1. Review of spectral construction: basic objects of mathematics, duality: e.g. Fourier transform on locally compact abelian groups.

Spectral construction: particular matrix model of a spectral operator on vector space described using its spectrum.

V fid. vector space \(V \) \(\phi: V \to V \) endomorphism

\(\phi \) generic [diagonalizable] \(\Rightarrow \) can specify \(\phi \) by giving:
- \(\lambda_1, \ldots, \lambda_n \in \mathbb{C} \) eigenvalues
- \(L \subseteq V \) eigenspaces
- matching of \(\lambda_i \) with \(L_i \).

Spectral covers: let \(\phi \) vary in families: \(S \) parameter space, \(\phi_s \) \(E \to \mathbb{C} \) family of endomorphism, depending on \(s \in S \).

Repeating the construction for each \(s \) get covering space \(\tilde{S} = S \times C \), \(\tilde{S} = \{(s, \lambda) : \lambda \) eigenvalue of \(\phi_s \} \)

If all \(\phi_s \) have distinct eigenvalues \(\Rightarrow \)
- \(L((s, \lambda)) \subseteq V \) eigenspace with eigenvalue \(\lambda \) for \(\phi_s \).
- \(C \) complex line bundle \(L \to \tilde{S} \)

The data of \(\phi: S \to E \) \(\mathbb{C} \) completely encoded in data: \((\tilde{S}, C, L \to \tilde{S}) \) line bundle.

If have \(\phi \) with repeated eigenvalues \(\Rightarrow \) \(\tilde{S} \) branched covering space ... but \(L \) does not always make sense as a spectral object (except ...)

Important special case: \(\phi_s \) regular: can have repeated eigenvalues, but only one Jordan block per eigenvalue.

... in this case go again the bundle \(L \to \tilde{S} \times \mathbb{C} \)
More invariant: have the clear. pullback map
\[h : \text{End} \ V \rightarrow \mathbb{C}^n \quad \phi \mapsto (a_1(\phi), \ldots, a_n(\phi)) \]
\[\text{det} (I - \phi) = f \quad \text{a, } f = 1, -1, \ldots, -1 \]
All spectral maps (correspond to maps \(\phi : S \rightarrow \text{End} \ V \))
come as pullbacks (fiber products) of a universal spectral\(^\ast\)
cover \[\overline{C}^n \subset \mathbb{C}^n \times \mathbb{C}^n \]
\[\overline{C}^n = \left\{ (a_1, \ldots, a_n, t) \mid a_1^2 = a_2^2, \ldots, a_n^2 \right\} \]
\[\overline{S} : S \rightarrow \text{End} \ V \rightarrow \mathbb{C}^n \quad \overline{S} = S \times \overline{C}^n \]

Remark: Fibers of \(h : \text{End} \ V \rightarrow \mathbb{C}^n \) are \(GL(V) \)-invariant.
\(C^n = \text{End} \ V \sslash GL(V) \) GIT quotient:
points \(\overset{\sim}{\rightarrow} \) closures of orbits....
Orbit of regular elements (generic) are closed
in each orbit, there are two preferred orbits: an open and a closed orbit: maximal
and minimal dimensional orbits. Closed \(\Leftrightarrow \) semisimplicity of orbit, remember only \(\mathbb{C} \)-values.

Open \(\Leftrightarrow \) regular orbit
Regular elements/open orbits are ones that vary continuously
in families... good representatives for the moduli problem
here always have a preferred limit of many objects which are regular ends - on that of
our space as moduli of regular elements.

Extensions: i) Replace \(\text{End} \ V, GL(V) \) by \(\text{}\) \(G \) lie \(\text{\&} = \text{Ad} \) groups, reductive
ii) Allow twisted versions of \(\phi \):

- \(\phi \) can very \(\text{\&} \) vector space \(V \rightarrow \phi \in \Gamma(S, \text{End} E) \)
- \(E \rightarrow S \) vector bundles
- \(\phi \) can very coefficients of \(\phi \): replace \(C \) (ex. use \(\mathbb{C} \)-values like) by \(K \) coefficient object,
 \(\phi \in \Gamma(S, \text{End} E \otimes K) \)
 \(K \) abelian group
1.5 \(K = \text{vector bundle}, \quad K = \text{torus} \)
\(K = \text{affine torus}, \quad K = \text{commutative group stack} \)
\(K = \text{affine bundle} \) (Huyghs
\(\to B \cdot \text{fields} \)
\(\) as expansion of group by \(C \times \mathbb{Z} \).

2. Higgs bundles \(K = \text{vector bundle} \)

Start with vector bundles \(E \to S, \quad K \to S \) such \(\phi : E \to E \otimes K \) \(C^* \)-linear map

- replace \(\phi \) by spectral data...

Problem: spectrum of \(\phi \) may not be well defined for \(\mathbb{C} \) scalar \(\phi \).

