Character Sheaves

Suppose we want a formula for characteristic is that given \mathfrak{g}, $B \subset G$ and $\mathfrak{g} = \text{Lie} G$. Just a permutation representation. Have a set $X(\mathbb{F}_2)$, \mathbb{F}_2 points and $\text{tr} \mathfrak{g}$.

Trace of a permutation matrix is just the fixed points.

$\text{Tr}(g, B) = \{x \in X(\mathbb{F}_2) \mid gx = x\}$

Let X^0 closed subset of X.

If we want its number of pts, we can find it as:

$X^0 \subset \mathbb{F}_2 = \{(y, x) \in G \times X \mid gx = x\}$

Consider $\pi : g \in G$.

$\pi(y, g) = y^g$. Proper: $g \in G$.

where $X^0(\mathbb{F}_2)$.

$X^0(\mathbb{F}_2) = \sum_{\iota : 0} \text{Tr} (F; H^i(X^0, \mathfrak{g}))$

$g \rightarrow H^i(X^0) = (R_i \pi, \mathfrak{q}_i)$ by proper base change.

$H^i(X^0) = (R^i \pi, \mathfrak{q}_i)$

Furthermore, complex of sheaves $\pi_\mu: \mathfrak{q}_i : \text{take } \mathfrak{g} \in \text{Tr} (F, \mathfrak{g})$

Other characters

Y verify our \mathfrak{g}. F constructed $Y(\mathfrak{g})$

$F : Y \rightarrow Y$ & $F : F \rightarrow F$.

$F \rightarrow$ & $F \rightarrow F \Rightarrow$ & $F \rightarrow F$

If $y \in \mathfrak{g}$, $\Rightarrow F_y : F \rightarrow F$

S similarly G_y on $Y(\mathfrak{g})$.

F bundle complex & $\text{H}^i(F)$ construct

$\Rightarrow \mathfrak{g} \in \text{Tr} (F, H^i(F))$

\[\{g \rightarrow \text{Tr} (g, B) \} \text{ sum over characters of the reps } \\pi(e)(E) \quad (E \in W) \text{ with coefficients of } \pi(e) \]
(For E_7, E_8 need to choose $P \in \Phi$ to notch up runs of $\mathfrak{w} \not\leq \mathfrak{h}$.)

$$\mathfrak{h} = \mathfrak{t} \oplus \mathfrak{m} \oplus \mathfrak{m} = \mathfrak{t} \oplus \mathfrak{m} \oplus \mathfrak{m},$$

where \mathfrak{t} is the center of \mathfrak{h}.

Now for $g \in G, T \in \mathfrak{h} \Rightarrow (g, T) \in \mathfrak{g} \times \mathfrak{h}$

$$\text{Tr}(g \cdot T; \mathfrak{g}) = \sum_{\xi(T)} \text{Tr}(g; \xi(T)) \cdot \text{tr}(T; \mathfrak{m})$$

$$= \sum_E \xi(T(E)) \cdot \text{tr}(T; \mathfrak{m})$$

$E \in \mathfrak{m} \leftrightarrow E$.

So for fixed T get linear combo of the irreducible characters, with some coefficients --- vary T get lots of stuff.

Obvious choice for T the the standard T_u of \mathfrak{h}.

$$\Rightarrow \text{tr}(g \cdot T_u; \mathfrak{g}) = \sum_E \xi(T_u(E)) \cdot \text{tr}(T_u; \mathfrak{m})$$

Let's compute $\text{tr}(g \cdot T_u; \mathfrak{g})$.

$g \in G \Rightarrow g : G^F/B^F \to G^F$.

$$(g \cdot T_u)(x) = \varphi(g^{-1}x),$$

where $x \in \mathcal{G}$.

$$\text{Tr}(T_u \cdot \varphi)(x) = \sum_{x \in G^F/B^F} \varphi(y) \cdot T_u(x^g y)$$

$x^g y^{g^2} = \sum_{x \in G^F/B^F} \varphi(y) \cdot T_u(x^g y)$.

- So trace is given by sum of diagonal elements:

$$\text{tr}(g \cdot T_u; \mathfrak{g}) = \sum_{x \in G^F/B^F} \varphi(x^g x)$$

- orbital integrals of T_u.

T_u is B^F-biinvariant on G^F so the expression $T_u(x^g x)$ makes sense for $x = \text{const}$.

$$\left| Y_{w, g}(T_u) \right|$$

where $Y_{w, g} = \{ x \in X : (x^g x) \in \mathcal{G}(w) \}$

- "Denote locally with g instead of F"

- locally closed subvariety of X as functor of g.
Case of Bred: \(k_3 = K_1 = \oplus E \otimes E(1) \)

Gives \(\text{dim of perverse sheaves } E(1) \) character sheaves indexed by reps of \(W \).

Claim \(T_{p} \) is small ...
- \(G_p \) non-regular, of see, dimesions \(G \):
 - \(\widehat{G_p} \to G/p \) fiber over a point in \(G/p \times X \)
 - \(\tilde{\alpha}^{-1}(x) \) is \(X \times \tilde{\alpha}^{-1}(x) \).
- \(RiT_{p} \tilde{Q} \) is proper w. to shift \(i \) is middle exten.
- of its restriction to regular semisimple locus \(G_{rs} \subset G \).
 - to see this take \(G_p \times \tilde{G} \)

\[
\begin{array}{c}
\text{Ccc} \quad \text{strata getting under in } G \\
\text{degre of dj} \quad 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \\
\text{cdd} \quad 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \\
H^i(A) \quad 0 \\
\end{array}
\]

To be perverse need to be better.
- diag. to be an IC complex.
- can't have compact a diag. 1.
- except in one slot.

In our situation, holes reflect cohomology of fiber:

\[
\text{Stalk of } \left(H^i RiT_{p} \tilde{Q}_x \right)_x = H^i \left(T_{p}^{-1}(x), \tilde{Q}_x \right)
\]

- so need these to vanish for \(i \) not in closed region
- one way to arrange this is to use
 \[
 H^i \left(T_{p}^{-1}(x), \tilde{Q}_x \right) = 0 \quad \text{for } i > 2d \dim T_{p}^{-1}(x)
 \]
- so want stratification whose inverse of fibers behaves well.

Lusztig's trick! look at fiber product \(\tilde{G}_p \times \tilde{G} \)}
- exactly doubles fiber dimension:
 \[\dim (\text{fiber of } \mathbb{P} \circ \mathbb{P}) = 2 \dim \mathbb{P} \circ \mathbb{P} \]

For generality:
Need \((\dim \text{ of } \mathbb{P} \circ \mathbb{P}) + \text{(codim statum)} \leq \dim G \)

\(\Rightarrow \) \(\dim \text{ of } \mathbb{P} \circ \mathbb{P} \leq \text{codim} \)

Can guarantee this if dimension of whole fiber product is \(\leq \dim G \)

To prove this use Bruhat decomposition:

\[
\mathbb{G}_P \times \mathbb{G}_P \overset{\sim}{\rightarrow} \mathbb{G}/P \times \mathbb{G}/P = \bigcup_{\mathcal{W}} \mathcal{W} \circ \mathcal{L}(w), \quad w \in \mathcal{W}
\]

\(\{(y^1, y^2)/y_1 = x_1, y_2 = x_2\} \)

- Fibers over each of these \(\mathcal{G} \)-orbits has exactly \(\dim = \dim \mathcal{G} \)
- \(\dim \text{ of fibers} = \dim \text{ of } \mathcal{L}_\mathcal{W} \circ \mathcal{L}(w) = \text{codim of } \mathcal{G} \circ \mathcal{W} \)

For middle extension want no cohomology on diagonal for \(\text{codim } > 0 \)...

