M. Kapranov - Higher Langlands

1. Higher dim. class field theory
 Local
 n-dim local fields
 TF_q ((t_1)) ... ((t_n))
 Q_p ((t_1), ... (t_{n-1})
 IR

We'll jump W(k) → Gal(\overline{k}/k)

W^ab = K^{top}_{M, Milw} (K → \overline{\mathbb{Q}}) \to H^n_{et} (\text{GL}_N(K))

(taking profinite completed K-theory) topological: need to take into account topology of fields, take completed tensor product as symbols.

So 1-dim reps of W ↔ continuous Steinberg symbols C (x_1, ..., x_n), x_i \in k^*

come from n-cocycles of GL_N(K)

Simplest representation: W \to \mathbb{Z}\{F_i\} \to \mathbb{C}^*

K = \prod_{i=1}^n (L_i) : tame symbol

\{x_1, ..., x_n\} \in K_0 (\mathbb{F}_q) = \mathbb{Z} \to \mathbb{C}^*

determinantal cocycle

n = 2 \Rightarrow K = L((t)) \quad \text{ordinary local field}

\{x, y\} \in L^* \to \text{canonical element in}

H^2 (GL_N(K), L^*) : Tate (determinantal) central extension

H^2 (GL_N(K), L^*) too: take \mathbb{L} \to \mathbb{C}^*

Tate symbol \{x\} : \text{ Ext}_K (K, L)

\exists \{x, y\}_\text{tor}
This is the symbol corresponding to standard 1-dim rep of W
$\chi \in \text{Irr}^2(G_k, k^*) \leftrightarrow$ 1-character of W
In this example everything comes from cohomology.

Another (more fundamental?) formulation

Let K be a local field, $\Gamma = \text{Gal}(\overline{K}/K)$ satisfy Poincaré duality in dimension $n+1$: \exists canonical pairing
$\delta : H^{n+1}(\Gamma, M_k^{\otimes n}) \otimes \mathbb{Z}/l \to \text{Reg}$ via δ_m

$H^i(\Gamma, M_k^{\otimes j}) \leftrightarrow H^{n+1-i}(M_k^{\otimes n-j})$

\[n=1: \quad H^1(\text{Gal}(\overline{K}/K), M_k) \otimes H^1(\text{Gal}(\overline{K}/K), \mathbb{Q}/l) \to \mathbb{Q}/l \]
\[\text{(ordinary local field)} \quad \sqrt{K^*/(K^*)^2} \text{ by Kummer map} \]
\[\text{true for any field.} \]

Langlands for 1-dim local field:

N-dim reps of $W \leftrightarrow$ some reps of GL_r, K

$H^i(W, GL_r \mathbb{C})$

when considering \mathbb{C}-representations $H^i(GL_k, \mathbb{C}^{\times})$

N-dim case:

Reps of W is always on H^i so it should
be put in correspondence with some nonabelian H^i ...

N=2: Nonabelian H^2

Γ a group, A an abelian group \Rightarrow

$H^2(\Gamma, A) = \text{actions of } \Gamma \text{ on categories: } A$-Germes
A gerbe: category C with \(\text{Hom}(X, Y) \)
\(\text{Hom}(x, y) \times \text{Hom}(y, z) \to \text{Hom}(x, z) \)
\(\text{A-gerbe} \)

(4.5) \(A = \mathbb{C}^k \)
\(\Pi^2(\Gamma, \mathbb{C}^k) = \text{actions of } \Gamma \)
\(\text{on category Vector}, \text{or even } 1 \text{-dim Vector} \)

\(g \in \Gamma \)
\(g_g : C \to C \)
\(g_g \circ g_h = g_{g \cdot h} \)

+ 2-cocycle condition for triples \(g, h, k \).

"Candidate" for nonabelian \(H^2 \) of \(\Gamma \): actions of \(\Gamma \) on category

Classical concept of character of \(\Gamma \): \(\chi(g) = \chi(g) \chi(h) \chi(gk) \)

\[\Rightarrow \]

2-cocycles \(\xi(g, h) \in \mathbb{C}^k \)

\[\Rightarrow \]

```
common generalization
is nonabelian 2-cocycle?
```

[\(K \) is part of \(H \), things we actually "see" Core]

from homology, \(g \) the symbols here: keep the elements in homology

Analog of a character of a representation for action on category

(w. Nora Center)

Suppose have action on category: \(\Gamma \) \(\varphi(g)(C) = \varphi \)

\(\text{Tr}(\text{func}(A): C \to C) = ? \)

\[\text{Def. } \text{Tr}(A) = \text{natural transformers}(1_c, A) \]