Indeed: if we trivialize \(K \) on open set \(U \subset S \)
\(K|_U \cong C^*_U \), on \(U \phi \) is given by

\(\chi \) representation \(\Rightarrow \phi_1, \ldots, \phi_k \in \Pi(U, \text{End}(E)) \)

\(K \) spectral covers \(U \) associated to \(\phi_i \)’s...

have to take this union, but this depends on trivializability of \(K \)...... need to put conditions on \(\phi \) to make sense of this!

Most brutal & useful condition: require

that \(\phi_i \) span a commutative subalgebra of \(\Pi(U, \text{End}(E)) \)

\(\iff \phi \wedge \phi = 0 \) as solution of \(\Pi(S, \text{End}(E) \otimes K) \)

"integrability"

Def. A Higgs bundle on \(S \) is a pair \(E \to S, \quad \phi : E \to E \otimes K \) s.t. \(\phi \wedge \phi = 0 \).

Similarly Higgs sheaf.

Note \(\phi \) gives a map \(K^* \otimes E \to E \) from free associative algebra generated by \(K^* \) \(\text{Ann}(K) \otimes E \to E \)

Integrability \(\phi \wedge \phi \iff \text{Ann} \) retracts through torsion subalgebra symmetric algebra \(\text{Sym} \cdot K^* \otimes E \to E \).

\(\text{Sym} \cdot K^* = \text{bundle of algebras on } S, \text{ relative alg of } H^* \text{ on } \text{tot}(K) \)
e tot \(K = \text{Spec} \, \mathcal{O}_K^v \) over \(S \).

\(\Rightarrow \) data \((E, \phi) \iff \text{module over } \mathcal{O}_K \iff \)

\(\text{quasi coherent sheaf on } \text{tot}(K) \)

\(\xrightarrow{\text{etale}} \quad S \)

(\(\mathcal{O}_K \)-coh sheaves on \(X \)) \(\iff \)

(\(\mathcal{O}_K \)-coh Higgs sheaves on \(S \))

(coherent \(\mathcal{O}_K \)-sheaves on \(S \))

(\(\phi \)-coherent \(\mathcal{O}_K \)-sheaves on \(S \))

ie coherent support \(S \)

\(\iff \) support finite over \(S \).

\(\exists \xrightarrow{\text{etale}} \quad \text{take } \quad E = \mathcal{O}_X \cdot \mathcal{E} \),

\(\mathcal{E} = \mathcal{O}_X (\lambda \cdot -) \quad \lambda : \Pi(X, \mathcal{O}_K^v) \) tautological section of \(\mathcal{O}_X \mathcal{O}_K^v \)

\(\mathcal{E} \xrightarrow{\mathcal{V}} \mathcal{E} \otimes \mathcal{O}_X \mathcal{O}_K^v \)

\(\mathcal{E} \xrightarrow{\mathcal{V}} \mathcal{E} \otimes \mathcal{O}_X \mathcal{O}_K^v \)

Conversely if \((E, \phi) \) Higgs sheaf on \(S \)

- take \(\mathcal{E} = \ker \left(\mathcal{O}_X \mathcal{O}_K^v \xrightarrow{\phi - \lambda \cdot \text{Id}} \mathcal{O}_X \mathcal{O}_K^v \right) \)

"det \(\phi - \lambda \cdot \text{Id} \) is characteristic polynomial ... \(\ker \left(\phi - \lambda \cdot \text{Id} \right) \)

is eigenline ... spectral data of \((E, \phi) \).

Supp \((\mathcal{E}) = S \) spectral variety.

3. D-branes & Higgs bundles

(1) \((S, \Sigma) \) compact Kähler manifold & \(\Sigma \) real analytic Kähler metric

\(K = \Sigma \quad X = \text{tot } K = \text{tot } (\Sigma^v) \xrightarrow{\mathcal{V}} S \)

holomorphic bundle \(B \quad X \) is algebraic symplectic manifold

\(S \subset X \) zero section : Lagrangian subvariety

1999: \(B. \) Feix & D. Kaledin — a formal neighborhood of \(S \subset X \) has a unique hyperkahler metric

which restricts to \(S \) ... integrates to a tubular neighborhood, for \(\Sigma \) real analytic.

Cebi: found his HK metric for \(\mathbb{CP}^n \), then it integrates to whole \(\mathbb{T} \) not complete, deduced ... can do for other Fano's ... (excluded by homogeneity)
(1) \(E \subset X \rightarrow (E, \varphi : E \rightarrow E \otimes \Omega^2) \)

(Sigma--Calabi-Yau) \(\rightarrow \) flat complex connections on \(S \) \(\rightarrow \) Rep \(\mathcal{N} \)

Explicit bundle on \(B \)-branes on \(X \).