Suppose \(H^l \) on \(\text{codim } 1 \) \(\Rightarrow \) contribution from

a local system on a \(\text{codim } 1 \) statum (if known to be proper)

\(\mathbb{G}_P \times \mathbb{G}_P \) not irreducible (bad components for \(P = B \) ...)

Need all \((\dim \text{ of } \mathcal{G} \circ \mathcal{W}) \) components to map dominantly:

If we have \(\dim \mathbb{G}_P \circ \mathbb{G}_P = \dim \mathcal{G} \) and every irreducible component of \(\mathbb{G}_P \circ \mathbb{G}_P \) dominates \(\mathcal{G} \) \(\Rightarrow \) our statum is a middle extension

- Uses that \(\mathbb{G}_P \) is nonsingular
- Need support codimension both for stack \(\mathcal{L} \) and its Verdier dual.
- But \(\text{ID}(\mathcal{L}_\mathcal{W}) = \mathcal{L}_\mathcal{W} \text{ (shifted) on smooth } \mathbb{G}_P \)

This proves is proven by noting any relative rational

\(\mathcal{L}/\mathcal{W} \) can be achieved over reg ss details so all our irreducible components map dominantly.

What does \(\mathbb{R}^{\mathcal{L}_B}_* \overset{\sim}{\rightarrow} \) look like over \(\mathbb{G}_P \)?

- Let \(P = B \), \(\mathbb{G}_P \) a reg ss.
\(\Pi^{-1}_B(x) = \{ x \in G/B : g \cdot x = x \} : \) translt of core
\(X = \mathfrak{t} \subset B : \quad \Pi^{-1}(1) = "W = G/B" \) stacked \n\((G) \)rs Galois over, \(G \)-pair \(W : \) pullback of \(GIT \)
\(\bigwedge \)
\(G \)rs
So \(\Pi \)T, \(G \)rs) \(\rightarrow W \) via this covering space.

So our local system comes from the regular rep of \(W \)
\(\mathcal{R}T_{B \times \mathcal{Q}L} / G \)rs = loc system comes for \(\mathcal{Q}L[W] \).

\(\mathcal{Q}L[W] = \oplus \bigwedge^r E \otimes E \)
Right action of \(W \) commutes with \(\Pi \)T, action via \(G \)rs action.
Here all self-conjugated so \(E^{\bullet} = E \).

\(\mathcal{R}T_{B \times \mathcal{Q}L} = \oplus _{E \in \mathcal{W}} \bigwedge^* E \otimes C(E) \), \(C(E) = \langle \zeta \rangle \) \(E \)-cofree of \(E \)s free

End \((\mathcal{R}T_{B \times \mathcal{Q}L} / G \)rs) = \(\mathcal{Q}L[W] \) acting on right

End \((\mathcal{R}T_{B \times \mathcal{Q}L}) \) Springer representation.

Since \(\mathcal{R}T_{B \times \mathcal{Q}L} / G \)rs = \((\zeta) \) \(\otimes (\mathcal{R}T_{B \times \mathcal{Q}L} / G \)rs)

\(\Rightarrow W \) acts on \(\mathcal{R}T_{B \times \mathcal{Q}L} \), hence \(\mathcal{Q}L[W] \) \(\otimes \) \(\zeta \) goes \(G \).

\(\Rightarrow W \otimes \mathcal{H}(X, \mathcal{Q}L) \quad \forall \mathcal{Q}L \).

(Prop. base change \(X \) \(\mathcal{H}(X, \mathcal{Q}L) = \mathcal{H}^*(X, \mathcal{Q}L) \))

See story for \(P : \quad W/P \subset G/P \) as fixed points.
Monodromy is \(\mathcal{Q}L[W] \mathcal{H}[W/P] \).

\(\mathcal{Q}L[W/P] \) is covering repn but not Galois: \(\mathcal{Q}L/W \) \(\mathcal{G}P / \mathcal{G}B \)

\(\mathcal{Q}L[W/P] = \mathcal{Q}L[W \mathcal{G}B / \mathcal{G}B] \)

\(\Rightarrow k = \oplus _{E \in \mathcal{W}} \bigwedge^* E \otimes C(E) \).
Example: GL_2

<table>
<thead>
<tr>
<th>w</th>
<th>K_w</th>
<th>K_u</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$e(1)+e(3)$</td>
<td>$e(1)+e(3)$</td>
</tr>
<tr>
<td>ω</td>
<td>$(+\omega)e(1)$</td>
<td>$g_e(1)-e(3)$</td>
</tr>
</tbody>
</table>

in K-group of paraise stens, pairs of ω for shifting of abelian $(\omega$ match $)$

$W^p = \{l, e \}$ fixed by ω.

\[\overline{\chi_{\omega}} = \overline{G \times P^1} \]

\[\mathbb{L} = \mathbb{C} \times \mathbb{C} \]

G degree 2, take first $1 \mapsto$ Frob acts by ω

... illustration of decomposition theorem - paraise stens with different such ...

$K_1 + K_{\omega_0} = K_0$, in this case: build up via distinguished triangles.

GL_3

\[
\begin{array}{ccc}
\times & 2 \times 3 & 1 \times 3 \\
0 \times 3 & 1 \times 3 & 1 \times 3 \\
\end{array}
\]

$P = \left(\frac{a^2x}{a+b} \right)$

$G/P = \{1, \sigma \}$

$W_\omega = \{g, e \}$

$W^p = \{l, e \}$

$\overline{\chi_\omega} = \overline{G \times P^1}$

$\overline{\chi_{\omega}} \ast \overline{G \times P^1}$

Spurvo stack $\frac{3}{2}$ (paraise $\frac{a}{b}, \frac{c}{d}$)

Spurvo for G/P:

\(\chi_B = \chi_{\omega}, \chi_p = \chi_{\omega}$ match $\frac{a}{b}$, from last time $\frac{1}{2}$

Spurvo χ_p: count of $\in (-)$ with multiplicity given by dim of W_p-fixed vecs

Pouese shifts: $g, A = A \cdot [2](-1)$ where trace locked on $\frac{a}{b}$ or $\frac{c}{d}$

What is $\overline{\chi_\omega}$?

$\mathbb{L} = \mathbb{C}$

\[\overline{\chi_{\omega}} = \{ g \in \mathbb{C}^* : gl = 1 \} \]

\[\chi_{\omega} \ast \overline{G \times P^1} \]

\[\overline{\chi_{\omega}} \ast \overline{G \times P^1} \]

$R \bar{\chi}_{\omega} = \{ g \bar{\chi}_{\omega} : gl = 1 \}$ (Spurvo)

($1, \bar{\chi}_{\omega}$ is character of P^1.

\[\bar{\chi}_{\omega} \]
\[K_{13} : (Y_{13})_g = \begin{cases} \{ l \in p : g_l = 5 \} & \text{if } g_l \neq 0 \\ \{ l \in p : g_l = l \} & \text{if } g_l = 1 \end{cases} \]

\[q^* (l) = \begin{cases} p^* & \text{if } g_l \neq 0 \\ \text{codimension } 1 + 2 + 2^2 & \end{cases} \]

\[C(1) = \text{just compact stack} \]

So \(\overline{Y_{13}} \) is \(G \times \mathbb{P}^2 \) blown up along \(\delta_p \).

\[\overline{Y_{13}} = \{ (g, l, p) : l \in p : g_l = p \} \]

\[\overline{G_p} = G \times \mathbb{P}^2 = \{ (g, l, p) \} \]

\[\text{ch } \overline{Q} \rightarrow \mathbb{R} \times \overline{Q} \rightarrow (\overline{Q} \times G) \]

\[G/B : 1 \ 2 \ 2 \ 1 \Rightarrow (1/2) (1 + 8 q_2) \]

Gleaming for \(\text{K}^n \)

Correlated with exactly character table for \(H \) of \(G_2 \).

