X \).

There is a morphism (cohomology)

\[K(X) \rightarrow K \]

\[\mathbb{R}^n \]

\[[F] \rightarrow [R], \mathbb{R}[X,F] \]

1. For topological space \(X \), spectrum \(K \) can take cohomology of \(X \) with \(K \) coefficients \(\mathbb{C}(X,K) \), which is itself a spectrum, e.g., for EM space \(H(R) \) this is \(\mathbb{C}(X,R) \) via (cohomology).

2. Generally \(K = (K_i, S^k_i \rightarrow K_{i+1}) \)

\[\Rightarrow \mathbb{C}(X,K) = (X \wedge K_i, \ldots) \]

3. Functional on \(X,K \).

Claim \(\mathbb{R}^n \) can be decomposed as

\[K(X) \rightarrow C(X,K) \rightarrow K \]

\[\mathbb{R}^n \]
Definition of E: use fact that $K(X)$ is additive with partitions of X, $X = \bigsqcup X_x$, with X_x subanalytic and locally closed.

\Rightarrow get map

$$K(X) \xrightarrow{(i_a!)} \prod K(X_x)$$

for each X_x. Consider extensions by zero for each X_x.

Quillen $\Rightarrow (i_a!) \text{ is a hodge equivalence.}$

Suppose also each $X_x \subset Y_x$ contractible subset (just note strata small enough).

In a few words get:

$$K(X) \xrightarrow{(i_a!)} \prod K(X_x) \xrightarrow{R_{\text{loc}}} \prod K$$

we choose X_x, Y_x but these data are directed & have eventual monomorphisms.

... invalid here for local additive construction?

Restrict to finite, false there locally, put it on my point of contractible sets Y_x is, & then add up:

$$\sum x_x [R_{\text{loc}}(X_x, F|_{x_x})]$$
Microlocalization of \mathcal{E}

Localization "singulartoday" \mathcal{E}:

- see as the cotangent with coefficients in an algebraic complex \mathcal{E}

\mathcal{E} is \mathcal{E}

$U \rightarrow$ relative algebra $\operatorname{Core}(\mathcal{E}, \mathcal{E}(U))$

get presheaf of sheaves $K^!(U)$.

This is flabby, so $K^!(U) \rightarrow R\Gamma(U, K^!)$

$U = X$, so $\mathcal{E}(X, K) \rightarrow R\Gamma(X, K^!)$

$p: T^*X \rightarrow X$

$R\Gamma(T^*X, p^*K^!)$

Let $S \subset T^*X$ be closed & conical, $V = T^*X \setminus S$

Inside of category of complexes have dy subcategory of

$\mathcal{P}(X) \supset \mathcal{P}(X)_S$. Thick subcategory \mathcal{P}

quotient is the category of microlocal sheaves on V.

$K(X)_S \rightarrow K(X)$

$K(X)_S \rightarrow \quad \rightarrow \quad \rightarrow \quad \rightarrow$ *

$K^!(X) \supset \mathcal{P}(X) \supset \mathcal{P}(X)_S$. Thick subcategory \mathcal{P}

quotient is the category of microlocal sheaves on V.

$K^!(X) \supset \mathcal{P}(X) \supset \mathcal{P}(X)_S$. Thick subcategory \mathcal{P}

quotient is the category of microlocal sheaves on V.

$K^!(X)_S \rightarrow \quad \rightarrow \quad \rightarrow \quad \rightarrow$ *

Claim: composition is canonically homotopic to zero.

$K^!(X)_S \rightarrow \quad \rightarrow \quad \rightarrow \quad \rightarrow$ *

$K^!(X)_S \rightarrow \quad \rightarrow \quad \rightarrow \quad \rightarrow$ *

$K^!(X)_S \rightarrow \quad \rightarrow \quad \rightarrow \quad \rightarrow$ *

$K^!(X)_S \rightarrow \quad \rightarrow \quad \rightarrow \quad \rightarrow$ *

$K^!(X)_S \rightarrow \quad \rightarrow \quad \rightarrow \quad \rightarrow$ *

$K^!(X)_S \rightarrow \quad \rightarrow \quad \rightarrow \quad \rightarrow$ *

$K^!(X)_S \rightarrow \quad \rightarrow \quad \rightarrow \quad \rightarrow$ *

$K^!(X)_S \rightarrow \quad \rightarrow \quad \rightarrow \quad \rightarrow$ *

$K^!(X)_S \rightarrow \quad \rightarrow \quad \rightarrow \quad \rightarrow$ *

$K^!(X)_S \rightarrow \quad \rightarrow \quad \rightarrow \quad \rightarrow$ *
Take \(\varphi \) \(\mapsto \) \(K(X)_S \rightarrow K(X) \rightarrow K^+(U) \)
\[\downarrow E \downarrow E^+ \]
\[R\Gamma_\mathcal{S}(T^*X, p^*K^{-1}) \rightarrow R\Gamma_\mathcal{S}(T^*X, p^*K^{-1}) \rightarrow R\Gamma_\mathcal{S}(V, p^*K^{-1}) \]

Take \(\varphi \) \(\mapsto \) \(K(X)_S \rightarrow R\Gamma_\mathcal{S}(V, p^*K^{-1}) \) locally \(h \)
zeros \(\rightarrow \) get commutable diagram as above,

defining minimalization of \(E, E^+ \).

\(E_S \) : minimal of characteristic cycle:

Replace \(K \) by \(\mathbb{Z} \) then \(R\Gamma_\mathcal{S}(T^*X, p^*K^{-1}) \)
becomes just cycles \(\oplus \) supported on \(S \), get usual characteristic cycle. \(-p^*\mathbb{Z}! \) will
take care of all combinator problems.

\(E \)-factorization: Suppose \(U \subset X \) \& \(V \) 1-form on \(U \).
\(\) with \(h(U) = V \) doesn't intersect our singular support
\(S = SS(S) \) \(\) \(\) \(V = T^*X - S ^ \).

\[K(X)_S \rightarrow K(X) \]
\[\downarrow E \]
\[C(X,k) \rightarrow (\omega \in C^\infty(X \times U_k) \rightarrow C^\infty(X, k)) \]
\[= K^0(U) \]

\(\omega \) defines conical boundary to \(2\pi \) of coisotropic
\(K(X)_S \rightarrow \) \(K^0(U) \); use \(\omega \) to pull back to
\(R\Gamma(V, p^*K^{-1}) \rightarrow R\Gamma(V, K^{-1}) \)
So just as before we can formally write

\[
\begin{array}{c}
K(X)_s \rightarrow K(X) \\
\downarrow \varepsilon_u \\
\bigcup (X \cup U, k) \rightarrow (X, k) \rightarrow K'(U)
\end{array}
\]

A commutative diagram, so we get

\[
[\text{RF}(X, F)] = \tau \cdot \varepsilon_u (\{ F \})
\]

\[
\in \bigcup (X \cup U, k)
\]

If \(X \cup U = \{ x_k \} \) for many points, then

\[
\bigcup (X \cup U, k) = \prod K_k, \quad & \text{here is just some sum}
\]

so for each \(x_k \) get \(E \)-factor \(E(F)_V, x_k \)

\[
\cdots \text{can now pass to etf lines or Euler chowrings get usual } E\text{-factors.}
\]