(2) \(Z \) three-dimensional CY, compact,
\(C \subset Z \) smooth curve. In M-theory: look at \(M \)-theory of BPS \(M \)-branes (M5-branes) \(\text{BPS}(Z, C, r) \).
BPS branes on \(Z \) with support of homology class \(r \cdot [C] \).
\(\text{Want to} \) count \(\text{intersect} \) virtual Euler class of BPS \((Z, C, r) \).
\(\text{Not well-defined} \) rigorously.
3 ways disjoint invariants of such curves, non-compact curves of arbitrary genus ...
\(\text{So what are we counting?} \)

Proposition: replace \(Z \rightarrow C \) by its linearization.
\(X \) to \(f(N_{C/Z}) \rightarrow C \) non-nil. Non-nil... NC CY coming from \(Z \) to \(X \).
\(C \xrightarrow{\iota} X \) new con project back on \(C \):
\(\text{BPS}(C, X, r) = \text{moduli of} \) \(\text{coh sheaves} \)
on \(X \), fibres of degree \(r \) over \(C \).
Ideas: not all branes will survive in this deformation to normal cone - most concompact disappear, blend together in linearization. Still a set of compact, but in fact \(\) not \(\) only way by

.. forget map of curve \(Z \rightarrow X \), but only \(\text{Nekrasov-Okounkov} \) brane sheaf.
\(\text{BPS}(C, X, r) = \text{moduli of} \) \(\text{Nekrasov} \) \(\text{branes} \)
on \(X \) of rank \(r \) on \(C \) ... has \(C^r \)-adic
\(
\) \(\text{con couple Euler characteristic} \) by localization.

(3) \(A \)-branes on CY: non-holomorphic Higgs bundles used as \(A \)-branes.
A-branes \(X \) smooth CYs, \(M \times X \) compact SLAC

\(n \)-types of A-branes wrapping \(M \) are classically described by a rank \(n \) complex flat connection on \(M \) [Glownika]

Idea: linearize \(X \) near \(M \) \(X \times M \rightarrow T^*M \)

noncompact CY, YM field on \(T^*M \) satisfying SUSY equations

- do a dimensional reduction (Kahler-K"ahler) down to \(M \)
- for this need transverse Section or project to \(M \),
 which is why we linearize ...

Get \(\varphi, \Lambda \) \(:= \frac{1}{2} \Lambda_r x \frac{1}{2} \varphi \) some \(M \)

\(\varphi^+ = - \varphi \) wrt hermitian metric provided by \(\alpha \)

\(\nabla \varphi = 0 \) \(\Leftrightarrow \) F-flatness \(DA \times \varphi = 0 \) \(\Rightarrow \) D-flatness

Note: take \(A = a + \mathcal{F} \varphi \) \(\Rightarrow \) A flat \(\Leftrightarrow \) F-flatness

Rank 1: interpreted \(\varphi \) as deformation of the SLAC,
\(\Rightarrow \) get complex moduli; \(F \)-flatness \(\Rightarrow \) combining \(\alpha \) \((U(n)) \)-connection

\(\alpha \) deformation of SLAC

Higher rank: \(\Rightarrow \) get complex moduli; must take \(\varphi \) into account, no longer just deformations of SLACs.

- that's why we need all complex structures on \(M \), not strict ...

Conversely: \(A \) complex flat connec.

\(\nabla - \text{Hermitian metric on } V \Rightarrow \) can break \(A = \alpha + \mathcal{F} \varphi \)

\(\alpha \) = piece of \(A \) projectivity metric \(h \).

\(D \)-flatness for \(\varphi \) is now an equation for the metric \(h \)

\(\Rightarrow \) Theorem (Collette): \(M \) compact Riemannian manifold,
\(V \) complex vector bundle, \(A \) flat connection on \(V \)

\(\Rightarrow \) \(\exists h \) on \(V \) s.t. \(DA \times \varphi = 0 \) \[A = \alpha + \mathcal{F} \varphi \] with ...
2. If (VA) simple $\Rightarrow h$ is unique, $& a$ is flat.

Deform flat unitary to pairs (g, ϕ) satisfying F.D. relations \Rightarrow just odd Higgs fields w. rep h, harmonic near unitary pts model; looks like harmonic Higgs fields for metrics on $\text{Rep}(\mathbb{C}^\infty_G, \text{Gauge})$.

K"ahler: Higgs fields (a not real, flat) \leftrightarrow

all complex flat connections (not real, simple).

Questa: is there a quantization of the harmonic map equation on h (universal form \rightarrow symmetric space) taking h account the quantum corrections to A-branes?

Interesting examples of moduli of harmonic maps on hyperbolic 3-manifolds $\dddot{0}$. $\dddot{0}$

Example $T = \mathbb{R}^3 / \mathbb{Z}^3$ with flat metric g

x_1, x_2, x_3 real on \mathbb{R}^3. $D = \mu_2 \times \mu_3$. Define set \mathcal{P} of sets $\mathcal{P} = \{ (x, y) : x^2 = y^2 = 1, x_2, x_3 \in \mathbb{Z}^3 \}$

$0 \rightarrow \mathbb{Z}^3 \rightarrow D \rightarrow \mathbb{Z}/2 \times \mathbb{Z}/2 \rightarrow 0$ $\text{Ker} \phi$

covers \mathcal{P}. ϕ acts on D, $\phi(x) = (-x_1, -x_2, -x_3)$

$\phi(x) = (x_1, \frac{x_2}{2}, -x_3 + \frac{x_3}{2})$

ϕ acts on T, $\phi(x) = (x_1, \frac{x_2}{2}, -x_3 + \frac{x_3}{2})$

ϕ acts on \mathcal{T}, $\phi(x) = (x_1, \frac{x_2}{2}, -x_3 + \frac{x_3}{2})$

$\phi(x) = (x_1, \frac{x_2}{2}, -x_3 + \frac{x_3}{2})$
Also cos to reach moduli of complex Cal. G₂ structures on M-theory dual.

