Problem Set \# 3

M392C: K-theory

1. Let $H \rightarrow S^{2}$ be the hyperplane bundle. Construct an explicit isomorphism $H \oplus H \rightarrow H^{\oplus 2} \oplus \mathbb{C}$.
2. Let S be a set with composition laws $\circ_{1}, \circ_{2}: S \times S \rightarrow S$ and distinguished element $1 \in S$. Assume (i) 1 is an identity for both \circ_{1} and o_{2}; and (ii) for all $s_{1}, s_{2}, s_{3}, s_{4} \in S$ we have

$$
\left(s_{1} \circ_{1} s_{2}\right) \circ_{2}\left(s_{3} \circ_{1} s_{4}\right)=\left(s_{1} \circ_{2} s_{3}\right) \circ_{1}\left(s_{2} \circ_{2} s_{4}\right) .
$$

Prove that $\mathrm{o}_{1}=\mathrm{o}_{2}$ and that this common operation is commutative and associative.
3. Show that the projective plane $\mathbb{F P}^{2}$ is the mapping cone of the appropriate Hopf map. In other words, construct a CW structure on $\mathbb{F P}^{2}$ with exactly 3 cells (of dimensions $0, d, 2 d$, where $d=$ $\operatorname{dim}_{\mathbb{R}} \mathbb{F}$) and show the attaching map is the Hopf map. Your solution should be very geometric and use the geometry of the projective plane. Work the problem for $\mathbb{F}=\mathbb{R}, \mathbb{C}, \mathbb{H}$ and for the octonions as well.
4. Recall that in the Atiyah-Bott Acta proof of the periodicity theorem if X is compact Hausdorff, $E \rightarrow X$ a complex vector bundle, and

$$
p(x, \lambda)=\sum_{k=0}^{n} p_{k}(x) \lambda^{k}, \quad p_{k}(x) \in \operatorname{End} E_{x},
$$

is invertible for $x \in X, \lambda \in \mathbb{T}$, then we define

$$
\mathcal{L}^{n} p=\left(\begin{array}{cccccc}
1 & -\lambda & & & & \\
& 1 & -\lambda & & & \\
& & & \ddots & & \\
& & & & & \\
& & & & 1 & -\lambda \\
p_{n} & & \cdots & & p_{1} & p_{0}
\end{array}\right)
$$

which is an automorphism of $E^{\oplus(n+1)} \times \mathbb{T} \rightarrow X \times \mathbb{T}$. Prove this last assertion: $\mathcal{L}^{n} p$ is invertible. Now \mathcal{L}^{n} maps polynomials of degree $\leq n$ to clutching functions for a bundle on $X \times \mathbb{T}$; let $\left(E^{\oplus(n+1)}, \mathcal{L}^{n} p\right)$ denote its isomorphism class. Noting that p above is also a polynomial of degree $\leq n+1$, prove that

$$
\begin{aligned}
\left(E^{\oplus(n+2)}, \mathcal{L}^{n+1} p\right) & =\left(E^{\oplus(n+1)}, \mathcal{L}^{n} p\right)+(E, 1) \\
\left(E^{\oplus(n+2)}, \mathcal{L}^{n+1}(\lambda p)\right) & =\left(E^{\oplus(n+1)}, \mathcal{L}^{n} p\right)+(E, \lambda)
\end{aligned}
$$

5. (a) Let \mathbb{E} be a finite dimensional complex vector space and $T \in E n d \mathbb{E}$ a linear transformation with no eigenvalues on $\mathbb{T} \subset \mathbb{C}$. Define

$$
Q=\frac{1}{2 \pi i} \int_{|w|=1}(w-T)^{-1} d w
$$

Prove that $Q^{2}=Q$ and $Q T=T Q$. Prove that the image $Q \mathbb{E} \subset \mathbb{E}$ of the projection Q is the sum of the generalized eigenspaces of T for eigenvalues in the unit disk. What is the image of the complementary projection $1-Q=\operatorname{id}_{\mathbb{E}}-Q$?
(b) What can you say if \mathbb{E} is an infinite dimensional Hilbert space?
6. (a) For any space X we let $X_{+}=X \sqcup \mathrm{pt}$ be the pointed space which is the union of X and a disjoint basepoint. Let X be a pointed CW complex. Construct a pointed homotopy equivalence

$$
\Sigma\left(X_{+}\right) \simeq \Sigma\left(S^{0} \vee X\right)
$$

Here Σ denotes the suspension operation $S^{1} \wedge$ - on pointed spaces.
(b) For pointed CW complexes X, Y construct a pointed homotopy equivalence

$$
\Sigma(X \times Y) \simeq \Sigma X \vee \Sigma Y \vee \Sigma(X \wedge Y)
$$

What do you conclude if $X=Y=S^{1}$? Use this to compute the homology groups of a torus. The "stable splitting" technique is a useful one for homology computations.