Exactly same for \(GL_n \), similar behaviour for general groups.

\[\text{GL}_n : \text{funcun on } G^n \quad \text{virtual cohomology of character sheaves} \]

\[i_p = \sum \dim E^l_p \cdot \Pi(E) \quad j_p = \sum \dim E^l_p \cdot C(E) \quad \text{really labeled by reps of } \Pi \text{ (Sp-aug)} \]

Special \(\text{GL}_n : \Pi(E) \leftarrow C(E) \)

\[\text{GL}_n \text{ have enough parabolics } \ni \text{ip, } \ni \text{jp} \text{ to separate out } \Pi(E), C(E)'s \]

- labeled by partitions of \(n \) in both (unordered!)
- conjugate parabolics give same \(i_p, j_p \)
- invertible square matrix to pass from \(j_p \rightarrow T(E) \)

\[\text{Sp}_4 \text{ : 5 principal series, got 4 ip's...} \]

\[\text{ip} \leftrightarrow \text{jp} \text{ via functor-sheaf correspondence always} \]

\[\Pi(E) \leftrightarrow C(E) \]

for GL thanks to above space within!

Deligne-Lusztig for \(G_2 \)

Notation: \(\mathbf{\tau}, \mathbf{\xi} \) ch. reps of \(H \) corresponding to \(1, 3 \) ch. reps of \(H \)
<table>
<thead>
<tr>
<th>W</th>
<th>$\hat{\mathbb{E}}$</th>
<th>$\hat{\mathbb{E}_1}$</th>
<th>$\hat{\mathbb{E}_2}$</th>
<th>$\hat{\mathbb{V}}$</th>
<th>$\hat{\mathbb{V}'}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>s</td>
<td>2</td>
<td>-1</td>
<td>1</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>t</td>
<td>2</td>
<td>-1</td>
<td>1</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>st</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ts</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>stst</td>
<td>3</td>
<td>-2</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>tsst</td>
<td>3</td>
<td>-2</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ststs</td>
<td>3</td>
<td>-2</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>tssts</td>
<td>3</td>
<td>-2</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>bstst</td>
<td>3</td>
<td>-2</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Curtis Imanishi, R. L. W. Blies.

Can read off table certain cosets which are true reps from socle e.g., q^2 suggests arising from dim 4. It yields --- buildable for $K-L$ basis for (A, M).

- for G_2 everything is natural homology manifold, $A_w = \sum_{w \in \mathbb{E}} \mathbb{E}_w$.

... to each $E \in \mathbb{H}$ we assign $R_E = \sum_{w \in \mathbb{E}} \text{tr}(wE) R_w$.

(2) (3) All roots of R_E are actual reps.

take table for A_w, separate out tors reps from given power of E and use to form columns of R_E.

\[\text{tr}(A, M) : 1_{E_2} 0 1_{E_2} 0 1_{E_2} 1_{E_2} \]

\[\Rightarrow R_{E_1} \cdot R_{E_1} \cdot R_V \cdot R_V \text{ is a true rep. of } G_F \]

\[\Rightarrow R_{E_1} \cdot R_V \cdot R_V \text{ also a rep } \text{(R}_{E_1} \text{ is irreducible }) \]...

so does \(E_{12} \).

End up with a number of linear \(*\) of R_E, R_E use row seqs.

congruence of E_2, E_2, V, V' - core in one family.

\[\Rightarrow \text{two reps:} \]

\[R_{E_2} + R_V + R_V = 7_{E_2}, 7_{E_2}, 7_{E_2} \] (use \(\Delta \times \times \) to sort out irreps)

\[R_{E_2} + R_V + R_V = 7_{E_2}, 7_{E_2}, 7_{E_2} \]

\[R_{E_2} + R_V + R_V = 7_{E_2}, 7_{E_2}, 7_{E_2} \]

\[-R_{E_2} + 2R_V = \alpha + 13 + 7_{E_2} + 7_{E_2} + 7_{E_2} \]

\[-R_{E_2} + 2R_V = \alpha + 13 + 7_{E_2} + 7_{E_2} + 7_{E_2} \]

\[\Rightarrow 8 + 2 \text{ min reps } \]

4 of the principal series

4 cuspidal uniprops.
These 8 reps come in a natural fashion. First let's make some calculations.

\[R_{\nu} = \frac{1}{2} \left[3 \tau_{1} + 2 \tau_{2} + 2 \tau_{3} + 3 \tau_{4} + 7 \tau_{5} + 2 \tau_{6} + 2 \tau_{7} \right] \]

\[R_{\nu'} = \frac{1}{2} \left[7 \tau_{1} + 3 \tau_{2} - 7 \tau_{3} - 7 \tau_{4} - 7 \tau_{5} - 7 \tau_{6} - 7 \tau_{7} \right] \]

\[R_{\varepsilon_{1}} = \frac{1}{3} \left[7 \tau_{1} - 7 \tau_{2} - 2 \tau_{3} + 7 \tau_{4} - 7 \tau_{5} + 7 \tau_{6} + 7 \tau_{7} \right] \]

\[R_{\varepsilon_{2}} = \frac{1}{3} \left[17 \tau_{1} + 2 \tau_{2} - 17 \tau_{3} - 7 \tau_{4} - 7 \tau_{5} + 7 \tau_{6} - 7 \tau_{7} \right] \]

Explanation: Murnaghan-Foner theorem on group \(S_3 \) --- conjugacy group of stabilizer of a certain element in \(G_2 \).

Of finite groups (e.g., \(S_3 \))

Consider pairs \((x, \rho)\), \(x \in G\), \(\rho \in \text{Aut}(G)\). Inner automorphism \(g \mapsto \rho \circ g \circ \rho^{-1}\)

Equivalence: \((x, \rho) \sim (g x g^{-1}, \rho)\) (conjugacy)

\[M(G) = \{ (x, \rho) / \sim \} \]

\[M(S_3) \text{ has 8 elements} \]

Symplectic pairing: [abelian case]

Define \(\{ (x, \rho), (y, \sigma) \} = \langle g \cdot x, g^{-1} \cdot y \rangle - \sum_{\sigma = 1}^{3} \tau_{\sigma} \cdot (g \cdot x, g \cdot y) \)

\[x, y \in G \text{ commute} \]

\(\Rightarrow\) symmetric matrix of size \(|M(G)|\)

4 out of the 8 columns where our considerations above.

Other 4 will correspond to other character tables (above 4 come just from Spinor theory) - almost characters - cuspidal series of character tables.

Sp4 Character Tables

\[G = SP(V, <, >) \]

\[G/ P = \text{isotropic planes} \quad V \]

\[H^3 = G/P = \text{lines} \quad V \]

\[W = \{ \psi \} \quad W_0 = \{ \psi \} \quad \text{Assume characteristic } \neq 2 \]

We get our cuspidal rep \(\psi \) from \(GP \). Similarly here we'll get everything else out of \(G/ P \).