Moduli of flat connections on M:

\[\text{Loc}_n(M) = \text{Hom}(\pi_1(M), G_2) \cong GL_n(C) / GL_n(C) \]

Center \(\langle \beta^2 \rangle \) acts as translation by a 2-torsion point on \(T : M = (T / \mathbb{Z}) / \text{Gal} \)

\[0 \to \mathbb{Z} \to \pi_1(M) \to \pi_1(N) \to 0 \]

Write by genus & mutations \(\Rightarrow \) ample \(\text{Loc}_n(M) \)

eg \(n = 1 \):

\[\text{Loc}_1(M) = 16 \text{ isor. 45 points} \]

\(n = 2 \):

\[\text{Loc}_2(M) \] 41 connected components, 3 pts;

one trivial \(Y \) (complex) ; 3 copies of \(\mathbb{C} \) at each origin.

Other side of mirror symmetry: will be a gerbe over a CY, won't have many points!

Main problem: understand \(Y \) using T-duality ...

\[X = \text{tot}(T^*M) = \text{tot}(T^*T / \mathbb{Z}) / \text{Gal} \]

Very natural SLAG form fibration:

\[T^*T \to T^*T_0 \]

Project trivial bundle on fibers to

\[T^*M \to T^*T / \mathbb{Z} = T^*T / \text{Gal} = \mathbb{C}^* \] acting trivially on translation invariant forms

acting on \(T^*T \) is product of affine action on \(T \)

\(\tilde{T} \) is linearized on the fibers ... \(X \to B \) is SLAG form fibration with \(\tilde{T} \mapsto 2 \tilde{T} / \mathbb{Z} \)

... acts a field of cycle shifts of \(\phi \) (horizontal)

\(\phi = \text{dimension of } X \)
Theorem: use covering T^*T where there are no singular fibers, then double the result by D acting dually.

T-dual of $T^*T \cong T \times T^* T$ is

$T \times T^* T \quad T$ dual tori $= \text{univ!}$ of flat $U(1)$ connections on T

T-dual of $X := \frac{(T \times T^* T)}{D}$ as a complex manifold \mathbb{C}^3 acts by $\alpha(x, y, z) = (x^{-1}, y^{-1}, z^{-1})$... in this case acts faithfully $\cong \mathbb{Z}/2\mathbb{Z}$

$Y := \frac{[\mathbb{C}^3]}{D} = \mathbb{Z}/2\mathbb{Z}$—Serre's orbifold

Now compute \mathbb{H} of points on X. Since X is a stack, $\mathbb{H} = \frac{\mathbb{Z}}{2\mathbb{Z}}$—Serre's orbifold

Try to replace stack $\frac{[\mathbb{C}^3]}{\mathbb{Z}/2\mathbb{Z}}$ or singular space $\mathbb{C}^3/\mathbb{Z}/2\mathbb{Z}$ by crepant resolution.
category but to get moduli spaces need to specify
stability conditions & these do depend on choice of
comport resolution !

- try to work Y as $\mathbb{Z}/2\mathbb{Z}$-geometric

On start also need to choose which
are physical bases, and is stability condition -
are on comport resolution, need correct \mathbb{Z}-stability --
could be relevant previous e.g.

Natural guess: Bridgeled - King - Reid resolution ,
$K = \text{Hilb}(\mathbb{C}^3)$ K-compactly with regular
map of K as fiber

Problem: Loc. $(\mathfrak{n}) \neq \text{Hilb}, (\mathbb{Z}/2\mathbb{Z}$-geometric on \mathbb{C}^3)

Outside singular cases we know what's going on:
if be $B -$ determined, $X_b = \Pi$,
and the corresponding point $\Rightarrow Y = \text{a flat}
\text{over } \mathbf{U}(\mathfrak{n}) - \text{connected on } \Pi$.

$\mathfrak{m} = X \to B$ the maps 1:1 to M:
- specified cover for M

$V = \mathbf{P}^1 \mathfrak{L}$ is a flat \mathfrak{L} local system
on M, in flat $SO(4)$-sym.

Re-write $\mathbf{P}^1 \mathfrak{L}$ (via Cartier) as pair (a, ϕ)
$a = \text{flat } SO(4,\mathbb{R})$-connection & ϕ flat Higgs field

Fix \mathfrak{L} be for.

$\phi \in \Gamma(M, \text{ad } V \otimes A^m) \Rightarrow \text{flat}$ Higgs

$\mathfrak{m} \times \mathfrak{m} \otimes A^m \Leftrightarrow \text{flat}$
Proposed: $Y = \text{model of } (SU(4) \times SU(4))$ Higgs bundles on M (more precisely a compact) ---

birotational to what we had before. $(\mathbb{C}^*)^5/\mathbb{C}$

Here: this is smooth.

