
Problem Set # 9

M392C: K-theory

Please write up the solutions to 6 problems and turn in by Thursday, November 5.

In this problem set G is a compact Lie group and g its Lie algebra.

1. The Killing form κ : g×g → R is defined for any Lie algebra g by κ(ξ1, ξ2) = Trace
(
ad(ξ1)◦ad ξ2)

)
.

In this problem assume g is the Lie algebra of a compact Lie group.

(a) Prove that the Killing form is negative semi-definite.

(b) Prove that the Ad-action of G on g is orthogonal for the Killing form.

(c) Assume the Killing form induces a bi-invariant metric on G. Prove that, in fact, for any bi-

invariant metric the Riemannian exponential map at the identity agrees with the exponential

map defined from the Lie group structure.

2. Suppose G is a connected compact Lie group.

(a) Let Ω•
left(G) ⊂ Ω•(G) denote the vector subspace of left-invariant differential forms. Show that

Ω•
left(G) is in fact a sub-differential graded algebra, i.e., it is closed under multiplication and

the differential d.

(b) Construct an isomorphism

(∗)
∧•

g∗ → Ω•
left(G).

Transfer the differential on Ω•
left(G) to

∧•
g∗ and write a formula for it. In this way you obtain a

differential graded complex defined directly from the Lie algebra g. Observe that your definition

works for any Lie algebra (it needn’t be the Lie algebra of a compact Lie group).

(c) Prove that the inclusion in part (a) induces an isomorphism on cohomology. A map of cochain

complexes with this property is called a quasi-isomorphism. So you can compute the de Rham

cohomology of G from this Lie algebra complex. (Hint: Average over G to construct a left-

invariant form from an arbitrary form.)

(d) Use the inverse map g 7→ g−1 to show that the differential of a bi-invariant differential form

vanishes. Show that the de Rham cohomology of G is isomorphic to the algebra of bi-invariant

forms.

(e) Use these ideas to compute H•
dR(SU2).

(f) Endow G with a bi-invariant metric. Is there a relationship between harmonic forms and bi-

invariant forms?



3. (a) Consider the adjoint action of Un. Let T ⊂ Un be the maximal torus of diagonal matrices.

What are the root spaces and the roots?

(b) Repeat for SUn.

(c) Repeat for SOn and Spn.

4. Consider the group SU3 of 3× 3 unitary matrices of determinant one.

(a) Compute the Lie algebra su3 of SU3. What is dimSU3?

(b) Construct an Ad-invariant bilinear form on su3.

(c) Choose a maximal torus T ⊂ SU3 to be the diagonal matrices. What is the rank of SU3?

Identify the lattices Π and Λ as subsets of t and t∗ respectively, where t = Lie(T ).

(d) Find the normalizer N(T ) to the torus. Identify the Weyl group W = N(T )/T .

(e) Restrict the adjoint representation of SU3 to T . Diagonalize this action by complexifying the

Lie algebra and compute the function Λ → Z which specifies the multiplicities of the weights.

These are the roots of SU3.

(f) Compute the weights of the standard representation of SU3 on C3.

(g) Compute the weights of the symmetric square of the standard representation.

5. Let G be a compact Lie group. It is true that there is a countable set of isomorphism classes

of irreducible complex representations. Let {Vi} be a choice of a set of representative irreducible

representations. For any finite dimensional representation V construct a canonical isomorphism

⊕
i

HomG(Vi, V )⊗ Vi −→ V.

You might even consider the meaning of ‘canonical’ and prove that your isomorphism is just that.

6. (a) Let V be a complex vector space. Define the complex conjugate space V to be equal to V as an

abelian group and with scalar multiplication complex conjugate to that in V . In other words,

if v ∈ V equals v̄ ∈ V (recall that V = V as a set, even as an abelian group), then for any

complex number c, we have c · v = c̄ · v̄. Here the first ‘·’ is scalar multiplication in V , the

second in V .

(b) A real structure on V is a linear map J : V → V which satisfies J ◦ J = idV . Show that the

fixed points of J form a real vector space W . Produce a canonical isomorphism W ⊗ C → V .

(c) A quaternionic structure on V is a linear map J : V → V which satisfies J ◦ J = − idV . Show

that in this case V is naturally a module over the quaternions H. It is often convenient to treat

quaternionic vector spaces as complex vector spaces with this extra structure.



(d) Suppose G is a compact Lie group and V a complex representation, i.e., a complex vector space

with a linear G-action. Then V is self-conjugate if there is a real or quaternionic structure

which is preserved by the group G. Give an example of a self-conjugate representation. Give

an example of a representation which is not self-conjugate. Show that the tensor product of

self-conjugate representations is self-conjugate. Discuss the various cases: real ⊗ real, real ⊗
quaternionic, etc.

(e) Explore how to construct a real representation from a complex representation, a complex rep-

resentation from a real one, a quaternionic representation from a complex representation, etc.

You will be defining certain functors between categories of representations. Spell it out in that

language. Investigate various compositions of your functors.

7. Let G be a compact Lie group and V a complex representation. We proved in lecture that V carries

an invariant hermitian form, even one which is positive definite. Now investigate the existence of

an invariant bilinear form. Give examples to demonstrate existence or non-existence. If V is

irreducible show that the space of invariant forms is zero or one-dimensional, and in the latter case

all nonzero forms are either symmetric or skew-symmetric. How does the existence of invariant

forms relate to the self-conjugacy of the representation?

8. True or false. Proof or example.

(a) There is a nontrivial homomorphism SO3 → Sp1.

(b) There is a nontrivial homomorphism Sp1 → SO3.

(c) There is a nontrivial homomorphism SO5 → Sp2.

(d) There is a nontrivial homomorphism Sp2 → SO5.

(e) There is a nontrivial homomorphism Sp2 → Spin5.

(f) There is a nontrivial homomorphism SU3 → SO7.

(g) There is a nontrivial homomorphism SO7 → SU3.

(h) There is a nontrivial homomorphism Spin7 → Spin8.

9. Apply the Weyl character formula to deduce the characters of the representations discussed in

Problem 4. Explore the rank 2 groups SO4, SO5, Sp2 and U2. Learn the graphic algorithm at

the end of the article of Bott (see web page) for computing the character. There is graph paper

available on the web page for SU3. I welcome graph paper for other groups!