\(G \)-orbits on \(G/ P \), \(G/ P : \text{possibles for } (e, e') \) are

\(l = l' \}\quad \text{orbit closures} \]

\[H \]
$G \times G/\mathcal{O} = \{(g,x) : (x, gx) \in \text{one of the odd classes}\}$

$\mathcal{L} : \mathcal{L}^* \to \mathcal{O}$ is \text{Sp(2)} \to \text{Sp(1)}$ \text{Sp}(-1) \to \text{Sp(2)}\\
\text{Group orbit closure} \Rightarrow \text{just get} \ G \times G/\mathcal{O}$

\text{Interestingly case:} \text{closed} \ {\{ll \neq l^* \} 0 \neq a, b}$

$G \times G/\mathcal{O} = \{(g, l) / g \in \mathcal{L}^*: Z \ (\overline{g} \ i \in \mathcal{L} \ or \ \mathcal{L}^*) \}$

Look at \ \mathcal{L} := R \times \mathcal{G} \text{ = direct sum of shifts of character sheaves}$

\text{Stalk} \ \mathcal{L}_g = H^0(\mathcal{L}/g \ll \mathcal{L}) = H^0(\mathcal{Z}_g)$ \text{Fiber cohomology}$

$\mathcal{Z}_g \in P^3 \text{ closed, hyperplane, quadric} \quad g \ll \mathcal{L} \text{ is quadratic conic, but written in terms of skew form}$

\text{Choose} \ v \in \mathcal{L} \text{ nonzero :} 0 = \langle g \cdot v, v \rangle = \langle v, g^{-1} \cdot v \rangle = -\langle g \cdot v, v \rangle \text{ (fiber)}$

\text{[char2]} \quad \frac{1}{2} \langle (g \cdot v), v \rangle = \frac{1}{2} \langle g^{-1} \cdot v, v \rangle \quad \text{symmetric bilinear form} \quad v \cdot v(\mathcal{E}_{4,4}, \mathcal{E}_4)$

\text{Classification over quadratic forms over alg closure: just dim of kernel of}$
\text{the symmetric bilinear form (null vectors)}$

\Rightarrow \text{need dim ker} (g^{-1} - 1) = \dim \ker (g^2 - 1)$

- this will single out certain conjugacy classes as being special ----

\text{5 cases:} \quad \begin{array}{c|c c c c c}
\dim \ker (g^2 - 1) & Z_3 \\
\hline
4 & P^3 \\
3 & P^2 \ (\text{null 2) } \\
2 & 2 \ P^2 \ \text{ needed in } P^1 \\
1 & \text{ 8 cone in } P^3 \text{ with vertex, our cone in } P^2 \ (\text{null 1)} \\
0 & \text{smooth} \ P \times P \hookrightarrow P^2 \ (\text{null 0)} \\
\end{array}$

\text{cone vertex is a line bundle over } P^1$

\begin{array}{ccccccc}
\text{1} & 0 & 1 & 2 & 3 & 4 & 5 \\
\text{6} & & & & & & \\
4 & \begin{smallmatrix} 9^2 \\
3 & 9^2 \end{smallmatrix} & \begin{smallmatrix} 29^2 \\
2 & 9 \end{smallmatrix} & \begin{smallmatrix} 9 \\
1 & \\
0 & \end{smallmatrix} & \begin{smallmatrix} 9^3 \\
3 & \end{smallmatrix} & \begin{smallmatrix} 9^2 \\
2 & \end{smallmatrix} & \begin{smallmatrix} 9 \\
1 & \end{smallmatrix} & \begin{smallmatrix} 9 \\
0 & \end{smallmatrix} \\
\end{array}$

\$ = H^0(\mathcal{Z}_g) \text{ for } \dim \ker (g^2 - 1) = 1$

\text{Our one case is } \text{"fake } P^2"$

- \text{same cohomology as } P^2$

\text{line bundle over } P^1 \to (g \cdot v, v)$

+ 1 \text{ for vertex
This has to be IC sheaves of P^3,...

On open subset of E get fiber E \to \text{get local system over } \mathfrak{m}^1, \mathfrak{m}^2

in degrees 4, 2, 0.

\Rightarrow its middle ext will be summand of our L.

Degrees 0, 4, get constant local gys (contradict constant line in P^3 - constant line in 6 \times P^3)

\Rightarrow same for "half" of the 2g in deg 2...

Take fiber in P^1 \times P^1 \Rightarrow get line \times \text{line in } P^3, \text{line comes from boundary of } P^3.

So class in P^3 goes to diagonal pt \times P^1 - P^1 \times pt \Rightarrow \text{in constant sub local system}.

Now subtract these constant sheaves [heavilyagy emphasizes!]

\text{L} = \overline{\mathcal{L}} + \overline{\mathcal{L}}[-2](4) + \overline{\mathcal{L}}[-4](2) + \{2\} \text{ in derived category}

(in k-gap) = C(i), (1 + 2 + q^2) + \{2\}

Shells of \{2\}:

\begin{array}{c|c|c}
\text{cell} & \text{1} & \text{2} \\
\text{1} & \frac{q^3}{2} & \frac{q^2}{4} \\
\text{2} & \frac{2q}{4} & \frac{q}{2}
\end{array}

Have to be careful: "2" stratum is not irreducible, needs finer decomposition. Has a component of codimension 2 \times 2, \leq \frac{1}{2} smaller pieces.

\text{Can a stratum turn out to be non-constant --}

\text{case from a 1-dim character of } W \Rightarrow \text{i.e. on \mathfrak{m}_3 \text{ locus (not finite or sign!)}}

\text{Does its middle ext explain the degree 4 component?}

\text{Can't go up by 2 in degree & \text{by 2} in codimension - right on edge of diagonal!}

\text{So this is perverse but not IC!}

\text{So } \{2\} \text{ is middle part of } \mathbb{Q} \oplus \text{middle Ext of a locus in deg 4 on codim 2}

\text{and component } \mathcal{E}, \oplus \text{ maybe wrong else?}
Recall the Frobenius twist $M(g)$: the linear groups that we get here for Sp_4 is $g = Z/2$, $M(g) = (Z/2)^2$.

- In general, we need to take a quotient of this finite group as

 “Usuki’s quotient groups”

(csp: actually comes from cuspidal characters stable on Sp_4)

- It is important, but not important, but the cuspidal characters still.

Parameterization of characters on T^F

First case: $T = G_m \cdot G_m(F_{q^d}^*) = (F_{q^d})^*$

\[
\text{Hom}(\frac{T^F}{T^F_1}, \overline{Q}_x^*) \rightarrow \text{Hom}(\frac{\lim_{\rightarrow d} F_{q^d}}{T^F_1}, \overline{Q}_x^*) \rightarrow \frac{T^F}{T^F_1} \rightarrow \overline{T}_1^* \rightarrow 1
\]

Now note:

\[
\text{N}(x) = x^T(x) \cdot x^2(x) \cdots x^{2^n}(x) = x^{1+2+4+\cdots+2^n} = x^{2^{n+1} - 1}
\]

\[
\lim_{\rightarrow} \overline{T}_{q^d}^* = \frac{1}{N} \sum_{x \in \overline{Q}_x} \overline{T}_1^*, \quad \overline{Q}_x^* = \frac{1}{N} \sum_{x \in \overline{Q}_x} \overline{T}_1^*, \quad \overline{Q}_x^* = \frac{1}{N} \sum_{x \in \overline{Q}_x} \overline{T}_1^*
\]

\[
(\ast) \Rightarrow \text{Hom}(\lim_{\rightarrow} \overline{T}_{q^d}^*, \overline{Q}_x^*) = \left\{ s \in \overline{Q}_x^* \mid F(s) = s \right\}
\]

So up to the twist $\text{Hom}(\lim_{\rightarrow} \overline{T}_{q^d}^*, \overline{Q}_x^*) = \overline{Q}_x^*

\Rightarrow 1 \text{Hom}(\overline{T}_{q^d}^*, \overline{Q}_x^*) = \{ s \in \overline{Q}_x^* \mid s^2 = s \} = M_2(T(\overline{Q}_x^*))

Now consider any torus T

$\text{Hom}(T(T(\overline{Q}_x^*)), \overline{Q}_x^*) = \text{Hom}(\lim_{\rightarrow} T(T(\overline{Q}_x^*)), \overline{Q}_x^*)$

\[
\left\{ s \in \text{Hom}(\frac{L(T(\overline{Q}_x^*)), \overline{Q}_x^*) \mid F(s) = s \right\} \quad F = F_T \quad Frobars k tors
\]

\[
\left(\ast\right) \frac{L(T(\overline{Q}_x^*))}{(T(\overline{Q}_x^*))} \cong \frac{X_T}{\overline{Q}_x^*} \cong F \quad F = \epsilon
\]

\[
\{ s \in T(T(\overline{Q}_x^*)) \mid F^V(s) = s \} \quad \frac{L(T(\overline{Q}_x^*)}{\overline{Q}_x^*} \cong F = \epsilon
\]
\(T/F \) \to \text{L-adic and } \overline{T}/\overline{\mathbb{Q}} \), so we \(X_\mathbb{F}(T) = X^{\text{st}}(T) \).

\[F : T \to T ', \quad F^*: T' \to T \]

\(g/F \) split \(\Rightarrow \) for \(\mathfrak{w} \in W \), \(F_\mathfrak{w} : T \to T ', \quad F^\mathfrak{w} = \mathfrak{w} \circ F \).