H/16: $\mathfrak{H}/16_2$ are indeed the corners: 16 pts

$[\text{on } \mathbb{Z}/16 \text{ get } a Y, \text{ unire}]$

Note: $Y \rightarrow B$ is the Hitchin map

on Higgs fields $q \rightarrow$ invariant roots of g as special case of q.

$B \subset \mathbb{R}^4$ as you see from
Quadratic Duality for Algebras

Prototype of spectral correspondence...

A = \mathbb{R}^n; graded algebra, assume A \text{ commutative}; A_0 = \mathbb{C}\; \exists \lambda = \mathbb{Z}

unit, & A \text{ locally finite dimensional}

Augmentation ideal \ A_+ = \{ \lambda \in \mathbb{C}; \lambda \mathbb{C} \}

Def. A is called quadratic if generated in deg 1 & relates in deg 2

\begin{align*}
& \text{tensor algebra } \ T^*(A_1) \xrightarrow{\text{can}} A \text{ remains map subject,} \\
& R = \ker \text{can} \cap T^2(A_1) \\
& \text{these two pair generates ideal } \ker \text{can} \Delta T^*(A_1) \\
\end{align*}

- i.e. A is really described by a pair of vector spaces:

\[V = A_1, \; \quad R = A_0 \otimes A_1, \quad \text{write } \ A = \{ V, R \} \]

- really equivalent of categories

Def. The quadratic dual \ A^! \ of a quadratic algebra \ A = \{ V, R \}

is the graded algebra \ A^! = \{ V^*, R^! \}\;\quad R^! = V^* \text{ on } \quad \text{this is where we need } A_1 \text{ finite dimensional, to say } \ A^! = A \otimes A^* \text{ instead of } \text{graded completion} \\

\quad \text{is an autoequivalence (contravariant) of } (\text{graded}) \mathcal{C} \text{, whose square is the identity.}

Examples:

\begin{align*}
& V \text{ finite vector space, } A = \{ V, 0 \} \Rightarrow \\
& A^! = C \oplus V^* \text{ superalgebra} \\
& \text{V vector space } \quad A = S^*V = \{ V, V^2 \} \\
& \Rightarrow \quad A^! = V \otimes V^* = \{ V^*, S^2V^* \} \\
\end{align*}

If \ M \text{ is a module over an algebra } \ A = \{ V, R \}

say \ M \text{ is quadratic if}

\begin{itemize}
 \item M is \ G\mathbb{Z} M_i \text{ graded module}
 \item \exists L \subset A, 6M_0 \text{ s.t. } \ M = (A \otimes M_0) / A \cdot L
\end{itemize}
\mathcal{M} quadr. $\Rightarrow \mathcal{M} = \mathcal{E} \mathcal{M}_0, L^0$ linear algebra data

Quadratic dual module $M^! A$ is

$\quad M^! = (\mathcal{A}^! \otimes L^0) / (\mathcal{A}^! \cdot L^1) \quad : \quad M^! = \{ \mathcal{M}_0, L^0 \}$

$\mathcal{A}^! : (A \text{-quad mod.}) \rightarrow (A^! \text{-quad mod.}) \quad \text{op}$

Example

- $\mathcal{C}^{\mathcal{A}^!} = A^!$
- $(A^!)^\mathcal{A} = \mathcal{C}$

Koszul algebras

Def A quadratic algebra A is Koszul if we have

an isomorphism of graded algebras $A^i = \text{Ext}^i_A (C, C)$

Yoneda Ext algebra of trivial module in algebra of graded algebras

[Problem: graded module category doesn't have enough
injectives or projectives -- need to "resolve" A by
a huge algebra...]

Ext^i_A is bigraded initially but here

the condition is that all non-diagonal Ext vanish:

In fact: (under assumption) A Koszul if $\text{Ext}^i_A (C, C) = 0 \text{ for } i \neq 0$

Def A quadratic module M/A is Koszul if

$M^! = \text{Ext}^0_A (M, C)$

Note $T^! V$ is Koszul, as are $5^! V, \wedge^! V$ [Steenrod algebra Koszul]

Want like to compare all objects over quadratic $A, A^!$

not just modules over algebras!

React: If $A, A^!$ are quadratic dual algebras

functor $D^b (A \text{-mod } F^0) \rightarrow D^b (A^! \text{-mod } F^0)$ greatest module

$M \rightarrow \text{cobar} (A, M)$

$\text{Cobar} (A) \text{ is a c.d.g.a. associated to } A:$

- $\text{Cobar} (A) = \pi (A^!, [-])$ as a graded algebra

(cobar bar said

algebraic codgds

so dualize)
Differential characterized by $A^+ \rightarrow A^+ \otimes A^+$ dual to $A^+ \otimes A^+ \rightarrow A^+$ multiplication... extended uniquely (essentially) to derivation $\text{Der}(A) = \text{Hochschild} \text{ cochains valued in } \text{trivial module}$.

(Scalar (A, M) = scalar $(A) \otimes M$ with different excinding vector of A on M)

Claim (Brenner-Gelfand-Gelfand) If A is finite dimensional & Koszul A is finite then $(\text{scalar } (A, M) \subset M^2$)

So derived category of quadratic algebras to all modules...