Ex. \(C = D^b(G \times X) \)
\(K \in D^b(X \times X) \) kernel
\(A(F) = R\beta_{x \cdot} (\rho \cdot F \otimes K) \)

\(\Rightarrow \) \(\text{Tr} \ A = R\Gamma (X, K/\Delta) \)
If \(\Gamma \) acts on \(V \) by \(\Gamma \), we get a "sheaf" on \(\Gamma \) which is conjugation equivariant. Character sheaf (Lusztig character sheaves should be ranked as frames in this sense for action on \(\text{Db}(G/B) \) --- constructible sheaves)

If \(\gamma \in \Gamma \) commuting \(\Rightarrow \) 2-character
\[\chi^{(\gamma)}(g,h) = tr (g / Tr \rho(h)) \]
function on pairs of commuting elements, invariant under simultaneous conjugacy. --- 2-class functions
--- appear in elliptic cohomology:
\[\text{Ell}(\mathcal{B}T) = 2\text{-class functors} \quad (\text{Hopkins-Kuhn-Ravenel}) \]

\(\text{Ell}(\Sigma) \) in certain families of categories over \(\Sigma \), i.e.
\(K(\Sigma) \) in vector bundles over \(\Sigma \).

So \(K \text{-coh} \) in action on categories
Naive idea of matrix representation: direct sums of \(\text{Vec}_G \)
--- modules over \(\mathbb{Z} \) ring category \((\text{Vec}_G, \oplus, \ominus) \)
\(e.g. \text{Vec}_G \oplus = \text{Coh}(\cdots) \)

\[\Rightarrow A = (A_{ij}) \text{ matrix of vector spaces,} \]
Problem: few invertible matrices (since dim vector space > 0)

ff
Usual characters = class funs which are elementary projectors under convolution

2. \(\text{Hecke operators} \)
\[x \text{ curve over } \mathbb{Q}, \quad x \in X \text{ Bun}_r(X) \]
\[\Rightarrow \text{Hecke oper. } T_{x,i} : \mathcal{C} [\text{Bun}_r(X)] \to \]
\[T_{x,i}(f) = \sum [E : 0 \to E' \to E \to k^0 \to 0] \quad f(E') \]
sum over such modifications
Let $\text{Coh}_m(X)$: purely m-dimensional coherent sheaves.

For $i \leq n-m$,

$$\forall F \in \text{Coh}_m, \exists E \in \text{Coh}_{m+1} \text{ can consider modifications,}$$

$$0 \rightarrow E' \rightarrow E \rightarrow F \rightarrow 0$$

$$\Rightarrow E' \in \text{Coh}_{m+1}$$

$$\Rightarrow \exists \text{ operators } T_{F'} \text{ on } \mathbb{C}[\text{Coh}_{m+1}(X)]$$

Equivalently, Hecke operators act on sheaves with 1-dim support \Rightarrow

Satisfy Hall algebra relations:

$$T_{F'} \circ T_{F''} = \sum_{\mathbb{F}} \Sigma_{F_{F',F''}} T_{F_F''}$$

$$\Sigma_{F_{F',F''}} = \# \{ E \in \text{CF} : E \cong F', F/\mathcal{F} \cong F'' \}$$

Hall algebra of Coh_m.

On a curve $T_{F_{j,i}} \leftrightarrow \Lambda_i(F_{r_x})$ Frobenius in Galo so

X surface: Coh_2 supported at pts, its Hall alg acts on $\text{Coh}_2 = \text{Coh}_{1}$ (1-dim support), whose Hall alg acts on $\text{Coh}_2 = \text{Bun}(X)$

s all $(\text{coh}) \Rightarrow \mathbb{C}[\text{Bun}, X]$: wildly branch ed.

For non-homotopic curves operators commute

Conjecture: A point $x \in X$ shall have a class in

$$\text{HH}^2 \left(\text{Hall} \left(\text{Coh}_1 \right) \right) \leftrightarrow \text{Flavors of pts} \text{ in } \text{Cone}(X)$$
Think of point as giving relations between curve operators ... x gives a natural relation to \mathbb{H}^2.

Such relations become some relations in case of ADE graphs so I don't know further.

So points don't act, but give some such after cohomological objects, corresponding to Frob.

--- Look for this as basis of relation.

3. "Generalization" of elliptic modules

X surface $/ \mathbb{F}_q$
V vector space
D ample divisor
(think in terms of this embedding in rings of differential forms - 1-form polynomials)

$K =$ completion of $\mathbb{F}_q (x)$ along D:
div. field, with regular field $= \mathbb{F}_q (D)$:
i.e. semi-local field.