\(\text{Hom}(T, \overline{\mathbb{Q}}^*) = \{ s_\mathfrak{w} \in T^* (\overline{\mathbb{Q}}) : (\mathfrak{w} \circ F^*) (s) = s \} \)

\[\text{Hom}_F (s) = s_{\mathfrak{w}} = \mathfrak{w}(s) \]

Relation to reps: Keep over local fields \(F = \mathbb{F}_p \to \mathbb{F}_p^* \)

\(G(F) \supset G(F) \text{ compact open} \)

\[\downarrow \]

\(G(F) \)

So can induce up reps of \(G(F) \to G(F) \).

For cuspidal reps of \(G(F) \) the compact induced rep will be an irreducible rep of \(G(F) \).

Basic conj: irreps of \(G(F) \) parameterized by homomorphisms

\[W_F \to G^*(\overline{\mathbb{Q}}) \quad + \text{additional data} \]

Weil-Deligne group = \(W_F \times K(\cdot) \)

\[W_F \leftarrow \mathbb{G}_m \to \mathbb{G}_m \]

\[I \rightarrow \mathbb{I} \rightarrow \text{Gal}(\overline{F}/F) \rightarrow
\]

\[\hat{\mathbb{I}} \rightarrow \frac{\mathbb{Z}}{\mathbb{Z}} \rightarrow \frac{\mathbb{Z}}{\mathbb{Z}} \]

\[1 \leftarrow \mathbb{I} \rightarrow I/F \rightarrow \hat{\mathbb{I}} \rightarrow 1 \]

\(\text{wild inertia} \quad \text{maximal} \quad \text{inertia} \)

For containing all \(p \)-rational prime roots of unity: get from residue field extensions.

Take root \(\sqrt{\mathfrak{a}} \) such that \(\mathfrak{a}^{N} = N^k \mathfrak{a} \), \(N \) root of unit in \(F \).

\[\mathfrak{a} \in I/F \quad \text{with} \quad \mathfrak{a}^{N} = N^k \mathfrak{a} \quad \text{for some } \mathfrak{a} \quad \text{root of unity in } F \]

So \(\text{Hom}(T, \overline{\mathbb{Q}}^*) \) contiains

\[\{ s \in \text{Hom}(I/F, T^*(\overline{\mathbb{Q}})) : F^\mathfrak{w}(s) = s \} \]

\(F \) acts on \(I/F \) and \(\mathfrak{a} \) as finite order automorphism of \(T(\overline{\mathbb{Q}}) \) (for \(\mathfrak{a} \)).
\[K \]

\[L' + (g, s) = \text{Same as } L \]

\[L + (g, s) = (1 + i)(q, s) \]

Recall from D-L theory:
\[R_E := \frac{1}{1+i} \sum_{w \in W} Tr(wE) R_w \]

Analog:
\[K_E := \frac{1}{1+i} \sum_{w \in W} Tr(wE) K_w \]

Miracle before:
\[R_w = \sum_{E \subseteq G^F} \frac{E}{E} \to \text{as } w \in G^F \]

\[E \to \text{character table of } H/E \]

\[[K_w := \text{have to use purely } K_w \text{ character tables}] \]

\[E \text{ trivially } \]

\[R_w = \sum_{E \subseteq G^F} \frac{E}{E} R_E \]

\[E^* = \text{I} \text{H imp important to } E \]

Analog:
\[K_E = \sum \frac{E}{E} \]

\[K_{E'} = C \]

\[K_{E'} = \frac{1}{2} [C_2 + C_2 - 2 \cos \theta] \]

\[K_{E'} = \frac{1}{2} [C_2 + C_2 + 2 \cos \theta \]

\[K_{E'} = \frac{1}{2} [C_2 + C_2 + C_2 - 2 \cos \theta] \]

\[\text{Suggested by pattern above} \]

\[\text{Function associated to } \phi \text{ is } K_{E'} \text{ gives character of principal series rep } \]

\[\text{Not irreducible any more } \]

\[\text{Irreducible character, but gives irreducible character} \]

\[\phi \text{ gives character of cuspidal unipotent of } G \]
$C(\mathfrak{g}) = C_1 + C_2 - C_0$, comes from Steinberg rep - so we're only counting of Steinberg rep - but only for conjugacy class that split over our field already (those listed are all classes over the alg. closure).

Non-semisimple alts have vanishing Steinberg character!

There is actually a single conjugacy class $\begin{array}{c} \mathfrak{g} \\ \mathfrak{g} \end{array}$ is actually a single conjugacy class

D is middle extension of this piece is actually just extension by zero.

$D = \mathfrak{g}^{2Cusp} \oplus \mathfrak{g}$ (cusp is IC of the sysm \mathfrak{g})

D is actually an IC complex! once we account for piece $C^n C^n$

everything left satisfies property to be an IC complex...

$D = \mathfrak{g}$, middle extension of \mathfrak{g}.

$k_0 = C(1) + C(K_2^0) + C(\mathfrak{g}) \Rightarrow k_0 - k_0 = C(K_2^0) - C(\mathfrak{g})$

$k_0 = C(1) + C(K_2^0) + C(\mathfrak{g})$

$C(\mathfrak{g})$ comes from local system on \mathfrak{g}, by fact comes from a character of Weyl groups (though $\Pi, C(point) \neq 0$) => so it's $C(K_2^0)$.

Recall: $G = SL_2, \ G/\mathfrak{p} = SL_2$, $G/\mathfrak{p} = SL_2$

$\{g, \tilde{g} : g \mathfrak{p} = \tilde{g} \mathfrak{p}\}$ = $Z = \mathfrak{g} \cap G/\mathfrak{p}$

$R_{\mathfrak{g}}^G (\mathfrak{g}^{IC(2)}) = L$

L We write L as direct sum of irreducibles $L = (1 + 2^0 \mathfrak{g}^2) (C(1)) + 2^0 \mathfrak{g}^{2Cusp} + 2^0 C(K_2)$