Filtered quadratic algebraically

L. A. Popov (ski), Funk (funct. anal.)

(Polishchuk - Popovski: Quadratic algebras - Polishchuk website)

A filtered algebra with $F^n A \subset F^m A \subset \cdots$ is finite dimensional (i.e. $F^n A$ is)

Spec A

A is filtered quadratic if A is generated in degree 1 with relations in degree two.

Start with $1 \in F^1 A$. Look at $n \rightarrow \text{Tor}_1 (1 \in F^1 A) = \text{Tor}_1 (1 \in F^1 A)$.

To $(1 \in F^1) \subset \text{Tor}_1 (1 \in F^1) \subset \text{Tor}_2 (1 \in F^1) \subset \cdots$

[images of graded pieces in $F^1 (A)$]

$\rightarrow A$ is filtered quadratic if $\text{Tor}_1 (1 \in F^1 A) \rightarrow A$

Surjective, with kernel generated by its subspaces $J_a = \ker (\text{Tor}_2 (1 \in F^1 A))$.

So A is filtered quadratic if span by $\ast W$, \ast fixed vector $\ast J \subset \text{Tor}_2 (1 \in W)$

$A = \{ \ast W, \ast J \}$

--- originally due to Priddy
Remark: A filtered quadratic algebra \(A^{(0)} = \{ W/C_e, J \mod V, (e_0 W) \} \)

Quadratic part of \(A \) = quadratic part of \(\text{gr}_F A \)

Def: \(A \) is called Koszul if \(A^{(0)} \) Koszul.

In this case: \(\text{gr}_F (A) = A^{(0)} \oplus \text{soc} A \)

Q: Is there a duality of filtered quadratic algebras which lifts the duality of graded quadratic algebras?

A: \(\text{No} \): data of extensions in \(A \) is translated into something else, namely a differential: get curved algebra as quadratic algebra - curvature measuring lack of augmentation. [Augmented case: Frohlich, John (1973)]

Def: An \(\text{cdga} \) \(B \) is a triple \(B = (B, d_B, h_B) \)

\(B = \text{graded algebra} \) \(B = \bigotimes \bigotimes \)

\(d_B : \bigotimes \bigotimes \rightarrow \bigotimes \) derivative of degree one

\(h_B \in B_2 \) \& \(d_B h_B = 0 \).

A morphism of cdgas \(B \rightarrow C \) is a map \(f : (f, \alpha) \)

\(f : B \rightarrow C \), \(f \in C \),

\(f(\alpha B) = f(\alpha) = \alpha B \)

Typical example: \((\text{End } E \otimes \Omega^*, \nabla E, \text{Curvature})\)

\(E \) vector bundle with connection.

Def: A cdg module over a cdga \(B \) is a pair \(N = (N, d_N) \)

\(N \) is a graded \(B \)-module, \(d_N \) is an odd derivation \(d_N : N \rightarrow N \)

\(d_N^2 = 0 \) \& \(\forall x \in N \).

Example: \(E \) vector bundle \(N = (E \otimes \Omega^*, \nabla) \) is cdg module on \((\text{End } E \otimes \Omega^*, d^{\nabla}, \text{F})\).
If \(A \) is filtered quadratic & \(V = W \) complexify for \(e \) \(\\{ e \in W, J \} \)

\[W = V \otimes C e \]

\[\Rightarrow A^{(0)} = \{ V, R \} \quad R = J / T(\{ e \in W \}) < V \otimes V \]

\[J \in T_2(\{ e \in W \}) = G \otimes V(\{ e \} \otimes V) \]

is a graph of a linear map \(R \rightarrow C \otimes V \quad \gamma = (3, \gamma) \)

which satisfies \((*) \quad (4^{12} - 4^{23}) (\{ e \} \otimes V, R \otimes R \otimes V) \leq \gamma \quad \gamma \)

Now if \(B = A^{(0)} \) \(B_2 = R^{P(2)} \)

\((e, b) \) \(\rightarrow \) to \(g = g e \) \(\cdot B \rightarrow B_2 \)

\(b = h \) \(\cdot C \rightarrow B_2 \)

\((*) \quad \Rightarrow \quad (B, d, b, h) \quad cdg a \)

Def. A **filtered quadratic** \(A = \{ e \in W, J \} \)

will be called **almost split** if it is equivalent with a splitting \(W \rightarrow W / e \)

Theorem (Positivity) The **filtered quadratic duality**

\[! : \text{filtered almost split} \rightarrow \text{quadratic} \quad [\text{red in even}] \]

gives an equivalence between almost-split Koszul filtered quadratic algebras & Koszul cdgas

Augmented filtered algebras \(\rightarrow \) cdgas (Positivity)

... see statement for modules
Spectral Construction Revisited

Let S be a variety over K, $K
ightarrow S$ a (fixed) algebraic map, and $X = \mathrm{tot} K \rightarrow S$.

Physical applications: want $\Lambda^{\mathrm{tor}} K = K_S$ so total space of K has trivial canonical class --- info will assume will be a CY!

