Problem Set \# 2

M392C: K-theory

1. (a) A 3×3 rotation matrix always has a fixed line - that is, an eigenspace - which is actually pointwise fixed-the eigenvalue is 1 . Show that this is so. (A 3×3 rotation matrix is an orthogonal matrix with determinant 1. The group of all such matrices is denoted SO_{3}.) Except for the identity matrix I, this line is unique. Show that the map $f: S O_{3} \backslash\{I\} \rightarrow \mathbb{R P}^{2}$ so defined is a submersion. What is the inverse image of a point?
(b) Show that $\mathbb{R} \mathbb{P}^{3}$ may be constructed from the unit ball $B^{3} \subset \mathbb{A}^{3}$ by identifying antipodal points of the boundary S^{2}.
(c) Construct a diffeomorphism $f: \mathbb{R} \mathbb{P}^{3} \rightarrow S O_{3}$. Hint: Take the ball in part (b) to have radius π.
(d) Prove that the inclusion $\mathrm{SO}_{2} \hookrightarrow \mathrm{SO}_{3}$ induces a surjection on π_{1}.
2. Prove the following: Let n be a nonnegative integer and N a sufficiently large positive integer. Then there is an isomorphism

$$
\pi_{n-1} O_{N} \longrightarrow \widetilde{K O}\left(S^{n}\right)
$$

What is the minimal value of N in terms of n ? (The set of N larger than or equal to this minimal value is called the stable range.)
3. Prove directly (not using vector bundles on the sphere, as in lecture) that for $G=U, O, S p$ the homotopy groups $\pi_{q} G_{N}$ stabilize in the sense that there exists an affine function f such that for $N \geq f(q)$ the inclusion $G_{N} \hookrightarrow G_{N+1}$ induces an isomorphism $\pi_{q} G_{N} \rightarrow \pi_{q} G_{N+1}$. Here 'Sp' denotes the symplectic group. The function f depends which series of classical groups we are using. (Hint: Generalize the lemma about fiber bundles we proved in class.)