Let $Z' = \{ (g, \tilde{g}) : g \mathfrak{p} \neq \tilde{g} \mathfrak{p}\}$

$L' = R_{\mathfrak{g}}^G (\mathfrak{g}^{IC(2')})$
<table>
<thead>
<tr>
<th>Codim</th>
<th>Typical elt. in stratum $a, b, f \neq 1$</th>
<th>a^{16}</th>
<th>a^{17}</th>
<th>a^{18}</th>
<th>a^{19}</th>
<th>a^{20}</th>
<th>a^{21}</th>
<th>a^{22}</th>
<th>a^{23}</th>
<th>a^{24}</th>
<th>a^{25}</th>
<th>a^{26}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>a^{1}</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>a^{1}</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>a^{1}</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>a^{1}</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>a^{1}</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>a^{1}</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Codim</th>
<th>Typical elt. in stratum $a, b, f \neq 1$</th>
<th>a^{16}</th>
<th>a^{17}</th>
<th>a^{18}</th>
<th>a^{19}</th>
<th>a^{20}</th>
<th>a^{21}</th>
<th>a^{22}</th>
<th>a^{23}</th>
<th>a^{24}</th>
<th>a^{25}</th>
<th>a^{26}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>a^{1}</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>a^{1}</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>a^{1}</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>a^{1}</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>a^{1}</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>a^{1}</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
As we saw for Sp_4 (keeping track of shifts),

\[K_\nu = \sum_{E \in W} \nu(E) K_E \]

(Lusztig: Character Sheaves III
Cor. 14.11 p299)

\[K_E := \frac{1}{|E|} \sum_{E \in W} \nu(E) K_E \]

The computation we did in the beginning of this section discusses shifts

For associate to K_ν in $\sum_{E \in W} \nu(E) K_E$ (Case of $\Pi(E)$)

\Rightarrow An associated to K_E is $\Pi(E)$.

Last time:
$G = SL_2 \rightarrow \mathcal{U} = \{\text{unipotents}\} = G_0 / Z \cdot G_0$
- Stabilizer of $(0,1)$ is $\pm (1,0)$.
- Class ν_2:
 $\mu_2 \times \text{Lang}
\Rightarrow 2 \cdot G_0$-equivalent
- Local systems on U, \mathcal{O}_L and $L = L_\mathcal{O}$.

- Extend by 0 of \mathcal{O}_L to G is by a middle extension

$\mathcal{O}_G \rightarrow G \rightarrow \text{Rk}_Z L$.

Clue: this extension is a character stack on SL_2.

$W = \{e, w_0\}$

\[G \rightarrow T / T^2 \]

General: $G \rightarrow \text{(w-1) T}$

Start quotient of T by T, acting on itself by x-ray
we get

$N \gg 0$ prime to characteristic \Rightarrow the local action
which is $T^N \& (w-1) T$-equivariant
- Pull up and push forward,
- Get local sys on $G \rightarrow \text{character stack.}$

In our case $w - 1 = 2 \Rightarrow T / T^2$, \exists 1-dim rational
T^2-equivariant local sys on T.

Our C: $\Pi_1(T) = \mathbb{Z}$, our loc sys is 1-dim map $Z^2 \rightarrow \mathbb{A}$

$R_{T_1, \nu}$, $G \rightarrow T / T^2$

\[
\begin{array}{c|c|c}
\nu & h(c) = h(\mathcal{O}_L) & \text{empty} \\
\hline
1 & 0 & \text{empty} \\
\hline
-1 & 0 & \text{empty} \\
\hline
\end{array}
\]

Our loc sys is trivial (as...)

$\text{not simp connected}$

$\text{Pic}^0 \simeq \mathbb{G}_a$.

$\mathbb{P}^1 \times 0 \Rightarrow \mathbb{A}$.
we get exactly our local system on unipotent s & mobyle extract:

\[\text{RT} \times \mathbb{C} \cong k^+ \left(\text{SL}_2 \left[k^+ \right] \right) \]

Relate this cuspidal character start

\[\text{conagrey class } j = \left(\begin{array}{rr} 1 & 0 \\ 0 & 1 \end{array} \right) \quad g = \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array} \right) = s \in \text{Jord} \]

Centralizer \(G_s = \left(\begin{array}{cc} x & 0 \\ 0 & x^{-1} \end{array} \right) = \text{SL}_2 \times \text{SL}_2 \)

\(u \in G_s \) is reg \(\text{unipotent} \times \text{reg \ unipotent} \).

Write \(G(x) = \{ x'g x \mid x \in G \} \)

What is \(G(x) \subset G \)?

\[G \times G(x) \overbrace{\longrightarrow}^{G(x)} G \]

\(y \in u \), \(x' \) \(\in G(x) \) \(\in (x, y, y') \) \(\in G(x) \) \(\in G \)

\(G(x) \) is closed.

In general, this describes closure of orbits of elements using Jordan form:

\[G \times G(x) \overbrace{\longrightarrow}^{G(x)} G \]

\(G \)-equiv \(\langle \text{loc sys on } G(x) \rangle \) \(\iff \) \(G \)-equiv \(\langle \text{loc sys on } G(x) \rangle \)

So reduces our question to \(\text{SL}_2 \times \text{SL}_2 \):

\(\langle \text{SL}_2 \rangle \) on \(\text{SL}_2 \times \text{SL}_2 \) \(\iff \) \(\text{cusp def } G_{\text{sl}} \) for \(G_4 \).

Springer theory

\[G = \{ (g,x) \in G \times G \mid g \times x \} \]

\[K = \text{RT}_+ \left[\mathbb{C} \right] = \text{RT}_+ \left[\mathbb{C} \right] = \mathbb{C}^+ \left[\mathbb{E} \right] \otimes \mathbb{C} \left(E \right) \]

\(\hat{u} \in \hat{G} = \hat{G}_x \)

\(\hat{u} \) nonsingular & \(\hat{t} \) small

\[\text{Tu} \]

\[\text{Tu} \]

\(u = G \) \(= G_x \)

\(\langle u, \text{Tu} \rangle \) small:

\(\text{Tu} \) is small enough:

look at \(u \) \(\hat{u} \) \(\mathbb{E} \)

\(\hat{u} \) nonsingular \(\left(-T \times G / B \right) \) \(\dim \hat{u} = 2 \cdot \dim G / B \)

\(\mathbb{E} \) large enough.

\(\text{Tu} \) is small enough:

look at \(\hat{u} \) \(\hat{u} \) \(\mathbb{E} \)

\(\hat{u} \) is small enough:

look at \(\hat{u} \) \(\hat{u} \) \(\mathbb{E} \)

\(\hat{u} \) large enough.

\(\text{Tu} \) is small enough:

look at \(\hat{u} \) \(\hat{u} \) \(\mathbb{E} \)

\(\hat{u} \) is small enough:

look at \(\hat{u} \) \(\hat{u} \) \(\mathbb{E} \)

\(\hat{u} \) large enough.

\(\text{Tu} \) is small enough:

look at \(\hat{u} \) \(\hat{u} \) \(\mathbb{E} \)

\(\hat{u} \) is small enough:

look at \(\hat{u} \) \(\hat{u} \) \(\mathbb{E} \)

\(\hat{u} \) large enough.

\(\text{Tu} \) is small enough:

look at \(\hat{u} \) \(\hat{u} \) \(\mathbb{E} \)

\(\hat{u} \) is small enough:

look at \(\hat{u} \) \(\hat{u} \) \(\mathbb{E} \)

\(\hat{u} \) large enough.
Only one proper belongs U! But all maps are done for smallness.