$A \subset K$ discrete.
Drinfeld exponential $e_A(z) = \prod (1 - \frac{z}{a})$
q-power series
(ie of form $z + c_1 z^q + c_2 z^{q^2} + ...$)

$e_A(nz) = P_n (e_A(z))$ for $n \in A$

P_n is a q-power series = $n u + n^q u^q + ...$

-get a formal module, not elliptic a.e. e.g.

$P_{n+m} = P_n + P_m$, $P_{nm} = P_n (P_m) = P_{nm} (P_n)$

Case of curves: P_n's are finite degree polynomials. have finite order, have modular spaces.
Finiteness properties \(K/A \xrightarrow{g} K \) as abelian group

\[g = 0 \]

\[s = 0 \]

\[a, b \in A \quad \text{... i.e.} \quad a, b \text{ are congruent} \]

and \(\{ a = b = 0 \} \) is an ideal subring.

\[\text{form Koszul complex} \quad 0 \to K \xrightarrow{x} K^{\otimes 2} \xrightarrow{p_a(x), p_b(x)} K \to 0 \]

\[\begin{array}{c}
(\mu, \nu) \mapsto P_a(\mu) P_b(\nu) \\
(\lambda, \gamma) \mapsto L_a(\lambda) L_b(\gamma)
\end{array} \]

Exact away from middle term, where cohomology

is a finite abelian group --- analog of torsion of an elliptic module --- follows from injectivity of \(K \) as \(A \)-module.

(\(K/\ker(\partial) \cong K/A \))

K injective \(A \to \) complex calculates \(\text{Ext}^* (A/A(0), A) \)

(when considering \(A \) as the trivial \(A \)-algebra in \(K \))

\(\text{More generally} \)

\[\text{for } L \subseteq K \text{ locally free } A \text{-module, write } \psi_L, \quad P_n^L(\mu) \]

Koszul : \[| H' | = (rk L) \cdot A/(a, b) \]

or more canonically middle cohomology is \(M/(a, b) \otimes K^{\otimes 2} \)

Need global result: \(K \xrightarrow{\varphi} K^2, \quad x \mapsto (\mu = P_a(x), \nu = P_b(x) \}

Im(\(\varphi \)) \subseteq K^2 \text{ has unique up to rescaling analytic continued} \]

\[R_{a, b}(u, v) \text{ \(\text{Expect} \) } P_b(u) - P_a(u) \text{ to be a polynomial of } R_{a, b}(u, v) \]
4. Eisenstein series for (Kac-Moody) groups

Usual geometric Eisenstein series: consider maps \(\overline{X} \rightarrow G/B \)
\[\text{deg } f \in H^2(G/B) = L \text{ cone } \mathfrak{a} \text{ with } \text{Mapd } \text{ finite-dimensional}. \]

\[E(z) = \sum_{d} |\text{Mapd}| \cdot z^d \quad z \in T = \text{Hom}(L, C^*) \]

... this series has support more or less in dominant cone,
\(\mathfrak{a} \) gives a rational function of \(z \) satisfying

functional equation w.r.t Weyl group \(W \).

... could replace \(|\text{Mapd}| \) by a native, or
topological Euler characteristic,
Hodge polynomial etc - anything additive w.r.t
\(\text{cut & paste} \) (i.e. "measure")

\[E(wz) = \prod_{0 < \alpha} \frac{f(z^\alpha)}{f(qz^\alpha)} \cdot E(z) \]

p-shifted

W-action

Now \(G \mapsto \widehat{G} \text{ Kac-Moody group} \)
\[1 \rightarrow \mathbb{C}^* \rightarrow \widehat{G} \rightarrow G(\mathbb{C}(t)) \rightarrow 1 \]
determined central extension from \(\text{GL}_n \) for \(n \) case
- from Sato Grassmannian

Drinfeld Poor result for construction of \(\widehat{G} \) compared with
struggle of people involved (Fetling, Lefine, Brylinski; ...)
- all fail for \(G = E_8 \) eg in families of curves
acquiring singularities

Max torus of \((\mathbb{C}^* \times \widehat{G} = \widehat{G}) \) is \(T \times \mathbb{C}^* \times \mathbb{C}^* \)

\(\widehat{W} = W \times \mathbb{C}^* \text{ acts } \)

modular variable for elliptic curves
\[
\text{let } \mathcal{E} = \{E_1 \mid \xi E_1 < 1\} \quad \text{(a)} \quad \text{there is a family} \quad \left(\frac{E \otimes L}{E} \right) / W
\]

then \(\hat{\mathcal{T}} / W = \text{total space of (a)} \).

