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i B
his proof that R is not no i -
Th t Fhere must e;fist som rmal is in some ways not very satisfying. We showed
onl¥ tLEl A are not contained ie gr Oper nonempty subset A of L such that the sets A and
= = n « ; :
: Isjoint open sets of R?. But we did not actually find such

a set A. In fact, the set A of points of L having rational coordi is S but the
i ' 0 s is such a set, bu
proof is not easy. It is left to the exercises, rdinates 15

Exercises

1. Show that if X is regular, every pair of points of X have neighborhoods whose
closures are disjoint.

2. Show that if X 1s “Or_“_‘als every pair of disjoint closed sets have neighborhoods
whose closures are disjoint.

3. Show that every order topology is regular.

4. Let X and X' denote a single set under two topologies 7 and 7, respectively;
ot i
assume that 7" D 7. If one of the spaces is Hausdorff (or regular, or normal),
what does that imply about the other?

5. Let f.g : X — Y be continuous; assume that ¥ is Hausdorff. Show that {x |
fx)= g(x)} is closed in X.

6. Let p : X — Y be a closed continuous surjective map. Show that if X is normal,
then so is Y. [Hint: If U is an open set containing p—l({y})’ show there is a
neighborhood W of y such that p'W)cU.

7. Let p : X — Y be a closed continuous surjective map such that pH({y) is
compact for each y € Y. (Such a map is called a perfect map.)

(a) Show that if X is Hausdorff, then sois Y.

(b) Show that if X is regular, thensois Y.

(c) Show that if X is locally compact, then so isY.

(d) Show thatif X is second-countable, then sois Y. [Hint: Let Bbea countable
basis for X. For each finite subset J of B, let U; be the union of all sets of
the form p~!'(W), for W open in Y, that are contained in the union of the
elements o! /.

8. Let X be a spuce: et G be a topological group. An action of G on X is a
continuous map « : &+ x X — X such that, denoting a(g x x) by g - x, one has:
(i) e-x=xforallx € X.
(i) g1 -(g2-x)=1(g1-82) % forallx € X and g1, g2 € G.

Define x ~ g - x for all x and g; the resulting quotient space is denoted X /G and

called the orbit space of the action «.

Theorem. Let G be a compact topological group; let X be a topological space;

let o be an action of G on X. If X is Hausdorff, or regular, or normal, or locally

compact, or second-countable, so isX/G..
[Hint: See Exercise 13 of §26.]
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Exercises

1. Show that a closed subspace of a normal space is normal.

2. Show that if [ | X, is Hausdorff, or regular, or normal, then so is X,. (Assume
that each X is nonempty.)

3. Show that every locally compact Hausdorff space is regular.
4. Show that every regular Lindelof space is normal.

5. Is R normal in the product topology? In the uniform topology?

It is not known whether R® is normal in the box topology. Mary-Ellen Rudin
has shown that the answer is affirmative if one assumes the continuum hypothe-
sis [RM]. In fact, she shows it satisfies a stronger condition called paracompact-
ness.

6. A space X is said to be completely normal if every subspace of X is normal.
Show that X is completely normal if and only if for every pair A, B of separated
sets in X (that is. sefs such that ANB = @ and AN B = @), there exist
disjoint open sets containing them. [Hint: If X is completely normal, consider
X-(ANB)]

7. Which of the following spaces are completely normal? Justify your answers.
(a) A subspace of a completely normal space.
(b) The product of two completely normal spaces.
(c) A well-ordered set in the order topology.
(d) A metrizable space.
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Exercises

1. Examine the proof of the Urysohn lemma, and show that for given r,

fﬁl(r) = ﬂ Up = U Uq,
p>r q<r
P, q rational.

2. (2) Show that a connected normal space having more than one point is uncou.
able.

(b) Show that a connected regular space having more than one point is uncount-
able.” [Hint: Any countable space is Lindelo6f |
3. Give a direct proof of the Urysohn lemma for a met:i. space (X, d) by setting
: d(x, A)
fx) =

e kol
d(x,A) +d(x, B)
T e ————
7LSuifpnsmeg enough,
Example 75 of [S-§],
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