Proper small maps from zero module nonsingular $(XY$ nowhere $) \Rightarrow$ in codata category $\text{End} (R_f * Q_e) = D^X_C (Y * Y, Q_e)$

$Q_e = \sigma _{x = x \in Y} \Rightarrow$ a codega $(\text{then } 0 \text{ smallness})$

$\text{Right : } R_f \{ Y * Q_e \}^B = A \Rightarrow (X * X) A * A \\
\text{Left : } D(A * B) = D(R_f * A, D B)$

$\Rightarrow R_f (R_f \{ A * B \}, D B) = D R_f \{ A * B \}$

\text{proper : } f = _f \\
\text{Right : } R_f (R_f \{ A * B \}, D B) = D R_f \{ A * D A \} \Rightarrow \text{non-singular : } D\bar{Q}_e = \bar{Q}_e [E * E]$

Typically get $D^X_C (Y * Y, Q_e)$ middle codega, but the smallness $= \dim X = \dim Y$ aka, modulo is actually the map $\Rightarrow (0 \text{ rel. dim}) \Rightarrow \text{just count vectors}$

$\Rightarrow \dim \text{End} R_f (\{ Q_e \}) = |W|$ unital twist

In end $\Rightarrow \text{End} R_f (\{ Q_e \}) = D\{ W \}$ using $\text{NS} S$ (say)

But $R_f (\{ Q_e \}) = R_f (\{ Q_e \})$ (prop. base change)

So $\{ W \} = \text{End} (K_f) \xrightarrow{\text{res.}} \text{End} R_f (\{ Q_e \})$

Claim it is an isomorphism (easy to show injective!)

In fact, enough to look at sheaves over identity $1 \in U$

$\Rightarrow \text{map to } \text{End} (\text{sheaf of } Z) = \text{End} (H^* \{ W \})$

\text{get faithful rep of } W

(our $\sigma < \mathcal{O} / \bar{W}$ is K / T correct rep)

So by perverse sheaf $R_f (\{ Q_e \} [w: 2c]) = 0$ imm $\text{end} I$ contains by dora lemma (cover alg curve), with $\text{Endo} = \{ W \}$
\[K \backslash U = \bigoplus_{E \in \mathcal{E}} E \mathcal{E}(E) \backslash U, \quad \text{each component can't break up further since endomorphism are the same.} \]
(End doesn't get bigger on \(U \)) \(\Rightarrow \mathcal{C}(E) \backslash U \) instead perseveres sheaf (as in \(G \text{-stuff} \).) \(\mathcal{C}(E) \text{-equivariant} \) (again de bods.)

\(U = \text{finite union of univalent classes}, \quad G \text{-equivariant} \)

So \(\mathcal{C}(E) \backslash U = \text{middle extension of local systems on univalent orbits.} \)

\[\Rightarrow \text{ Springer map } \quad W \longrightarrow \{ [U, L] / [U, L] \text{ univ. class } L \text{ for } g \in G \} \]

\[u \longmapsto \mathcal{C}(E) \backslash U = \mathcal{C}(E) \mathcal{E}_{\text{univ}} \]

\(\text{and } L \rightarrow \text{ rep of stabilizer group } T \text{ of } (G, U) \)

Miracle's theorem on character of Hecke

\(\mathcal{H}^{c}(X_{W}) \text{ as } G^{x}(F) \text{-linear combo of } \mathcal{B}^{x} \text{ with roots chosen of } \mathcal{B}_{W} \ldots \)

First study \((g \in G^{x}) \) \(\mathcal{H}(g; F_{x}^{\infty}, H^{c}_{x}(X_{W})) = \) \(r \geq 1 \)

\[= \ast \{ h : G^{x} / g^{x} : h \rightarrow g^{x}(F_{x}) \in \mathcal{B}^{x} w B \} \text{ (twisted)} \text{ (integral)} \]

- use Lefschetz formula = count \(\mathcal{B}^{x} \)-eigenparts of \(g^{x} \) on \(X_{W} \)

\(\text{(left } G \text{-module, category commut.)} \) + Lang's tech for \(B, F_{x}^{\infty} \) + Lang's tech for \(G, F_{x}^{\infty} \) \ldots \text{ Need } r \geq 1 \text{ to control Lefschetz !}

Here \(g^{x} \in G^{x} \) is defined as follows: choose (by Lang)

\[x \in G^{x} \backslash F^{x}, \quad g = F^{x}(x), x^{-1} \text{ (not unique...)} \]

\(g^{x} = x^{-1} F^{x}(x) \). Ambiguity in \(x \) is somehow fixed by \(F^{x} \).

\[\Rightarrow g^{x} \text{ well defined up to } F\text{-conjugacy} \]

\(g^{x} = x^{-1} g^{x}(x), \quad x \in G^{x} \)

1. \(g^{x} \in G^{x} \): work in \(G^{x} X(F) \),

\[g^{x} F_{x} = x^{-1} F_{x} \times \quad F_{x} = x^{-1} (g^{x} F_{x}) x \]

ie. pair \(g^{x} F_{x} \) are taken to \(F_{x}, g^{x} F_{x} \) by \(x \)-conjugation. So \(g^{x} F_{x} \text{ commute iff } F_{x} \text{ commute} \Rightarrow g^{x} \text{ commutes with } F_{x} \leftrightarrow g \text{ commutes with } F_{x} ! \]

but \(\mathcal{B}^{x} \neq \emptyset \) !

2. The \(F \)-equiv- class of \(g^{x} \) is well defined.
get bijection $G^F/\text{F-conj}_u \rightarrow G^F/\text{F-conj}_u \quad (\text{Shintani})$

3. Moreover, cardinality $|\text{conj class of } g| = \frac{|\text{F-conj class of } g^*|}{|G^F|}$

(came up when composing inner product of class function.)

Consider induced rep $I(\psi) = C[G^F/\text{F conj} \rightarrow C$ rep of $G^F/\text{F conj}$:

For $g^* \in G^F$, acts by $(g^* \phi)(x) = \psi(g^* x^{-1} x)$

$H(\psi) = C[B^F \backslash G^F/\text{F conj}] = \text{End}_C I(\psi)$

$\psi: g \mapsto \psi_g = \phi_{\text{F conj}}$, $\epsilon_f = \text{F conj}$, $\phi_g = \epsilon_f$

$\left(T - \psi(g) \right) \phi_g = \sum_{x \in G^F/\text{F conj}} \frac{\chi_{(x)}(g)}{\chi_{(x)}(g^*)} \phi_g$

Calculate: $\text{tr} (g, F \cdot T_w, I(\psi)) = \# \{ x \in G^F/\text{F conj} : xg^*x^{-1} (g^*) \}$

Note: Frobenius acts trivially on $V \Rightarrow$ hence on $H^{-1} : F = \text{id}$.

So $g F, T_w$ commute.

Save formula we saw for trace on $H^{-1} \chi_{(\psi)}(x) \cdots$

\[
\begin{bmatrix}
\text{Upshot} & \forall \psi, \ g^* x = x \Rightarrow \text{tr} (g, F \cdot T_v, I(\psi)) = \text{tr} (g^* F \cdot T_w, I(\psi))
\end{bmatrix}
\]

Lemma G affine, group, σ automorphism of G, $G^\sigma = G^\sigma/\langle \sigma \rangle$

V f.d. rep/C of G which is fixed as σ-module G^σ

Then \(\langle \sigma, \theta \rangle \sigma = 1 \)

saying: g, h in G, $\langle g, h \rangle = \frac{1}{|G|} \sum g^i(h^jg^i \overline{g^j})$

$s = \langle \sigma^i \rangle \sigma^i$, $\langle \sigma^i \rangle = \frac{1}{|G|} \sum g^i(h^jg^i \overline{g^j})$

Hint for proof: Choose bijective char from $\langle g \rangle = \mathbb{Z}/n \rightarrow \mathbb{Z}^*$

Get homomorphisms $G \chi(\sigma) \rightarrow (\sigma^i) \rightarrow \mathbb{Z}^*$, $i = 1, \ldots, n,$

$V \otimes \chi \cong V \otimes \chi$ is σ-invariant $
ightarrow$ since V isn't G-equivariant.

use usual orthogonality relations on $G \chi(\sigma)$.
Goal: express trace of $H_c(X^w)$ as $\sum_{E \in \mathcal{T}(q^r, \mathbb{Q})} \text{tr}(g_s^*F, T_E)$

for see \mathbb{K}^r (following Asgeir Tórnadóttir)

\[
\forall w \in \mathcal{W}, \quad \text{tr}(g_s^*F; H_c(X^w)) = \text{tr}(g_s^*F; \mathbb{I}(q^r)) = \sum_{E \in \mathcal{W}} \text{tr}(g_s^*F, T_E(q^r)) \cdot \text{tr}(T_E, E(q^r))
\]

System of equations labeled by w.

\[
\text{End}_{\mathcal{W}} \mathbb{I}(q^r) = [\text{End}_{\mathcal{W}} \mathbb{I}(q^r)]^F = H(q^r)^F = H(q^r)
\]

\Rightarrow invert for g_s^*F as $\text{End}_{\mathcal{W}} \mathbb{I}(q^r)$ is not changed when we restrict from large group to smaller group, so decomposition into irreps is same, so $T_E(q^r)$ extended canonically to reps of $G^F \times F$.