\(\hat{\mathcal{T}} = \{1 \leq \xi E_1 < \xi\} \) - relation between characters of \(\text{Ker-Mord} \) group & theta function

"S-duality" : \(X \) projective surface / \(\mathcal{E} \)

\(\text{Bun}_\mathbb{G}(X, n) : \text{semi-stable bundles with } \xi = n \)

\(\text{Fe}(g) = \sum X(\text{Bun}_\mathbb{G}(X, n)) \cdot q^n \)

should exhibit modular behavior, for congruence subgroup

More general generality: \(Z < X \) curve

\(\text{Bun}_\mathbb{G, B}(X, Z, n, d) : \text{G-bundles on } X, \xi = n, \text{ with } B \)-reduction along \(Z \) of degree \(d \in \mathbb{Z} \)

\(\text{deg of } B \)-reduction of G-bundle on \(X \to Z \to \mathbb{P}^n \)

\(Z \otimes T^v : \text{E}_\mathbb{G}(g, Z) = \sum \mu(Bun_{\mathbb{G}, B}(X, Z, n, d)) \cdot q^n z^d \)

should have elliptic behavior in \(Z \), modular behavior in \(g \).

Change of setup Fix a bundle \(P_0 \) on \(X \times \mathbb{Z} \)

\(M_{\mathbb{G}, P_0}(n) : = \{(P, z) : P \text{ a bundle on } X, z : P / X \times \mathbb{Z} \to P_0, c_2(P) = n\} \)

\(M_{\mathbb{G}, P_0}(n, d) = \{(P, z) \text{ as above + parabolic structure of degree } d\} \)
Claim: If $Z \cdot Z < 0 \Rightarrow$ these spaces are finite dimensional and empty for $n < 0$.

Evidences: $\Gamma_{\text{proj}}^{n} M_{G, p_{0}} (\mathbb{A}) = H_{Z}^{n} (X, \text{ad} \mathcal{P})$

$= H_{0}^{n} (Z, H_{Z}^{1} (X, \text{ad} \mathcal{P}))$

(quotients of $\mathbb{P}_{2} \otimes N_{1}$

(normal bundles)... have no sections for $n > 0$.

Relation to reps into affine Grassmannians $G_{r} = G_{r}(\mathbb{C})/G_{r}(\mathbb{C})$

Say $X = Z \times A^{'1}$. A G-bundle on $X = Z \times A^{'1}$

is a map $Z \rightarrow G$.

In general have twisted standard bundle of Grassmannians

finite dim vers. $P \rightarrow \text{Flags} (P)$

quotient G/B

G-bundles, $\sqrt{Z} \hookrightarrow G$-bundle over Z

+ principal bundle on $\text{Tot} (L) \rightarrow 0$

+ determinant data for rank n

\Rightarrow ruled surface (e.g. More generally stack)

consider G-bundles on tubes around surface.

Assume $Z \cdot Z < 0$. Write $Z = Z^{*} \times C$. $\Rightarrow \text{Tot} (E) = T \times C^{*} \times C^{*}$

Write $\sum_{n,d} \mu (M_{G, p_{0}} B (n,d)) Y_{n,d} \otimes E^{d} \otimes \Gamma_{\text{proj}}^{n} M_{G, p_{0}} (\mathbb{A})$

$E (g, z, v)$ forms functor on \tilde{T}.

Thm: $E (g, z, v)$ extends to a meromorphic section of \mathfrak{g}^{d}

on $(E \otimes L)/W$

Pf: reduction to simple algebra.
\[\tilde{\mathcal{E}}(q, z, v) = \mathcal{E}(q, z, v) \quad \text{III} \quad \mathcal{G}(\mathfrak{S}^0) / \mathcal{G}(\mathfrak{S}^0, \mathcal{L}) \]

(affine proj roots)

\[LL = \mu(\mathfrak{A}') \quad \text{module} \quad \text{is Waff invariant} \]

\textbf{Example:} \(\mathbb{P}^1 < X = \text{ruled surface, } Z : Z = d \)

\[x = \left[\frac{1}{2} \left(2x - d \right) \right] \]

\textbf{Claim:} \(\mathcal{G} \)-bundles on \(X \times Z \leftrightarrow \text{integral characters of level } \alpha \text{ for } \mathcal{G} \).

Corresponding Eisenstein series are \underline{characters}.

\'Kor-{\'a}daly bundles/\(\mathbb{P}^1 \) case from \(\text{tors} \)

\textbf{For } \mathbb{P}^1 \leftrightarrow \text{irrep of affine of } \mathcal{G} \text{ }

The \(\mathcal{E} \) is \(\mathcal{L} \)-deformation of the character

\[LL = \mu(\mathfrak{A}') \quad \text{K points of moduli} \]

--- Hall polynomials