Spectral correspondence:

\begin{align*}
\text{(coherent sheaves on } X) & \leftrightarrow \text{(coherent } K\text{-valued)} \\
\text{(finite over } S) & \leftrightarrow \text{(Higgs sheaves on } S) \\
\end{align*}

Idea:

- Coherent sheaves on X, finite over S.

As Koszul duality:

\begin{align*}
\text{LHS} &= \text{fin gen. mod-} X \text{ algebras over } S^\ast K = \text{fil}^\wedge X \\
\text{RHS} &= \text{Higgs sheaves over } \Lambda^\ast K \text{ as } \Omega^\ast \text{ graded object} \\
E \xrightarrow{\partial} E \otimes K \xrightarrow{\partial} E \otimes K \otimes \Lambda^2 K & \rightarrow \cdots \\
\end{align*}

Integrability of Higgs sheaves \Rightarrow this is a vector.

Differential is actually O-linear: ∂.

\Rightarrow dg algebra over $\Omega^\ast K$.

$S^\ast K$ as filtered NC algebra:

\begin{align*}
\Lambda^\ast K \text{ as graded NC algebra} & \xrightarrow{\text{Koszul}} S^\ast K \text{ as graded} \cr
\text{filtered Koszul duality} & \Rightarrow S^\ast K \text{ as graded} \\
\end{align*}

Higgs fields: free modules over RHS.

Now deform both sides: $S^\ast K \rightarrow \text{filtered NC algebra}$.

Examples:

1) Deform $X \rightarrow S^\ast K$ as an algebraic variety.

- Three types: deform base S, deform vector bundle K, or deform vector bundle to an affine bundle π.

The latter destroys one subvarieties, e.g. O section...
These affine bundles are parameterized by $H^*(S, K)$. Given $w \in H^*(S, K)$ get affine bundle $X_w \to P_w \to S$

$U_{X_w} = S \cdot w \cdot K$ filtration commutative algebras

$\text{gr}(S \cdot w \cdot K) = S \cdot K \cdot$. [Xw still CY if Xw os]

B-branes on Xw = coherent sheaves (with compact support)

cdg module over a cdg def of $(\Lambda^0 K, 0, 0)$ $S \cdot w \cdot K$

Explicitly:

$w \in H^*(S, K) \Rightarrow$ exists $0 \to K \to F_w \to Q \to 0$

$X_w =$ fiber of F_w over $1 \in G$

$\therefore X_w \to 1$

Geometrically:

$P(F_w) \to S$

$S \cdot K \cdot = P_{X_w} \cdot C_{X_w}$ are zero functors on

$X_w = P(F_w) \cdot P(K)$

$P(F_w)$ with $\mu_{P,K} \circ \log P(f)$,

$S \cdot K \cdot = \Pi_{X_w} \cdot \log P(F_w)(\infty \cdot P(f))$

$
\Gamma$ (filtered by order of pole along $P(K)$.

Algebraically:

$S \cdot K \cdot = S \cdot F_w / \langle 1 \cdot S \cdot F_w \rangle$

$F^{-1}(S \cdot K \cdot) = S \cdot F_w : U_s \subset F_w \subset S \cdot F_w \subset S \cdot F_w \subset ...$

$K \cdot \quad S \cdot K \cdot \quad S \cdot K \cdot$

Koszul dual: $(\Lambda^0 K, 0, 0)$ w

well we needed a splitting of the first step of the Poincaré

$0 \to U_s \to F_w \to K \to 0 \ldots$ but its nonsplit!

So no hope for global sheaf of $cdg a \ldots$

BUT issue of add-ons include not just isomorphism

but gauge transformations: use these to shift

$cdg a$ on patches

like in derived algebraic geometry! can't believe

global sheaf of $cdg a$, or define sheaves

locally defined kahls glued by gives: isomorphing

here we only allow homotopies of $cdg a$,

since Koszul duality really behoal under grm.
Choose a Čech covering of S & recycle $w_j \in \hat{H}(U, \mathcal{E})$ representing w_i.

Each U_i has gives a section $X w_i \rightarrow U_i$.

Koszul dual is $(\Lambda^0 K, 0, 0)_U$:

$(\Lambda^0 K, 0, 0)_U = \frac{1}{2} (\Lambda^1 K, 0, 0)_U / \sim$

where

$(\Lambda^1 K, 0, 0)_U$; glue $\sim (\Lambda^1 K, 0, 0)_U$ by gauge transformation in (id, c_{ij}).

Recall $B \in \text{c} \in \mathcal{B} \xrightarrow{\epsilon} \mathcal{C} \xrightarrow{f} \mathcal{C}$ $\xrightarrow{(\epsilon, x)}$

$\epsilon: B \rightarrow \mathcal{C}$ map of \mathcal{C}-algebras

$x \in \mathcal{C},$

$\epsilon(\mathcal{B} x) = \mathcal{C}(f x) - \mathcal{L}(f x)$

$\epsilon(\mathcal{B} x) = \mathcal{C} x + x^2\mathcal{C}$

Here $\mathcal{C} \in \mathcal{B} = \mathcal{C}$, $x \in \mathcal{C}_{ij}$, $x^2 = 0$

So as K acts on $(\Lambda^0 K, 0, 0)$ as gauge transformation (id, x), we just take K-twist of trivial cdga $(\Lambda^0 K, 0, 0)$ with K-torus $X w$.