Principal series reps carry canonical F-action.

Have g_s-analog for $H_c(X^w)$ of orthogonality relation for w.

For rational reps $f_w, E \in \mathcal{G}$ (induced σ) s.t.

\[
\forall E \in \mathcal{W}, \quad \sum_{w \in \mathcal{W}} f_w(E(q^r), \mathbb{I}(q^r)) = \sum_{E \in \mathcal{E}} f_w(E(q^r), \mathbb{I}(q^r)) = 0
\]

- Let's invert (conjugate) matrix of character table.

- Multiply σ by f_w, E' and sum over w \Rightarrow get

\[
\text{tr}(g_s^*F, T_E(q^r)) = \sum_{w \in \mathcal{W}} f_w(E(q^r), \mathbb{I}(q^r)) \cdot \text{tr}(g_s^*F, H_c(X^w))
\]

This is one linear combo of class reps on G, must be a combo (for fixed σ) of linear combo of the unipotent characters.

\[
\Rightarrow \text{tr}(g_s^*F, T_E(q^r)) = \sum_{\text{unip. rep} \ of \ G^F \times F} c_{E, \sigma}(r) \cdot \text{tr}(g_s^*F)
\]

Will show the $c_{E, \sigma}(r)$ are very simple σ of r.

We know σ-vals of F on unipotent reps appear in different cocharacter classes of G, and pairs of q.

\[
\Rightarrow c_{E, \sigma}(r) = \chi^r \cdot \text{val}_r \text{nd } \text{ord } q \text{ val } \text{p} \text{ of } \sqrt{q^r}
\]

\[
\chi^r \text{ nd } q \text{ val } \text{p} \text{ of } \sqrt{q^r}
\]
2. (normalize λ_0 using Riemann hypothesis: compare $H^i_{\mathbb{C}^+}(K, \mathbb{C})$ to \mathcal{IC}: all these will also appear in $\text{see } \mathcal{IC}$, so points of F are algebraic numbers $\lambda_0 \in \overline{\mathbb{Q}} \subset \mathbb{C}$ with $\text{L}(\zeta_0) = 1$ for $\forall \lambda_0 : \overline{\mathbb{Q}} \hookrightarrow \mathbb{C}$: all these numbers are seen and one \mathbb{C}^2.

- $C_{\mathbb{P}, P}(r) \in \mathbb{Q}(\lambda_0, \mathbb{C})$ number field.

- $16^2 \cdot C_{\mathbb{P}, P}(r)$ is an algebraic integer: i.e. LHS of XXX.
 - write class $F \to (5^t, \mathbb{Q}(\zeta_0^n))$ in terms of characters:
 - get algebraic integer divided by order of group: there are alg integers.

- Fix $\zeta_0 : \overline{\mathbb{Q}} \hookrightarrow \mathbb{C}$. Take ζ_0 on G^F be even XXX:
 $$\sum_{r \leq P} |C_{\mathbb{P}, P}(r)|^2 = 1$$

Applying (3) plus known about abelian groups: inner of $G \times G^F$
- inner product of $0 + r(5^t, \mathbb{Q}(\zeta_0^n)) = 1$.

Now fix E, P and consider $\{C_{\mathbb{P}, P}(r) \}$ for $r = 1, 3, 3, \ldots$:
- all in see number field, alg integers $/16^2$, and all their complex absolute values $|C_{\mathbb{P}, P}(r)| \leq 1$ $\forall r$.

So by number theory this set is finite!

- but there are of form $\lambda_0^r \cdot$ (not ζ_0 of ζ_0^n).

=> if not identically zero, must have different values of r where these numbers are seen, so see more of λ_0 is real.

\therefore see pair of λ_0 is ± 1. i.e. $\text{max } |C(P)| = 1$.

So λ_0 is a root of unity (if $C_{\mathbb{P}, P}(r) \neq 0$).
 - for given P need to show $\forall E \neq \mathbb{E}$ were $k_1 \neq 0$ -
 - would contradict fact that might not have all appear in see cohomology ... $\forall E \neq \mathbb{E}$ $C_{\mathbb{P}, P}(r) \neq 0$

$\Rightarrow \lambda_0$ is not of \mathbb{Q}.

So now vary our r. We $\lambda_0^r = 1 = \text{root of } \mathbb{Q}$.

Taking are value as many times: so this root \mathbb{Q} is only a rational number.

- $C_{\mathbb{P}, P}(r) = \zeta_{E, P} \lambda_0^r$, $\zeta_{E, P} \in \mathbb{Q}$.
We now get
\[
\text{tr}(gF, \mathcal{H}^E(\mathcal{X}_w)) = \sum_{E \in W} \sum_{\rho \in \rho} \chi^\rho \rho(g) \cdot \text{tr}(g, E(g^\rho))
\]
\(r \geq 1\)

both sides depend coherently on \(r\) via the powers of eigenvalues
-- so by linear algebra this formula must also be valid
for \(r = 0\)? (can't really use this for \(r = 0\))

\[
\text{tr}(g, \mathcal{H}^E(\mathcal{X}_w)) = \sum_{E \in W} \sum_{\rho \in \rho} \chi^\rho \rho(g) \cdot \text{tr}(g, E(g^\rho))
\]
\(G \in (T_w \times W)\)

apply orthogonality relations to \(W \Rightarrow\)
\[
\sum_{\rho \in \rho} \chi^\rho \rho(g) = \text{tr}(g, E(g^\rho))
\]

So \(\chi^\rho \rho\) are just multiplicity \(a_{E, \rho} = \langle \rho, E \rangle\).
Taking \(r\) that kills the root of unity \(\chi^\rho\), set \((\sum_{\rho \in \rho} \chi^\rho \rho(g) = 0)\)
\[
\text{tr}(gF, \mathcal{H}^E(\mathcal{X}_w)) = \sum_{E \in W} \text{tr}(T_g, E(g^\rho)) \cdot \text{tr}(g, E(g^\rho))
\]

We also have now \(\chi^\rho \chi^\sigma: \text{tr}(g^{\# F}, \mathcal{H}^E(g^\sigma))\)
\[
\sum_{\rho \in \rho} \langle \rho, E \rangle \chi^\rho \chi^\sigma \rho(g) \cdot \text{tr}(g, E(g^\rho))
\]
so twisted character \((F-\text{class} F\sigma)\) on \(L(F)\)

can be written in terms of twisted characters:
\[
\rho_a \chi^\rho = 1 \Rightarrow \langle \rho, E \rangle = \delta_{\rho_a, E}
\]

\(\Rightarrow\) Shintani descent for \(G_a\):
\[
\text{tr}(g^{\# F}, \mathcal{H}^E(\mathcal{X}_w)) = \text{tr}(g, E(g^\rho))
\]

(but e.g. explicit in \(g \in \mathcal{X}_w\))