(coherent sheaves on $X w$ with compact support) \leftrightarrow $(\omega$-twisted \mathcal{B}-algebra \mathcal{E}, $\mathcal{A})$

$\phi_i: \mathcal{E}_U \rightarrow \mathcal{E}_U \otimes K w_i$

$\phi_i \circ \phi_j = 0$ & $\phi_j \circ \phi_i = c_{ij} \circ \text{id}$

Note if ram E finite (compact support on U's)

$(\Rightarrow \text{tr } \phi_i - \text{tr } \phi_j = \text{tr } c_{ij} \circ \text{id})$

so recycle is a coboundary!

So if E torsion-free, \Rightarrow recycle is a coboundary: such won't exist globally...

Only get sheaves supported on subvarieties where $[\omega] = 0$, i.e. where class of locally affine bundle is zero.
Example: \(S = \text{elliptic curve}, \quad X = T^*S, \quad \mathcal{X}_u = T^*_u S \)
\(\omega \in H^1(S, \mathcal{O}_S) - \text{a holomorphic class} \)
- twistor family of \(X \)

Twisted Higgs bundles: Serreym interpretation

Higgs bundles \(E \rightarrow E \otimes \mathcal{O}_X \) are sheaves on stack \(K^\nu \)
\(K^\nu \rightarrow S \) bundle of stack \(K^\nu \)

\(\mathcal{B}K^\nu \rightarrow S \). Sheaves on \(\mathcal{B}K^\nu = [S/K^\nu] \) are sheaves \(E \rightarrow S \) with \(K^\nu \)-action \(E \otimes K^\nu \rightarrow E \)

i.e., \(\mathcal{O}_X \) module \(\mathcal{O}_X \)
- set all nilpotent Higgs sheaves
- to get all
go to formal stacks \(\mathcal{B}K^\nu \)

Twisted Higgs sheaves \(\mathcal{E} \rightarrow S \) in \(0 \)-gerbe

on \(\mathcal{B}K^\nu \):
\[0 \rightarrow \mathcal{O} \rightarrow \mathcal{E}_0 \rightarrow K^\nu \rightarrow 0 \]
defines gerbe \(\mathcal{O} \rightarrow \mathcal{B}G \rightarrow \mathcal{B}K^\nu \rightarrow 0 \)

\(0 \)-gerbe: looks like rational curve of \(K^\nu \)

Example ii) \(h \in H^0(S, \Lambda^2 K) \)
deform \((\Lambda^2 K, 0, 0) \) by \(h \): commutes with \(\lambda \)
\(\Rightarrow (\Lambda^2 K, 0, h) \) s.t. \(\Lambda^2 h = h \cdot \text{id} \)
Higgs fields with central value

Kopust\'niř ladov: Clifford algebra \(\text{Cliff} V \)
Koszul d-\(d \) to \((S^*V, 0, h) \)

\(h \in \text{Sym}^2 V \)

\(h \) gives a Heisenberg Lie algebra
\[0 \rightarrow \mathcal{O}_h \rightarrow K^\nu \rightarrow 0 \]
vector space direct sum
with Higgs relations, \(\{a, h\} = \langle a, a \wedge S \rangle \)
\(\mathcal{O}_h \) - Her bracket!

\(\langle \Lambda^2 K, 0, h \rangle \) = \(U_h = U(\mathcal{L}_h) / U(\mathcal{L}_h - 1) \)

filtered NC \(O_S \)-algebra
\[\rightarrow NC \text{ branes, } \text{on } "X_h" \Rightarrow S \quad U = U_h G \]
Also can look at \((\Lambda^n E, d, h)\) in \(K\nu\) no longer commutative Lie algebra.

\[cv : \Lambda^n K^\nu \to K^\nu \] Lie bracket.

Get exact sequence \(0 \to \Omega_\nu \to \Lambda^n E \to K^\nu \to 0\).

Koszul dual \((\Lambda^n E, d, c)^! = \Omega^n \nu \to 1-1\)

without \(\nu\) \(\Lambda^n E\) is just Cosp(H) in \(\mathbb{C}\)-valued cases.

Special case \(K = \Omega^n \nu\), \((\Lambda^n \Omega^n \nu, d, 0)^! = \Omega^n \nu\)

\(\Omega^n \nu\)-modules \(\to\) de Rham co-planes

\[(\Lambda^n \Omega^n \nu, d, h)^! = (\Omega^n \nu)_h, w\]

\(X = \text{tot } K\nu \subset \text{cone} \subset \mathcal{P}(K\nu \oplus \Omega^n \nu)\) Poisson surface.

Poisson structure vanishes twice at \(0\).

\(\Rightarrow\) NC deformation. Look at sheaves on \(X\) controlled at \(0\).